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Abstract

The level of antibiotic resistance exhibited by bacteria can vary as a function of environmen-

tal conditions. Here, we report that phenazine-methosulfate (PMS), a redox-cycling com-

pound (RCC) enhances resistance to fluoroquinolone (FQ) norfloxacin. Genetic analysis

showed that E. coli adapts to PMS stress by making Fe-S clusters with the SUF machinery

instead of the ISC one. Based upon phenotypic analysis of soxR, acrA, and micF mutants,

we showed that PMS antagonizes fluoroquinolone toxicity by SoxR-mediated up-regulation

of the AcrAB drug efflux pump. Subsequently, we showed that despite the fact that SoxR

could receive its cluster from either ISC or SUF, only SUF is able to sustain efficient SoxR

maturation under exposure to prolonged PMS period or high PMS concentrations. This

study furthers the idea that Fe-S cluster homeostasis acts as a sensor of environmental con-

ditions, and because its broad influence on cell metabolism, modifies the antibiotic resis-

tance profile of E. coli.

Author summary

Our study investigates how phenazine compounds, which are widely present in the envi-

ronment, impact antibiotic resistance of the Gram-negative bacteria Escherichia coli. The

paucity of new antibacterial molecules fuels concern in the wake of increased antibiotic

resistance among pathogens. Equally worrying is the realization that environmental con-

ditions can have a drastic influence on the efficiency of antibacterial compounds. Here we

report that phenazine, a member of the redox-cycling molecule family, is antagonistic to

norfloxacin, a well-known and routinely used fluoroquinolone antibiotic. We show that

the mechanism E. coli is using for synthesizing Fe-S clusters controls the phenazine/fluo-

roquinolone antagonism. Indeed, upon exposure to phenazine, E. coli switches from mak-

ing Fe-S clusters with the ISC Fe-S biogenesis system to making them with SUF, a

consequence of which is the activation of the SoxR transcriptional activator, up-regulation

of the AcrAB efflux pump, and efflux of fluoroquinolone out of the cell. This study
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illustrates the major influence that environmental conditions play in setting antibiotic

level resistance and further highlights the major contribution of Fe-S cluster homeostasis

in antibiotic susceptibility.

Introduction

Drug combination is a potent strategy against the worrying rise of multi-drug resistant bacteria

as it reduces the chance of resistance acquisition [1,2]. However, several instances of antago-

nisms between drugs have been reported [3,4]. In fact, a thorough investigation of growth phe-

notypes caused by pair-wise combination of over 250 compounds, including neglected

antibiotics, FDA approved human drugs and food additives, revealed antagonism to be more

prevalent than synergy [5]. For instance, drugs causing oxidative stress, such as paraquat or

plumbagin, were found to antagonize antibiotics of different families including quinolones [5].

This was consistent with the previous observation that redox-cycling compounds (RCC) such

as paraquat or plumbagin enhanced both survival and persister formation in the presence of

the oxolinic acid fluoroquinolone [6,7].

Previously, we reported antagonism between iron scavengers such as 2,2’ dipyridyl (DIP)

and aminoglycosides toxicity in Escherichia coli [8]. At the molecular level, DIP/aminoglyco-

side antagonism was shown to be orchestrated by Fe-S cluster-homeostasis regulation. Briefly,

Fe-S clusters rank among the most conserved prosthetic groups that rely on dedicated machin-

eries to be built and transferred to client proteins. E. coli possesses two such machineries, ISC

and SUF, which synthesize and deliver Fe-S clusters to about 150 apo-proteins. ISC and SUF

machineries function following the same basic principles. Cysteine desulfurases (IscS, SufS)

produce sulfur from L-cysteine, scaffold proteins (IscU, SufBC2D) provide a molecular plat-

form allowing iron and sulfur to meet and form a cluster, and carrier proteins—such as, IscA,

SufA, ErpA and NfuA—deliver the cluster to terminal apotargets [9–14]. The source of iron

remains uncertain and multiple origins have been proposed such as frataxin [9]. ISC is the

housekeeping machinery, employed during balanced growth conditions, and SUF is the stress-

responding one [9–14]. Mutants lacking both ISC and SUF are not viable [15]. Under iron lim-

itation, E. colimakes clusters with SUF and those SUF-using cells exhibit enhanced phenotypic

resistance to aminoglycoside. Indeed, SUF is inefficient at targeting clusters to the proton-

motive force (pmf)-producing respiratory complexes, and a reduced aminoglycoside uptake

ensues [8].

Following our analysis of the role played by Fe-S cluster homeostasis in DIP/aminoglyco-

side antagonism, we decided to investigate the role of Fe-S cluster-homeostasis within the

RCC/fluoroquinolones antagonism, in particular the role of SoxR. Indeed, the SoxR transcrip-

tional factor, which uses Fe-S cluster to sense redox changes, was suggested to intervene in the

antagonism between oxidative stress and quinolone resistance or tolerance [6,7,16–18].

This led us to show that strains exposed to RCC make clusters with the SUF system, which

matures and permits activation of SoxR transcriptional activator under oxidative stress. In

turn, oxidized SoxR up-regulates the AcrAB efflux pump that likely expels fluoroquinolone.

