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Abstract: High thermal conductivity polymer matrix composites have become an urgent need for the
thermal management of modern electronic devices. However, increasing the thermal conductivity of
polymer-based composites typically results in loss of lightweight, flexibility and electrical insulation.
Herein, the polyvinyl alcohol (PVA)/PVA-chitosan-adsorbed multi-walled carbon nanotubes/PVA
(PVA/CS@MWCNTs) composite films with a sandwich structure were designed and fabricated
by a self-construction strategy inspired by the surface film formation of milk. The obtained film
simultaneously possesses high thermal conductivity, electrical insulation, and excellent flexibility.
In this particular structure, the uniform intermediate layer of PVA-CS@MWCNTs contributed to
improving the thermal conductivity of composite films, and the PVA distributed on both sides of the
sandwich structure maintains the electrical insulation of the films (superior electrical resistivity above
1012 Ω·cm). It has been demonstrated that the fillers could be arranged in a horizontal direction
during the scraping process. Thus, the obtained composite film exhibited high in-plane thermal
conductivity of 5.312 W·m−1·K−1 at fairly low MWCNTs loading of 5 wt%, which increased by about
1190% compared with pure PVA (0.412 W·m−1·K−1). This work effectively realizes the combination
of high thermal conductivity and excellent electrical insulation, which could greatly expand the
application of polymer-based composite films in the area of thermal management.

Keywords: polymer-based composites; sandwich structure; flexibility; high thermal conductivity;
electrical insulation

1. Introduction

With the rapid development of electronic devices for miniaturization, high integration,
and multi-function, heat accumulation is increasingly prominent [1,2]. Therefore, in order
to make electronic devices stable and reliable thermal conductivity of good materials is
urgently needed. Recently, highly thermal conductive and electrically insulated polymeric
composites show great application potential as thermal management materials because
they have lightweight, durability, flexibility, corrosion-resistant, and easy processing char-
acteristics [3,4]. Polyvinyl alcohol (PVA) has aroused wide attention due to its excellent
biocompatibility, high water solubility and insulating properties [5–7].

However, this severely limits the applications of polymers in the thermal management
of modern electronics due to their low intrinsic thermal conductivity (~0.2 W·m−1·K−1);
therefore, the introduction of fillers with high thermal conductivity into polymer substrates
is identified as the ideal solution [8–12]. To meet the requirements of electrical insulation,
many efforts have been devoted to introducing insulation fillers into the polymer matrix,
such as boron nitride [13], aluminum nitride [14], silicon carbide, alumina [15] and other
ceramic fillers. However, their relatively low intrinsic thermal conductivity often needs a

Polymers 2022, 14, 2512. https://doi.org/10.3390/polym14122512 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14122512
https://doi.org/10.3390/polym14122512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-9656-6222
https://doi.org/10.3390/polym14122512
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14122512?type=check_update&version=2


Polymers 2022, 14, 2512 2 of 13

lot of fillers to significantly improve the thermal conductivity of composites, which will
result in a loss of flexibility [16].

Due to their high thermal conductivity (2000–6000 W/m·K), carbon nanotubes (CNTs)
have attracted extensive attention as candidate materials for thermal conductivity
fillers [17–21]. However, due to the high electrical conductivity of CNTs, a small amount of
addition can significantly improve the conductivity of composites, which is an inevitable
obstacle to the application of electrical insulation materials in the electronic field [22,23].
Therefore, it is still a serious challenge to achieve high thermal conductivity enhancement
while retaining flexibility and excellent electrical insulation [24]. In addition, good dis-
persibility of fillers and strong interfacial interaction between the fillers and polymer matrix
are two key factors to enhance the properties of composites [25]. However, since there is no
bond between carbon nanotubes and polymer, carbon nanotubes have a strong tendency
to aggregate during doping into a polymer matrix [26]. Chitosan (CS) has significant
hydrophilic properties due to the high proportion of amino and hydroxyl groups [27]. In
addition, CS also shows biodegradability, unique biocompatibility, antibacterial activity,
and good film-forming ability [28,29]. CS and PVA blends have been studied to improve me-
chanical properties and provide a method for producing polymeric packaging films [30–32].
However, fabricating the PVA/CS@MWCNTs system for thermal conductivity manage-
ment through noncovalent modification of the MWCNTs has not been reported. Therefore,
CS was chosen to prevent the aggregation of MWCNTs to enhance the properties of the
composites in this work.

