
Published online 5 October 2007 Nucleic Acids Research, 2008, Vol. 36, Database issue D409–D413
doi:10.1093/nar/gkm801

coliSNP database server mapping nsSNPs
on protein structures
Hidetoshi Kono1,2,3,*, Tomo Yuasa4, Shinya Nishiue5 and Kei Yura3,6

1Computational Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1 Umemidai,
Kizugawa, Kyoto 619-0215, 2PRESTO, Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama,
332-0012, 3Research Unit for Quantum Beam Life Science Initiative, Quantum Beam Science Directorate,
Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa, Kyoto 619-0215, 4Bioinformatics Department, Mitsubishi
Space Software CO. LTD, 5-4-36 Tsukaguchi-honmachi, Amagasaki, Hyogo 661-0001, 5Department of
Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188 and 6Quantum Bioinformatics
Team, Center for Computational Science and Engineering, Japan Atomic Energy Agency, 8-1 Umemidai,
Kizugawa, Kyoto 619-0215 Japan

Received August 15, 2007; Revised September 13, 2007; Accepted September 17, 2007

ABSTRACT

We have developed coliSNP, a database server
(http://yayoi.kansai.jaea.go.jp/colisnp) that maps
non-synonymous single nucleotide polymorphisms
(nsSNPs) on the three-dimensional (3D) structure of
proteins. Once a week, the SNP data from the
dbSNP database and the protein structure data from
the Protein Data Bank (PDB) are downloaded, and
the correspondence of the two data sets is auto-
matically tabulated in the coliSNP database. Given
an amino acid sequence, protein name or PDB ID,
the server will immediately provide known nsSNP
information, including the amino acid mutation
caused by the nsSNP, the solvent accessibility, the
secondary structure and the flanking residues of
the mutated residue in a single page. The position
of the nsSNP within the amino acid sequence and on
the 3D structure of the protein can also be observed.
The database provides key information with which
to judge whether an observed nsSNP critically
affects protein function and/or stability. As far as
we know, this is the only web-based nsSNP
database that automatically compiles SNP and
protein information in a concise manner.

INTRODUCTION

Single nucleotide polymorphisms (SNPs) have the poten-
tial to affect gene function, especially when they are
located in coding or regulatory regions. Among the many
types of SNPs, non-synonymous SNPs (nsSNPs) are
believed to have the greatest impact on protein function
because they often lead to mutation of the encoded amino

acids, which can have a deleterious effect on the structure
and/or function of the proteins. Such nsSNPs are often
associated with disease-modifying alleles that have been
compiled, for example, in the OMIM database (http://
www.ncbi.nlm.nih.gov/omim/) (1).
Disease-associated SNPs were often interpreted solely

on the basis of their sequences, mainly with respect to
sequence conservation; however, thanks to structural
genomics projects in the USA, Canada, Europe and
Japan, which nowmake available more than 40 000 protein
structures (2), it is possible to interpret the effects of a large
number of SNPs on three-dimensional (3D) protein
structures. To further investigate the possible causes of
disease at the molecular level, we have started mapping
nsSNPs on 3D protein structures and developed a database
named coliSNP (Clue of Life SNP), which provides users
with both the protein sequence and structural information
on nsSNPs, enabling them to gain significant insight into
the effects of nsSNPs at the molecule level.
To date, several databases, including SAAP (3),

PolyDoms (4), topoSNP (5), SNPeffect (6), SNPs3D (7),
MutDB (8,9) and LS-SNP (10), have been developed to
provide links between SNPs and protein sequence/
structure data and/or cellular processes such as localiza-
tion, phosphorylation and glycosylation. Among these,
topoSNP, SNPs3D, MutDB and LS-SNP have a direct
link to 3D protein structures from nsSNP locations within
nucleotide sequences. Apparently, however, these data-
bases are no longer actively maintained or are updated
only about once a year, at best. The coliSNP we have
launched is automatically updated every week and
contains the up-to-date nsSNP data mapped on the 3D
protein structures. Moreover, coliSNP enables visualiza-
tion of 3D protein structures directly using Jmol or
RasMol by downloading the coordinates attached to a
RasMol script. Both of these features are unique to
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coliSNP and enable one to easily observe the locations
of mutations caused by nsSNPs, even when the nsSNPs/
protein structures have only been very recently identified/
determined. The regularly updated nsSNP information,
combined with 3D protein structures, represents an
invaluable resource for evaluating the effect of the muta-
tion on protein function and stability.

Data sources and integrated information

To develop the coliSNP database, we integrated three
publicly available databases: RefSeq, for a comprehensive,

integrated, non-redundant set of sequences (11); Protein
Data Bank (PDB), for 3D protein structures (2); and
dbSNP, for SNP information (12). We first compared
dbSNP and RefSeq and built a temporary database,
RefSeqSNP, which was a subset of RefSeq that only
contained amino acid sequences encoded by genes with
nsSNPs. We then used Basic Local Alignment Search Tool
(BLAST) (13) with default parameters to search for PDB
entries that matched each of the sequences in RefSeqSNP.
We collected the PDB entries whose amino acid sequence
identity against the query was >95% over the region
aligned by BLAST if the length of the aligned region

Figure 1. The coliSNP search interface. The user can use the protein section, SNP section or both to set the search conditions.
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was� 30 amino acids. At this point, we removed similar
amino acid sequences by limiting the PDB entries to those
that were ranked at the top in each of the 90% sequence
identity clusters and compiled in the ‘clusters90.txt’ file
provided by PDB. Our reasoning was that sequences with
such a high identity would assume very similar tertiary
structures, close enough to assess the impact of mutations.