Hence, these results and our previous study show that exposure to toxic chemicals in the envi-

ronment, such as RCC or DIP, both cause a switch from ISC to SUF, yielding enhanced resis-

tance to antibiotics. However, while the DIP/aminoglycoside antagonism resulted from

reduced uptake of aminoglycoside, the RCC/fluoroquinolone antagonism comes from

enhanced export of fluoroquinolone.
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Results

The SoxR regulon confers PMS-mediated protection against quinolones

To investigate the molecular basis of the oxidative stress/quinolone antagonism, we choose

phenazine-methosulfate (PMS) as RCC, and norfloxacin as fluoroquinolone. To test whether

SoxR intervenes in the PMS/norfloxacin antagonism, wt and ΔsoxR strains were exposed to

norfloxacin, alone or in combination with sub-inhibitory concentrations of PMS (1/8 and 1/16

of the MICPMS of each strain; MICPMS were 140 μM for wt; 40 μM for ΔsoxR). Adding PMS at

a concentration of 1/8 MICPMS led to a drastic enhancement of norfloxacin resistance level of

the wt strain (Fig 1A). Indeed, when treated with norfloxacin concentration between 100 and

180 ng/mL, the wt strain exposed to PMS (concentration at 1/8 MICPMS value) reached OD600

values between 0.4–0.6, while in the absence of PMS, OD600 values barely reached 0.1 (Fig 1A).

Even at 1/16 MICPMS concentration, PMS remained a potent antagonist of norfloxacin (Fig

1A). In sharp contrast, PMS exerted no antagonistic effect on norfloxacin in the ΔsoxRmutant

(Fig 1B). SoxR activates the expression of the soxS gene, which in turn activates target genes

involved in antibiotic resistance and superoxide resistance [16–26]. Interestingly, we showed

that expression of an IPTG-inducible allele of soxS on a plasmid enhanced fluoroquinolone

resistance levels of both wt and ΔsoxRmutant (Table 1), mimicking the PMS antagonistic

effect, further strengthening the conclusion that the PMS/norfloxacin antagonism involves

SoxS-activated genes.

The effect of the PMS/norfloxacin drug combination was analyzed in mutants of two targets

of the SoxRS regulatory system,micF and acrA. ThemicF gene encodes a small RNA that nega-

tively regulates translation of the OmpF porin, hence its induction could potentially prevent

OmpF-mediated entry of PMS [27]. However, PMS-mediated drug antagonism was still

observed in the ΔmicFmutant (Fig 1C). The acrA gene encodes a major multidrug efflux

pump (AcrAB-TolC) that includes fluoroquinolones (FQ) as a substrate [28,29]. The PMS

antagonistic effect on FQ action was completely lost in the ΔacrAmutant (Fig 1D). By

qRT-PCR, we found that expression of the acrA and acrB genes was up-regulated (2- to 3-fold)

in cells treated with either PMS only, or with both PMS and norfloxacin (Table 2). In contrast,

treatment with norfloxacin only exerted, if anything, a down-regulation of 1.4-fold of acrA
and acrB gene expression (Table 2). Altogether these results support the view that PMS pro-

tects E. coli from norfloxacin, by activating AcrAB-mediated efflux of the fluoroquinolone via
the SoxRS regulatory system.

The SUF machinery is required to sustain growth in the presence of PMS

SoxR being an Fe-S cluster-containing protein, we went further in analyzing the importance of

ISC and SUF Fe-S clusters biogenesis systems in PMS stress and in the PMS/norfloxacin antag-

onism. Previous work has reported that the iscRSUA and sufABCDSE operons are induced by

PMS [30,31], which we confirmed here by using PiscR::lacZ and PsufA::lacZ gene fusions (2.7

and 3.3-fold increase in the presence of 20 μM PMS, respectively) (S1 Fig). Then, the effect of

PMS on the growth kinetics of LB grown cultures was tested. PMS (30 μM) was added during

the exponential growth phase and OD600 values were recorded (Fig 2). Two hours after addi-

tion of PMS, we observed that the ΔsufABCDSE and the ΔsoxRmutants stopped growing

whereas growth of the wt strain did not (Fig 2A and 2C). In the presence of PMS, growth of

the ΔiscUAmutant appeared to be slower than the wt strain but this is a general feature of the

ΔiscUAmutant even under non-stressed conditions (Fig 2B) (in untreated condition, the dou-

bling times of the ΔiscUAmutant and the wt strain were 35 and 28 min, respectively), and

more importantly, like the wt, it did not cease growing (Fig 2B).
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Fig 1. PMS-mediated protection against norfloxacin is dependent on SoxR. The E. coli wild type (wt) (BE1000) (A),

ΔsoxR (AG035) (B), ΔmicF (YD002) (C) and ΔacrA (YD001) (D) strains were grown to mid-log phase in LB and then

diluted to inoculate 96-well microplate wells containing LB liquid medium supplemented with norfloxacin at the

indicated final concentration and supplemented or not (black bars) with PMS at 1/16 (grey bars) and 1/8 (white bars)

of the MICPMS of each strain (MICPMS were 140 μM for wt, 40 μM for ΔsoxR, 100 μM for ΔmicF and 15 μM for ΔacrA).