Based on the above, sandwich-structured PVA/CS@MWCNTs composite films were
designed and fabricated through a self-construction strategy, which was inspired by the sur-
face film formation of milk. PVA-CS@MWCNTs is the middle layer of PVA/CS@MWCNTs
composite film, and both sides of the PVA-CS@MWCNTs are PVA. TEM was carried out to
observe the cross-section structure of the composite film. The promoting effect of CS on the
uniform dispersion of MWCNTs was also displayed in this study. The effects of amounts of
MWCNTs on the thermal conductivity, electrical insulation, and mechanical properties of
the sandwich structured PVA/CS@MWCNTs composite film were studied in detail.

2. Materials and Methods
2.1. Chemicals and Reagents

MWCNTs (diameters: 10–20 nm, purity: >98%) were provided by Chengdu Organic
Chemistry Co. Ltd., Chinese Academy of Sciences, Chengdu, China. PVA (molecular
weight: 130.14200, degree of polymerization: 1700 ± 50, alcoholysis degree: 88%, CP)
and chitosan (molecular weight: 300000, deacetylation is 95%) were supplied by Shanghai
Aladdin Biochemical Technology Co., Ltd., Shanghai, China. The molecular weight units of
Cs and PVA are all 1. Glycerol and glacial acetic acid were offered by Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China.

2.2. Preparation of CS@MWCNTs

Chitosan solution with a concentration of 1.0 wt% was prepared by magnetic stirring
at 75 ◦C for 5 h after a certain amount of chitosan was dissolved in 1.0 wt% acetic acid
aqueous solution. Then, a certain amount of MWNTs was placed in 1.0 wt% chitosan
aqueous solution, magnetic stirring at 75 ◦C for 24 h, and high-frequency ultrasound for
5 min to obtain the black suspension of chitosan-coated MWNTs.

2.3. Preparation of PVA/Glycerol Solution

First, 9 g PVA particles were added to 90 mL of deionized water and stirred with
magnetic force at room temperature until the solution was transparent. Then, 1 g of glycerol
was added as plasticizer and stirred with magnetic force for 2 h at 95 ◦C. The resulting
PVA/glycerol solution was cooled to room temperature, and bubbles were removed for
later use.
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2.4. Preparation of PVA/CS@MWCNTs Composite Films

The CS@MWCNTs solution (4 mg/mL) was added to the PVA/H2O/glycerol solution;
first, it was subjected to high-frequency ultrasound for 2 min and then stirred magnetically
at room temperature for 2 h, after which the acquired good dispersion PVA/CS@MWCNTs
mixture was ready to fabricate film. An automatic film scraper was used to prepare
PVA/CS@MWCNTs composite films. The stainless steel plate was selected as the substrate.
The film scraping speed was 85 mm/s, and the film scraping thickness was set to 0.1 mm.
After drying at 25 ◦C for 1 h and 80 ◦C for 12 h in a vacuum oven, composite films were
removed from the substrate. The mass fraction (wt%) of filler MWCNTs was calculated by
the following equation:

wt% =
MMWCNTs

MPVA + MMWCNTs
× 100% (1)

Here MMWCNTs and MPVA represent the mass of MWCNTs and PVA, respectively. Then
the mass fraction of MWCNTs in the composites was 1, 3, 5, and 7 wt%, respectively. For
comparison, pure PVA film was prepared by the same method. The thickness of composite
films was about 0.06~0.13 mm. The schematic diagram of the preparation process of
PVA/CS@MWCNTs composite films is shown in Figure 1.
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Figure 1. Schematic of the fabrication of sandwich-structured flexible PVA/CS@MWCNTs
composite films.