Data access and the search interface

coliSNP can be accessed at http://yayoi.kansai.jaea.go.jp/
colisnp. In the search form (Figure 1), a user can provide
several search keys on the protein and/or the SNPs. In the
protein section, the user can use as query terms the amino
acid sequence, PDB ID, molecule name and keyword in
PDB. The user can also limit the scope of the 3D protein

Figure 2. A typical search result. nsSNP information is provided with structural information on the mutated amino acid residue—e.g. the secondary
structure and solvent accessibility.
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structures to be mapped for SNPs by specifying the
organisms that the proteins were derived from. In the SNP
section, the user can give the organism, allele type and
heterozygosity as queries. The user can also use both the
protein and SNP sections to narrow the search.
As shown in Figure 2, the search result emerges with

information about the mutation, the flanking amino acids,
the secondary structure and the solvent accessibility of
the mutated residue, allele frequency and heterozygosity.
The output page also has a link to the original dbSNP
database, enabling more detailed information to be
obtained. If desired, the information can be saved in a
flat text format for further analysis. The user can also
easily observe the location of an nsSNP on the 3D protein
structure by clicking either the ‘Download Structure’ link
or the ‘Structure View’ box. We adopted two graphics
programs, RasMol (http://openrasmol.org) and Jmol
(http://jmol.sourceforge.net), for 3D protein visualization.
The former is one of the most widely used software
packages for visualizing the 3D structures of proteins and
has a number of handy operations. The latter displays 3D
structures in a Java-implemented browser.

nsSNPs location and its impact on 3D protein structure

One of the unique features of the coliSNP database is
that it gives the solvent accessibility of a wild-type
residue that has been mutated by an nsSNP. We found
that the solvent accessibility is the best indicator of the
impact of a mutation on protein function. Other proper-
ties that we evaluated include the secondary structure
where the mutation occurred, changes in hydrogen
bonding, and the chemical properties of the affected
residue. The correlation between the effect substituting a

single residue and its solvent accessibility has long been
discussed (14–16). To provide a quantitative limit for
the solvent accessibility of residues able to tolerate muta-
tion caused by nsSNPs, we collected experimental data
showing the relationship between point mutations and
the activities of proteins with known 3D structures.
The point mutation studies on Lac repressor (17) and
T4 lysozyme (18), in particular, provided us with suffi-
cient data to determine that limit of solvent accessibility.
The solvent accessibility was calculated with ASC(19).
We then re-examined the relationship between solvent
accessibility and viability of the organism for these two
proteins. Figure 3 shows the loss of function rate plotted
against the solvent accessibility of the wild-type residue.
In the case of Lac repressor, about 90% of mutation-
tolerant sites (see Figure 3 caption) were located at
positions where the solvent accessibility of the wild-
type residue was >30%, and about 80% of mutations in
intolerant or partially tolerant sites were located at
positions where the solvent accessibility was �30%.
Based on this observation, we decided to provide the
solvent accessibility value of the mutated residue together
with the 3D structure of the protein in the database, and
the residues with solvent accessibility of � 30% were
marked in yellow in the 3D structures. We believe that
these data enable one to evaluate possible effect of
nsSNPs on protein stability and function. For instance,
the nsSNP in human SYK kinase shown in Figure 2
results in the substitution of Arg45 with His, and the
solvent accessibility is 8%. Because of the degree to
which this residue is buried, it is highly likely that the
substitution will have a deleterious effect on the protein’s
function and/or stability, as suggested by Figure 3.
In fact, the residue forms one of the loops for domain
association and is located relatively close to the phos-
phorylated Tyr of the target peptide (20). Both of these
pieces of information are easily retrieved from coliSNP
and may add medically important annotation to the SNP
site. It is worth noting that the impact of a mutation
should also be evaluated based on sequence conservation.
Disease-associated nsSNPs tend to be located at highly
conserved sites (21). This information will be incorpo-
rated in the coliSNP database in the near future.

Database status and future work

As of 26 July 2007, coliSNP contains 4470 nsSNPs, which
are mapped on 1559 distinct protein structures, mostly
from Homo sapiens (4216 out of 4470). A process to
include all of the data in dbSNP, which is derived from
22 organisms, is ongoing. Modification of 3D protein
structure visualization tools to accept the new PDB format
(http://www.wwpdb.org/docs.html and see Remediation
Documentation) is also ongoing. In the near future,
coliSNP will also provide SNPs located in the gene
regulatory region together with potential target regions of
the regulatory proteins.

Availability

The coliSNP database can be accessed freely at http://
yayoi.kansai.jaea.go.jp/colisnp.
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Figure 3. Cumulative plots of tolerant, partially tolerant and intolerant
sites in Lac repressor against the solvent accessibility. In the experiment
(17), 12 or 13 mutations (depending on the identity of the wild-type
residue) were tested at 124 sites. We defined the tolerance at each site as
follows: tolerant, <5 of the mutations cause loss of function (45 sites);
intolerant, >8 of the mutations cause loss of function (69 sites); and
partially tolerant, 5–8 of the mutations cause loss of function (10 sites).
The solvent accessibility was calculated using the program ASC (19)
with a protein–DNA complex form (PDB:1EFA) or a tetrameric form
(PDB:1LBI), depending on the site considered.
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