PLOS GENETICS Fe-S cluster homeostasis and antibiotic resistance

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009198 November 2, 2020 4 / 22

https://doi.org/10.1371/journal.pgen.1009198


RCC such as PMS are predicted to enhance intracellular level of superoxide [32]. An

enhanced level of intracellular superoxide stress can be obtained by using strains lacking

superoxide dismutase SodA or/and SodB. As expected, the ΔsodA, ΔsodA ΔsodBmutants and

to some extent the single ΔsodBmutant showed hypersensitivity to PMS (S2 Fig). Introduction

of the ΔsufABCDSEmutation in ΔsodA, ΔsodB, or ΔsodA ΔsodBmutants increased drastically

the sensitivity to PMS (S2 Fig). In contrast, combining ΔiscUAmutation with ΔsodA, ΔsodB or

both ΔsodA ΔsodBmutations did not enhance PMS sensitivity (S2 Fig). Altogether, these

results established the importance of the SUF system in allowing E. coli to resist PMS stress

and by inference, revealed that ISC was of no help in these conditions.

Impact of the SUF and ISC machineries on the PMS-mediated protection

from norfloxacin

Contribution of ISC and SUF in PMS/norfloxacin antagonism was then investigated. First, we

showed that the PMS-induced resistance to norfloxacin occurred in the wt strain and the

ΔiscUAmutant, whereas it was not observed in the ΔsufABCDSEmutant (Fig 3). Sub-inhibi-

tory concentration of PMS (1/16 MICPMS concentration) permitted both the wt and ΔiscUA
strains to grow in the presence of increasing concentrations of norfloxacin (120 ng/mL, 140

ng/mL, 160 ng/mL) (Fig 4 and Table 3). In contrast, sub-inhibitory concentration of PMS did

not protect the ΔsufABCDSEmutant above 120 ng/mL norfloxacin (Fig 4). All growth parame-

ters (lag phase, growth rate, final OD600) were more severely affected in the ΔsufABCDSE
mutant than in the wt and ΔiscUA strains (Fig 4 and Table 3), illustrating that the protection

against norfloxacin afforded by PMS depends upon a functional SUF system.

SUF, but not ISC, is required for SoxR maturation under PMS stress

Results above showed that both SUF and SoxR were required for the PMS/norfloxacin antago-

nism. A hypothesis was that PMS generates conditions during which SUF is required for syn-

thesizing and carrying Fe-S clusters to SoxR, hence permitting its transcriptional activator

function to fire anti-fluoroquinolone defense genes, including the AcrA pump. To test which

system, ISC or SUF, was used to mature SoxR, we used a chromosomal PsoxS::lacZ fusion at

the lac locus, and β-galactosidase level as a proxy for monitoring SoxR maturation efficiency

[33]. In the wt strain, induction of the PsoxS::lacZ fusion reached a plateau at 180 min after

adding PMS (30 μM) (Fig 5A). The β-galactosidase level in the treated strain was 22-fold

higher than in the untreated cells (Fig 5A). In the ΔsoxR strain, no induction of PsoxS::lacZ
expression was observed (Fig 5A). In the ΔsufABCDSEmutant, expression of the PsoxS::lacZ
plateaued ca 30 min after PMS addition (Fig 5B). The maximal level of β-galactosidase reached

Cultures were incubated 18 hours at 37˚C with shaking. Plates were read for OD600 in Tecan Infinite. The experiment

was repeated at least three times. The means and standard deviations are shown. Asterisks represent the statistical

significance calculated using the Bonferroni method (�� p<0.01; � p<0.05; ns p>0.05).

https://doi.org/10.1371/journal.pgen.1009198.g001

Table 1. SoxS-mediated resistance against norfloxacin.

MICNorfloxacin (ng/mL)

(The means and standard deviations are indicated)

pTrc99A pSoxS

wt (BE1000) 127.5 (+/- 9.6) 825 (+/- 28.9)

ΔsoxR (AG035) 100 (+/- 0) 875 (+/- 28.9)

https://doi.org/10.1371/journal.pgen.1009198.t001
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in the ΔsufABCDSEmutant was 2.5-fold lower than in the wt strain. In the ΔiscUAmutant, at

all time points, the induction pattern of PsoxS::lacZ was identical to the one observed in the wt

strain (Fig 5C). All these results suggest that during the 30 min period after PMS exposure, the

existing pool of [2Fe-2S]-bound SoxR was sufficient to activate soxS expression, in either

ΔsufABCDSE or ΔiscUAmutants. In contrast, after 30 min SoxR-mediated activation occurred

only in SUF containing strains. It is interesting to note that in the ΔsufABCDSEmutant, SoxR

activity ceased shortly before growth stopped. It is tempting to speculate that the former is the

cause of the latter (Fig 2A and Fig 5B).