2.5. Characterization

Scanning electron microscopy (SEM, JSM-6700F) and transmission electron microscope
(TEM, JEOL-2100F, 100 KV) were used to observe the morphology and microstructures
of films. XRD patterns of the prepared samples were determined by X-ray diffraction
(XRD) of a D8-Advance Instrument (Bruker AXS) with Cu Kα radiation (λ = 1.5418 Å). The
Fourier transform infrared (FTIR) spectrum was recorded on Nicolet iS 50, and attenuated
total reflection (ATR) mode was carried out to test films in the range of 4000–500 cm−1.
X-ray photoelectron spectroscopy (XPS) was employed to investigate the morphology of
MWCNTs, CS and CS@ MWCNTs. Thermogravimetric analysis (TGA) was performed on a
thermal analyzer system under N2 protection at a heating rate of 10 ◦C·min−1 (METTLER
TOLEDO, TGA 2). κ = α·ρ·Cp was used to calculate the thermal conductivity of different
films, in which α represents the thermal diffusivity, ρ represents the mass density, and Cp
represents the heat capacity. The transient “laser flash” method (Nanoflash LFA 447) was
used to measure the thermal diffusivity (α) of different samples. The calculation formula
for density ρ is ρ = m/V, where m and V are the mass and volume of the test sample
respectively. The differential scanning calorimeter (METTLER TOLEDO, DSC 3) with the
sapphire method was carried out to measure the Cp of samples. More details of thermal
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tests have been described in detail in our previous work [33]. The thermal conductivity
enhancement (κe) compared with pure PVA can be calculated as follow:

κe(%) =
κ− κm

κm
× 100% (2)

where κ represents the thermal conductivity of the composite films and κm represents the
thermal conductivity of the pure PVA. The films were cut into fixed geometry
(diameters > 5.2 cm) for volume resistivity tests, which were measured by a ZC36 high
insulation resistance measuring instrument. The mechanical performances of films were
tested by a tensile tester at the rate of 15 mm/min at room temperature (Linkam, Redhill,
UK, TST, 250 V). In order to make sure the test results were reliable, three specimens were
tested for each sample.

3. Results and Discussions
3.1. Chitosan Coating on the Surface of Carbon Nanotubes

Fillers well dispersed in polymer matrix are very important to obtain ideal perfor-
mance [34]. In order to disperse MWNTs well in the polymer matrix, CS was used to
non-covalently modify MWNTs. A series of tests was utilized to verify the successful
adsorption of chitosan on the surface of carbon nanotubes. Figure 2a exhibited the XRD
patterns of CS, MWCNTs, and CS@MWCNTs. The characteristic peak of MWCNTs was
obvious at 26◦, which was ascribed to the (002) crystal plane diffraction of the hexago-
nal graphite structure, indicating the multiwalled nature of CNT [35]. Chitosan showed
strong peaks at 19.96◦, which corresponded to characteristic diffraction peaks of the crystal
plane (040) [36]. In the XRD patterns of CS@MWCNTs, the characteristic peaks of CS
and MWCNTs both appeared, confirming the existence of both CS and MWCNTs in this
composite, MWCNTs, and CS only interact physically without chemical reaction. Mean-
while, CS crystallinity (calculated according to Debye Scherrer equation D = 0.89λ

βCosθ ) [37]
decreased in CS/MWCNTs, indicating that CS chains were well distributed on the surface
of MWCNTs [38].
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Figure 2. (a) XRD patterns of CS, MWCNTs, and CS@MWCNTs; (b) TGA curves in nitrogen at-
mosphere of CS, MWCNTs, and CS@MWCNTs; (c) XPS wide scan spectra of CS, MWCNTs, and
CS@MWCNTs and corresponding high-resolution spectra of (d) C 1 s, (e) N 1 s, (f) O 1 s, respectively.

The modification amounts of CS on MWCNTs surfaces were evaluated using TGA
under a nitrogen atmosphere (Figure 2b). There was almost no weight loss for MWCNTs
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from 30 to 400 ◦C; with the increase in temperature, MWCNTs displayed slight weight
losses of 13.8% at 800 ◦C. This is related to defects on the surface of carbon nanotubes,
such as topological defects, heavy hybridization defects and incomplete bonding defects,
which contribute to the dissociation of oxygen and lead to the formation of carbon-oxygen
bonds. When heated to higher temperatures (800 ◦C), these oxygen-containing groups
gradually disappeared. For CS and CS@MWCNTs, the weight loss under 200 ◦C was owing
to the adsorption of water by physical desorption, and the weight reduction between 280
and 360 ◦C was due to the degradation and deacetylation of chitosan [39,40], at higher
temperatures, additional weight loss occurred due to the further condensation of species on
the carbonaceous surface [41]; When heated to 800 ◦C, the residual weight of CS@MWCNTs
was about 27.4%, suggesting that the content of CS in CS@MWCNTs was about 58.8%.

Figure 2c–f showed the XPS analysis of CS, MWCNTs, and CS@MWCNTs, which is a
method for quantitative analysis of material surfaces. CS@MWCNTs showed characteristic
peaks similar to CS in the spectral scanning XPS analysis, and the carbon spectrum dis-
played that the carbon peak intensity of CS@MWCNTs was between the spectral intensity
of MWCNTs and CS. Because chitosan was coated on the surface of MWCNTs, the number
of sp2 carbon atoms in the MWCNTs strongly attached to CS molecules increased, and the
appearance of N and O peaks in CS@MWCNTs also indicated the presence of CS on the
surface of MWCNTs.

CS (chitosan) adsorbed on the surface of MWCNTs is shown in Figure 3a. The TEM
result of chitosan adsorption on the surface of MWCNTs is also shown in Figure 3b. The
comparison of dispersion of MWCNTs in aqueous solution before and after chitosan
modification is shown in Figure 3c; this phenomenon suggested that CS significantly
promoted the dispersion of MWCNTs.
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Figure 3. (a) Schematic diagram of CS-adsorbed on the surface of MWCNTs; (b) The TEM micro-
graphs of CS-adsorbed on the surface of MWCNTs; (c) Photos of MWCNTs and CS@MWCNTs
solubility in water one day on the left and 30 days on the right.

3.2. Dispersion and Interaction of CS@MWCNTs in PVA Matrix

Good interfacial interaction between fillers and polymer matrix can effectively reduce
the interfacial thermal resistance and improve the thermal conductivity of
PVA/CS@MWCNTs composite films [42]. CS has abundant amino and hydroxyl groups
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on its macromolecular chains; the interfacial interactions between CS@MWCNTs and PVA
matrix are mainly through hydrogen bonds (as shown in Figure 4a,b), and the change of
OH wavenumber in composites is related to hydrogen bond strength [43–45]. In Figure 4c,
the OH peak at 3307 cm−1 of pure PVA was caused by the symmetric stretching vibration
of hydroxyl groups on the PVA molecular chains [25]. Compared with pure PVA, the
OH absorption peaks of PVA/CS@MWCNTs composite films shifted to a lower wave
number, which may be related to the partial hydrogen bond dissociation between PVA
molecular chains and the formation of the hydrogen bond between CS@MWCNTs and PVA
matrix [46,47]. Those results all suggest that a good hydrogen bonding interface can be
formed between fillers and the PVA matrix. Figure 4d depicted the weight loss trend of
all composite films and pure PVA in the whole temperature range, which was similar. By
contrast, the residual weight of the PVA/CS@MWCNTs composite films increased with
the increase in filling amount, suggesting that the introduction of MWCNTs improved the
thermal stability of the PVA/CS@MWCNTs composite films.
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Figure 4. (a) Illustration of the interactions between PVA matrix and CS@MWCNTs by hydrogen
bonds; (b) FTIR spectra of CS, MWCNTs and CS@MWCNTs; FTIR spectra (c) and TGA curves under
nitrogen atmosphere (d) of pure PVA and PVA/CS@MWCNTs composite films containing 1 wt%,
3 wt%, 5 wt%, and 7 wt% MWCNTs.