We then analyzed the correlation between PMS concentration and induction of the SoxRS

regulon in the different genetic backgrounds. Expression of the PsoxS::lacZ fusion was mea-

sured 2 hours after incubation with different concentrations of PMS (3.4, 6.8, 10, 20 and

30 μM). At low PMS concentrations, i.e. 3.4 μM and 6.8 μM, PsoxS::lacZ expression was

induced to the same extent in all wt, ΔiscUA and ΔsufABCDSE strains (Fig 5D). In contrast, at

PMS concentrations of 10 μM and above, PsoxS::lacZ expression was much stronger in the wt

and ΔiscUA strains than in the ΔsufABCDSEmutant (Fig 5D). In fact, in the ΔsufABCDSE
mutant, expression of PsoxS::lacZ plateaued when using PMS concentrations of 10 μM and

above (Fig 5D). Interestingly, defect in PsoxS::lacZ fusion expression within the ΔsufABCDSE
strain was suppressed by a high soxR gene dosage, consistent with the notion that SoxR is a

poor substrate for ISC system and that increased SoxR level would compensate inefficient mat-

uration by ISC (Fig 6).

Last, we wished to investigate the contribution of ISC and SUF pathways to SoxR matura-

tion in the absence of PMS. To this purpose we assessed the expression of the PsoxS::lacZ
fusion in two mutant strains, each lacking a component of the reduction system of SoxR, RsxC

and RseC. In these strains, the Fe-S cluster of SoxR is thought to remain mostly oxidized and

SoxR active even in the absence of redox-active molecules [34]. In the absence of PMS, activa-

tion of PsoxS::lacZ transcription was increased (3-fold) in the ΔrsxC and ΔrseCmutants when

compared to the wt strain (Fig 7). In the ΔrsxC ΔiscUA, ΔrsxC ΔsufABCDSE, ΔrseC ΔiscUA
and ΔrseC ΔsufABCDSE double mutants, expression of the PsoxS::lacZ fusion was increased to

the same extent (3- to 4-fold) as compared to the wt strain (Fig 7). Together, these results indi-

cate that under non-stressful conditions both Fe-S biogenesis systems, ISC and SUF, are able

to sustain SoxR maturation.

Altogether, this series of results show that under non-stress inducing conditions, SoxR can

acquire its cluster from either ISC or SUF system. However, under stress inducing conditions,

SUF is the system that targets Fe-S cluster to SoxR, which subsequently get oxidized and per-

mits SoxR to activate expression of its targets.

The role of SoxR maturation in PMS/fluoroquinolone antagonism

We asked whether different levels of induction of the SoxRS regulon would translate in differ-

ent level of norfloxacin resistance. Results showed that a concentration of 3.4 μM PMS was not

Table 2. qRT-PCR analysis of the expression of acrA and acrB genes.

Fold change expression treated/untreated

acrA acrB
Norfloxacin 0.73 (+/- 0.03) 0.7 (+/- 0.03)

PMS 2.99 (+/- 0.25) 2.7 (+/- 0.29)

PMS + Norfloxacin 2.42 (+/- 0.17) 2.09 (+/- 0.13)

https://doi.org/10.1371/journal.pgen.1009198.t002
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Fig 2. The ΔsufABCDSE mutant is hypersensitive to PMS. The E. coli wt (BE1000) (black circles) (A-C),

ΔsufABCDSE (AG031) (white diamonds) (A), ΔiscUA (AG030) (white squares) (B) and ΔsoxR (AG035) (white

triangles) (C) strains were grown overnight in LB and inoculated (1/100) in fresh LB medium. The cultures were

grown to an OD600 of 0.2 and were each split into two flasks, PMS (30 μM) was added (time zero) in one, and the other

was left untreated. All cultures were further incubated at 37˚C and growth was monitored by following OD600. The

growth curves of the wt strain are the same in each panel. The experiments were repeated at least three times. The

means and standard deviations are shown.

https://doi.org/10.1371/journal.pgen.1009198.g002
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sufficient to confer norfloxacin resistance to any of the strains under study (S3 Fig). At 30 μM

PMS concentration, wt and ΔiscUA strains both reached similar OD600 whether or not nor-

floxacin was added (S3 Fig). In contrast, in the ΔsufABCDSEmutant, addition of norfloxacin

impeded growth even in the presence of PMS (S3 Fig). Interestingly, at 30 μM PMS, expression

of the PsoxS::lacZ fusion was higher in the wt and ΔiscUA strains than in the ΔsufABCDSE
mutant. These results establish the key role of SUF in allowing high PMS-mediated induction

of SoxR, which eventually confers enhanced resistance to norfloxacin.

SufA is required for SoxR maturation during PMS stress

Once formed within the scaffold component of the Fe-S clusters biogenesis pathway, clusters

are targeted to apo-protein clients via a series of carriers, which might show some level of

redundancy depending upon the growth conditions [35,36]. Therefore, contribution of carri-

ers in SoxR maturation was investigated. We showed above that expression of the PsoxS::lacZ
fusion was identical in the ΔiscUAmutant and in the wt strain, ruling out a role for IscA in

SoxR maturation under PMS stress (Fig 5C). In the ΔsufAmutant, expression of the PsoxS::

lacZ fusion was identical to the wt strain after the first hour of incubation with PMS (Fig 8). In

contrast, after longer exposure to PMS (2 and 3 hours), expression of the PsoxS::lacZ fusion

was drastically reduced when compared to the wt strain. Actually, the profile of expression of

the PsoxS::lacZ fusion was identical in the ΔsufA and in the ΔsufABCDSEmutants (Figs 5B and

8). These results indicate that SufA is required for SoxR maturation upon PMS stress.