3.3. Microstructure of the Prepared PVA/CS@MWCNTs Composite Films

Inspired by the surface film formation of milk, we designed and fabricated
PVA/CS@MWCNTs films with a sandwich structure, adopting a self-construction strategy.
The drying and forming process was divided into two stages, 25 ◦C for 1 h and then
80 ◦C for 12 h to provide delamination conditions (as shown in Figure 1). The TEM graphic
of the fracture microstructures of the PVA/CS@MWCNTs composite film with 5 wt% is
shown in Figure 5b; a sandwich structure can be obviously observed. The thinner and
transparent layers are PVA and the darker middle layer is the PVA-CS@MWCNTs thermal
conductivity layer.
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The SEM cross-sectional micrograph of different films is shown in Figure 6a–e; the
bright spots represented MWCNTs. Apparently, the cross-sectional micrograph of pure PVA
(Figure 6a) was flat and smooth without any spots. However, as shown in Figure 6b–e, after
MWCNTs were added to the PVA matrix, the smoothness of the PVA/CS@MWCNTs com-
posite membranes decreased. At low filler loadings, the surface of the PVA/CS@MWCNTs
composite film was relatively smooth with a few bright spots, and there was no heat
conduction path in composite films. Thus, the thermal conductivity of the composite films
was also relatively low. When the filler content increased to 5 wt%, the bright spots in the
composite film increased and were evenly distributed, forming a good thermal conductivity
path marked in the red line in Figure 6d, which could effectively improve the thermal
conductivity of the composite film. When the MWCNTs content continuously increased to
7 wt%, a severe agglomeration of MWCNTs could be obviously observed in the composite
film as displayed in Figure 6e, which was not conducive to improving the properties of the
composite films. Therefore, the thermal conductivity of PVA/CS@MWCNTs-7 wt% composite
film would decrease. In addition, an SEM surface micrograph of PVA/CS@MWCNTs-5 wt%
composite film was also observed in Figure 6f; there were a small number of MWCNTs
cross-linked nodes, which contributed to the heat transfer of phonons and improved the
thermal conductivity of the composite film.
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3.4. Thermal Conductivity Properties and Analysis of PVA/CS@MWCNTs Composite Films

Compared with the pure PVA, the thermal conductivity of PVA/CS@MWCNTs com-
posite films acquired great improvement with the increase in filler content, as shown
in Figure 7a,b. When 5 wt% MWCNTs were added, the in-plane thermal conductivity
reached a maximum of 5.312 W·m−1·K−1, which was 1190% higher than that of pure PVA
(0.412 W·m−1·K−1). When more MWCNTs were added, the thermal conductivity decreased
due to fillers agglomeration, as shown in the red circle in Figure 6e. The great enhancement
of in-plane thermal conductivity was attributed to the horizontal orientation of the fillers
in the matrix (Figure 7c), which formed a thermal conductivity path. This phenomenon
is related to the composite film preparation process, during the process of scraping the
film, the scraper exerted an external force on the horizontal direction, so that the fillers
of MWCNTs tended to be arranged in the horizontal direction, which was beneficial to
improve heat conduction along the horizontal direction. The in-plane thermal conductivity
of our prepared PVA/CS@MWCNTs composite films was compared with the recently
reported composite thermal conductivity films, and the results are summarized in Table 1.
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In addition, the thermal conductivity of films in the in-plane direction is significantly
higher than that in the through-plane direction (as shown in Figure 7b). There are two
main reasons for the low through-plane thermal conductivity of the films; one is that
the fillers were arranged along the horizontal direction under the shear force generated
during the scraping process, and there are no effective heat conduction paths in the vertical
direction as displayed in Figure 7c. The other is that the PVA distributed on both sides of
the sandwich structure is also unfavorable to heat transfer in the vertical direction. This
phenomenon can effectively attenuate the effect of anisotropic heat transfer on adjacent
electronic components in thermal management [48].
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Table 1. Thermal conductivity of polymer composites with MWCNTs.

Filler Filler
Loading Matrix κ

(W·m−1·K−1)

Volume
Resistivity

(Ω·cm)
Refs.