The stress responding carriers, NfuA and ErpA, are dispensable for SoxR

maturation during PMS stress

NfuA and ErpA are additional Fe-S carriers that can cooperate under oxidative stress condi-

tions [37–39]. Moreover, they are able to receive Fe-S clusters made within either ISC or SUF

systems [37–39]. Given that SoxR is a stress responding regulator, it was of interest to evaluate

Fig 3. PMS-mediated protection against norfloxacin is altered in the ΔsufABCDSE mutant. The E. coli wt (BE1000),

ΔiscUA (AG030) and ΔsufABCDSE (AG031) strains were grown to mid-log phase in LB and then diluted to inoculate

96-well microplate wells containing LB liquid medium (grey bars), LB medium supplemented with 1/16 of the MICPMS of

each strain (white bars) (MICPMS were 140 μM for wt, 160 μM for ΔiscUA and 55 μM for ΔsufABCDSE), LB medium

supplemented with norfloxacin (150 ng/mL) (hatched bars) and LB medium supplemented with both 1/16 of the MICPMS

of each strain and norfloxacin (150 ng/mL) (black bars). Cultures were incubated 18 hours at 37˚C with shaking. Plates

were read for OD600 in Tecan Infinite. The experiments were repeated at least three times. The means and standard

deviations are shown. Asterisks represent the statistical significance calculated using the Bonferroni method (�� p<0.01; �

p<0.05; ns p>0.05).

https://doi.org/10.1371/journal.pgen.1009198.g003

PLOS GENETICS Fe-S cluster homeostasis and antibiotic resistance

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009198 November 2, 2020 8 / 22

https://doi.org/10.1371/journal.pgen.1009198.g003
https://doi.org/10.1371/journal.pgen.1009198


Fig 4. Effect of PMS on the growth of norfloxacin treated cells. The E. coli wt (BE1000) (A), ΔiscUA (AG030) (B) and

ΔsufABCDSE (AG031) (C) strains were grown to mid-log phase in LB and then diluted to inoculate fresh LB medium (1 x 105 c.f.

u./mL), in 96-well microplate, supplemented or not (circles) with norfloxacin (final concentrations; 120 ng/mL squares; 140 ng/mL

triangles; 160 ng/mL crosses) in the presence (right panels) or not (left panels) of PMS (1/16 of the MICPMS of each strains;

MICPMS were 140 μM for wt; 160 μM for ΔiscUA; 55 μM for ΔsufABCDSE). Cultures were incubated at 37˚C with shaking. Plates

were read for OD600 in Tecan Infinite. The experiments were repeated at least three times. Complete growth curves of a

representative experiment are shown. Corresponding growth parameters are indicated in Table 3.

https://doi.org/10.1371/journal.pgen.1009198.g004

PLOS GENETICS Fe-S cluster homeostasis and antibiotic resistance

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009198 November 2, 2020 9 / 22

https://doi.org/10.1371/journal.pgen.1009198.g004
https://doi.org/10.1371/journal.pgen.1009198


the role of ErpA and NfuA in SoxR maturation. The expression profile of the PsoxS::lacZ
fusion upon PMS treatment was similar in the ΔnfuA and in the wt strains (S4 Fig) indicating

that NfuA was not required for SoxR maturation.

The erpA gene is an essential gene in E. coli [38]. Therefore a conditional allele, in which

the endogenous erpA gene is under the control of the ParaBAD promoter (ParaBAD::erpA),

was transduced in the PsoxS::lacZ fusion-containing strain. Strikingly, whether cells were

grown in glucose or in arabinose, PMS induction of the PsoxS::lacZ fusion was observed in the

wt and ParaBAD::erpA strains, indicating that ErpA was dispensable for SoxR maturation (S5

Fig panels A and B). To confirm the dispensability of ErpA for SoxR maturation, we used the

CRISPR interference method to control erpA expression [40]. For this purpose, we used a plas-

mid producing a catalytically inactive version of Cas9 (pdCas9) and a plasmid encoding a sin-

gle guide RNA (pRBS-erpA) targeting the non-template DNA strand of the UTR of erpA
containing the ribosome-binding site. In the presence of the inducer anhydrotetracycline

(aTc), cells carrying the pRBS-erpA exhibited a growth defect (S5 Fig panel C). In the presence

of both aTc and PMS, PsoxS::lacZ expression was the same in wt cells carrying the pRBS-erpA
or the control vector, psgRNA (S5 Fig panel E). To verify that the pRBS-erpA plasmid was

indeed preventing erpA expression, we used the strain PM2040 that contained an PerpA::lacZ
gene fusion. We showed that in the presence of aTc, expression of PerpA::lacZ was almost null

(2 Miller units) in cells carrying the pRBS-erpA, while β-galactosidase activity of 36 Miller

units was measured in cells carrying control vector psgRNA (S5 Fig panel D). Altogether,

results obtained by two different methods to deplete ErpA led us to conclude that ErpA is not

required for SoxR maturation under PMS stress.