MWCNTs 19.3 vol% PS-b-P4VP 0.73 - [49]
MWCNTs 3.5 wt% PP 0.87 - [50]
MWCNTs 1 vol% PA6 0.352 1.0 × 1013 [51]
MWCNTs 2 vol% PPS/PE/EGMA 0.57 1.9 × 1015 [52]
MWCNTs 5 wt% PVDF 0.83 1.2 × 1013 [53]
MWCNTs 7.4 wt% NR 0.25 - [54]
MWCNTs 35 wt% NFCs 14.1 1010 [55]
MWCNTs 5 wt% PVA 5.312 4.6 × 1012 This work

3.5. Electrical Insulating Properties and Flexibility Demonstration of PVA/CS@MWCNTs
Composite Films

Considering the electrical insulation performance of thermal management materials
required by electronic products, the volume resistivity of composite films was tested, and
the results are shown in Figure 8a. Apparently, the volume resistivity of the composite films
decreased slightly with the increase in filler content, but they are still highly insulating
materials. Compared with pure PVA, the thermal conductivity of the PVA/CS@MWCNTs
increased 1190% when the MWCNTs content was 5 wt%; however, its volume resis-
tivity was 4.6 × 1012 Ω·cm. Those results indicated that the prepared composite films
could keep the desirable electrical insulation property while increasing thermal conduc-
tivity. Such unique performances reported in this work are rare in the field of polymer
matrix composites.
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MWCNTs folded into different shapes, showing excellent flexibility.

In addition to high thermal conductivity and good electrical insulation properties,
the prepared PVA/CS@MWCNTs composite films also showed excellent flexibility. The
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mechanical properties of composite films were characterized, which is of great significance
to the practical application of composite materials. In this work, tensile tests were employed
to assess the mechanical properties as shown in Figure 8b. The mechanical properties of
those composite films were significantly increased compared to the pure PVA. The addition
of CS@MWCNTs could obviously improve the tensile strength of the PVA, which was
mainly due to the strong hydrogen bond between PVA matrix and CS molecules. For
the same reason, the value of elongation at break decreased with respect to confined and
almost non-gliding molecules. The addition of CS@MWCNTs into the PVA matrix led to
an obvious enhancement in tensile strength from 17.55 MPa of pure PVA to 22.97 MPa of
PVA/CS@MWCNTs-5 wt% (Table 2), and the rate of enhancement reached up to 30.5%.
After the PVA/CS@MWCNTs composite film containing 5 wt% MWCNTs was folded into
different shapes (as shown in Figure 8c), no cracks and damage were found on the surface
of the film. This phenomenon shows that PVA/CS@MWCNTs composite films loaded
with 5 wt% MWCNTs still have good mechanical flexibility and have broad application
prospects in flexible electronic devices.

Table 2. Representative mechanical properties of the samples.

Samples Tensile Strength (MPa) Elongation at Break

Pure PVA 17.55 ± 0.62 5.14 ± 0.14
PVA/CS@MWCNTs-1 wt% 17.83 ± 1.50 4.26 ± 0.18
PVA/CS@MWCNTs-3 wt% 19.26 ± 0.31 3.21 ± 0.09
PVA/CS@MWCNTs-5 wt% 22.97 ± 0.14 2.70 ± 0.18
PVA/CS@MWCNTs-7 wt% 14.75 ± 0.83 1.56 ± 0.06

4. Conclusions

In this study, we prepared PVA/CS@MWCNTs composite film with a sandwich struc-
ture inspired by the surface film formation of milk; the middle layer of PVA-CS@MWCNTs
as a thermal conductivity layer is conducive to increasing the thermal conductivity of
composite films, and the polymer distributed on both sides of the middle layer maintains
electrical insulation. CS coating on the surface of MWCNTs can effectively improve the
uniform dispersion of MWCNTs in the polymer matrix, and form a good interface bonding
with the PVA matrix through hydrogen bonding, reducing the interfacial thermal resistance.
In addition, the shear force generated during the scraping process could promote the orien-
tation arrangement of MWCNTs in the in-plane direction. Thus, a good heat conduction
path could be formed in the horizontal direction. The produced PVA/CS@MWCNTs-5 wt%
film simultaneously showed superior in-plane thermal conductivity (5.312 W·m−1·K−1),
good electrical insulation above 1012 Ω·cm (beyond electrical insulation of 109 Ω·cm), ex-
cellent mechanical properties (tensile strength of 23.1 MPa) and outstanding flexibility. Our
work has provided inspiration for the design of sandwich structure polymer composites,
which have great application potential in the field of thermal management, especially in
flexible electronic devices and electrical insulation.
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