Discussion

Understanding the influence of environmental conditions on level of antibiotic resistance is a

prerequisite to monitor and control bacterial antibiotic resistance. Previously, we showed that

iron limitation enhanced level of resistance of E. coli to aminoglycosides, and that Fe-S cluster

biogenesis regulation played a key role in this unexpected link [8,41]. Here we show that Fe-S

homeostasis connects ROS producing compound, RCC, and resistance level to

fluoroquinolones.

Table 3. Effect of PMS on the growth rate of norfloxacin treated cells.

No PMS added 1/16 PMS

Norfloxacin (ng/mL) Growth rate (h-1) Growth rate (h-1)

wt (BE1000) 0 0.75 (+/- 0.03) 0.66 (+/- 0.02)

120 0 0.51 (+/- 0.01)

140 0 0.47 (+/- 0.07)

160 0 0.34 (+/- 0.13)

ΔiscUA (AG030) 0 0.46 (+/- 0.03) 0.35 (+/- 0.01)

120 0 0.28 (+/- 0.01)

140 0 0.28 (+/- 0.03)

160 0 0.27 (+/- 0.03)

ΔsufABCDSE (AG031) 0 0.75 (+/- 0.03) 0.71 (+/- 0.03)

120 0 0.2 (+/- 0.1)

140 0 0

160 0 0

https://doi.org/10.1371/journal.pgen.1009198.t003
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E. coli synthesizes ca. 150 Fe-S proteins, the maturation of which depends upon ISC or SUF

machineries. E. coli synthesizes five Fe-S bound transcriptional regulators, namely FNR, NsrR,

IscR, YeiL, and SoxR [16,42]. Study of maturation of NsrR and IscR, which sense NO and Fe-S

cluster demand, respectively, showed that these two related targets (i.e. ca. 40% sequence iden-

tity) are matured by ISC under normal conditions and by SUF under stress conditions [35]. In

contrast, work by Kiley’s lab showed that ISC, but not SUF, was responsible for the maturation

of FNR, a Fe-S transcriptional regulator sensing anaerobic/aerobic switch [43]. Here, we found

SoxR to be matured mostly by SUF, a situation somehow complementary to that observed

with FNR. SoxR being matured by SUF is consistent with the fact that SUF is synthesized and

functional in vivo under oxidative stress [30,31,44–46].

The question then arises of what prevents ISC to act on SoxR. Previous in vitro transcrip-

tion analyses showed that expression of both isc and suf operons is induced by PMS, which we

Fig 5. Maturation of SoxR requires the SUF machinery during PMS stress. Expression of the chromosomal PsoxS::lacZ fusion

was analyzed in E. coli wt (BE1000) (black circles) (A-C), ΔsoxR (AG035) (white triangles) (A), ΔsufABCDSE (AG031) (white

diamonds) (B) ΔiscUA (AG030) (white squares) (C) strains. Bacteria were grown overnight in LB and inoculated (1/100) in fresh LB

medium. The cultures were grown to an OD600 of 0.2, and were each split into two flasks, PMS (30 μM) was added (time zero) in

one, and the other was left untreated. All cultures were further incubated at 37˚C with shaking and β-galactosidase activity was

monitored and expressed as Miller units. (D) The E. coli strains carrying the chromosomal PsoxS::lacZ fusion, wt (BE1000) (black

circles), ΔiscUA (AG069) (white squares) and AG031 (ΔsufABCDSE) (white diamonds) were grown overnight in LB and inoculated

(1/100) in fresh LB medium. The cultures were grown to an OD600 of 0.2, and PMS (3.4; 6.8; 10; 20 and 30 μM) was added or not.

All cultures were further incubated for 2 hours at 37˚C with shaking and β-galactosidase activity was measured and expressed as

Miller units. The experiments were repeated at least three times. The means and standard deviations are shown.

https://doi.org/10.1371/journal.pgen.1009198.g005

PLOS GENETICS Fe-S cluster homeostasis and antibiotic resistance

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009198 November 2, 2020 11 / 22

https://doi.org/10.1371/journal.pgen.1009198.g005
https://doi.org/10.1371/journal.pgen.1009198


confirmed here using lacZ fusions (S1 Fig) [30]. This rules out the possibility that defect in

SoxR maturation was due to differential expression of the isc and suf operons. Increased copy

number of the soxR gene suppressed the defect in soxS activation of the ΔsufABCDSEmutant,

consistent with the idea that SoxR can be a low affinity substrate for ISC under PMS stress.

Note however that SoxR protein levels may be lowered in a ΔsufABCDSEmutant as SoxR is

positively autoregulated. Yet, use of the ΔrsxC and ΔrseCmutants allowed us to show that in

the absence of PMS, ISC is able to maturate SoxR. Hence, we propose that under PMS stress,

SoxR is a poor substrate for ISC because ISC system itself is intrinsically susceptible to oxida-

tive stress, possibly as a result of PMS-mediated damages to some of the Isc proteins. That

SoxR can be maturated by both machineries is consistent with the fact that SoxR orthologs can

be found in bacterial species that have only SUF such as Streptomyces coelicor, or in bacterial

species that have only ISC, such as Pseudomonas aeruginosa [24,47,48].

During the delivery step, Fe-S clusters are transferred from the ISC or SUF systems to the

apo-targets. Multiple studies have concluded that ErpA carrier is the ultimate carrier used by

most, if not all, cellular proteins, including IspG/H, formate dehydrogenase N, nitrate reduc-

tase, succinate dehydrogenase, complex I, or hydrogenases 1 and 2 [37,38,49–51]. Surprisingly,

in the present study, maturation of SoxR was found totally independent of ErpA. SoxR matura-

tion was also independent of the ErpA-NfuA delivery pathway we recently identified as being

important for combating oxidative stress [37]. This series of observation was totally unex-

pected and opens new perception of Fe-S biogenesis under stress conditions. An explanation

for the ErpA/NfuA independent maturation of SoxR might be that it binds a 2Fe-2S cluster,

whereas all other proteins tested so far bind 4Fe-4S clusters (with the noticeable exception of

IscR). That delivery factors such as A-type carriers (IscA, SufA, ErpA) be required for 4Fe-4S

containing targets was already suggested by our study comparing IscR and NsrR maturation

maps, and was also proposed on the basis of the in vivomaturation of the 2Fe-2S containing

ferredoxin Fdx and from in vivo studies in yeast [35,52,53]. Altogether, our study is fully con-

sistent with the pioneer work of Schwartz and collaborators [54], which demonstrated that

IscS was not needed for SoxR maturation under paraquat stress. However, the results pre-

sented here go far beyond this original finding in describing both the basic machinery and the

accessory proteins that transfer the cluster from the scaffold to SoxR.

Fig 6. Overexpression of SoxR in the ΔsufABCDSE mutant. The E. coli wt (BE1000) and ΔsufABCDSE (AG031)

strains carrying the chromosomal PsoxS::lacZ fusion and the pSoxR plasmid or the empty plasmid (pTrc99A) were

grown in LB supplemented with IPTG (0.1 mM) until OD600 reached 0.2. At time zero (t0), the cultures were treated

with PMS (30 μM), and β-galactosidase activity was assayed at t0 and after 2 hours (t2) of growth and expressed as

Miller units. The experiments were repeated at least three times. The means and standard deviations are shown.

Asterisks represent the statistical significance calculated using the Bonferroni method (�� p<0.01; � p<0.05; ns

p>0.05).

https://doi.org/10.1371/journal.pgen.1009198.g006
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We previously reported that E. colimaking clusters with SUF showed an enhanced resis-

tance to aminoglycoside and here we report that it also shows an enhanced resistance to fluo-

roquinolone [8]. Beyond this apparent similarity, opposite molecular causes are found.

Because the SUF system is less efficient than the ISC for maturating pmf-producing Fe-S cluster

containing Nuo and Sdh respiratory complexes, uptake of aminoglycoside was reduced and

bacteria exhibited aminoglycoside phenotypic resistance. On the contrary, under RCC stress,

Fig 7. SoxR activity in mutants of the reduction system of SoxR. The E. coli strains carrying the chromosomal

PsoxS::lacZ fusion, wt (BE1000), ΔrsxC (AG047), ΔrsxC ΔiscUA (AG066), ΔrsxC ΔsufABCDSE (AG067), ΔrseC
(AG045), ΔrseC ΔiscUA (AG064) and ΔrseC ΔsufABCDSE (AG065) were grown overnight in LB and inoculated (1/

100) in fresh LB medium. The cultures were grown at 37˚C until exponential phase (OD600 0.2–0.4) (A-B). β-

galactosidase activity was monitored and expressed as Miller units. The experiments were done in triplicate. The

means and standard deviations are shown. The p-values have been determined to compare mutant strains versus the

wt strain. Asterisks represent the statistical significance calculated using the Bonferroni method (�� p<0.01; � p<0.05;

ns p>0.05).

https://doi.org/10.1371/journal.pgen.1009198.g007
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because the SUF system ismore efficient than the ISC one for maturating SoxR, cells can expel

fluoroquinolone and show enhanced fluoroquinolone resistance. An enigma then remains:

AcrAB-mediated fluoroquinolone efflux being itself energized by pmf, fluoroquinolone (and

possibly PMS) efflux by AcrAB should have been reduced in PMS-treated cells that should

have been scored as hypersensitive instead of hyperresistant. Measuring the actual drop in pmf

induced by DIP and by PMS, and assessing how much pmf is required for AG uptake and fluo-

roquinolone efflux will probably help to solve this apparent conundrum.

Drug/drug interaction might mimic situations in natural settings wherein bacteria face

multiple antibacterial chemicals. In the case of DIP/aminoglycoside antagonism, one could

speculate that iron limitation can be interpreted as a signal to adapt to a hostile environment,

by reducing all pmf-dependent exchanges. RCC and fluoroquinolone share structural similar-

ity as they are both heterocyclic compounds and could be present within the same ecological

niche. In this regard, Pseudomonas aeruginosa provides a good illustration of evolved adapta-

tion to such compounds: the MexGHI-OpmD pump excretes both fluoroquinolone and

5-methylphenazine-1-carboxylate, an intermediate of pyocyanin biosynthesis, which is struc-

turally similar to PMS and activates themexGHI-opmD operon that belongs to the SoxR regu-

lon [55–58]. As a matter of fact, pyocyanin was also found to antagonize activity of many types

of antibiotics including fluoroquinolone [5,59]. Thus, a possibility is that in E. coli, the fluoro-

quinolone exporting AcrAB pump will export PMS as well. The very low MICPMS value of

acrAmutant supports this view. Very recently, the RCC/fluoroquinolone antagonism was

shown to be conserved in P. aeruginosa, and importantly it occurred in P. aeruginosa biofilms

that are an important cause for persistent and antibiotics-resistant infections [5,60]. Altogether

these results illustrate the medical importance of the RCC/fluoroquinolone antagonism. As a

last note, a recent system-based analysis predicted ROS as potential adjuvants potentiating

antibacterial activity [61]. On the contrary, the present and previous studies identified antago-

nism between ROS producers RCC and several quinolones (norfloxacin, ciprofloxacin,

Fig 8. Maturation of SoxR requires the Fe-S clusters carrier, SufA, during PMS stress. The E. coli strains carrying

the chromosomal PsoxS::lacZ fusion, wt (BE1000) (black circles), ΔsufA (AG069) (white triangles) and ΔsufABCDSE
(AG031) (white diamonds) were grown overnight in LB and inoculated (1/100) in fresh LB medium. The cultures were

grown to an OD600 of 0.2, and were each split into two flasks, PMS (30 μM) was added (time zero) in one (solid line),

and the other was left untreated (dotted line). All cultures were further incubated at 37˚C with shaking and β-

galactosidase activity was monitored and expressed as Miller units. The experiments were done in triplicate. The

means and standard deviations are shown.

https://doi.org/10.1371/journal.pgen.1009198.g008
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levofloxacin, novobiocin and moxifloxacin). Hence, one should be cautious when using ROS

producing chemical as antibiotic adjuvant.

Materials and methods

Bacterial strains and growth conditions

The transcriptional PsoxS::lacZ fusion was constructed as described in Ezraty et al. [33]. The

PsoxS promoter region fused to lacZ encompassed a region from the 111 nucleotides upstream

the transcriptional soxS start site to the 21 first nucleotides of the soxS-coding region. The E.

coli K-12 strain MG1655 and its derivatives used in this study are listed in S1 Table. Deletion

mutations were introduced by P1 transduction. Transductants were verified by PCR, using

primer pairs hybridizing upstream and downstream of the deleted gene. E. coli strains were

grown at 37˚C in Luria-Bertani (LB) rich medium. Isopropyl β-D-1-thiogalactopyranoside

(IPTG) (0.1 mM), arabinose (0.2%), glucose (0.2%) and anhydrotetracycline (aTc) (2 μM)

were added when required. Solid media contained 1.5% agar. Antibiotics were used at the fol-

lowing concentrations: chloramphenicol 25 μg/mL, kanamycin 30 μg/mL, and ampicillin

50 μg/mL.

MIC determination

To determine MICPMS, PMS was dissolved in LB medium and diluted in LB to reach concen-

tration ranging from 0 to 300 μM in 20 μM increments. One hundred microliters (100 μL) of

each concentration of PMS tested were added in a 96-well microplate. Each well was inocu-

lated with 100 μL of a fresh LB bacterial inoculum of 2 × 105 c.f.u./mL, obtained from a dilu-

tion of a mid-log phase E. coli growing culture. To determine MICNorfloxacin of strains carrying

the pSoxS and pTrc99A plasmids, norfloxacin was dissolved in LB medium and diluted in LB

to reach concentration ranging from 800 ng/mL to 1800 ng/mL in 100 ng/mL increments for

the strains carrying the pSoxS, and 160 ng/mL to 360 ng/mL in 20 ng/mL increments for the

strains carrying the pTrc99A. One hundred microliters (100 μL) of each concentration of nor-

floxacin tested were added in a 96-well microplate. Each well was inoculated with 100 μL of a

fresh LB (supplemented with ampicillin and IPTG) bacterial inoculum of 2 × 105 c.f.u./mL,

obtained from a dilution of a mid-log phase E. coli growing culture. Ampicillin and IPTG were

added to the LB medium used to dilute the E. coli culture. Microplates were incubated at 37˚C

for 18 h under aerobic conditions and agitation 170 rpm. The microplates were then read at

OD600nm and MIC was defined as the lowest drug concentration that exhibited complete inhi-

bition of E. coli growth. The experiment was repeated at least three times.

PMS-mediated protection against norfloxacin

Wells of a 96-well microplate containing 100 μL of LB supplemented or not with norfloxacin

and PMS, were inoculated with 100 μL of a fresh LB bacterial inoculum of 2 × 105 c.f.u./mL.

The range of norfloxacin final concentrations used was adapted to each strain depending on

their sensitivity, and is given in the corresponding figures. PMS was used at the indicated final

concentration. Microplates were incubated at 37˚C for 18 h under aerobic conditions and agi-

tation (170 rpm). The microplates were then read at OD600nm.

Plasmid construction

Plasmids pSoxR and pSoxS were constructed by PCR amplification of the coding region of

soxR and soxS from E. coliMG1655 chromosomal DNA using the following primer pair: NcoI-

soxR/BamHI-soxR and NcoI-soxS/BamHI-soxS, respectively (S2 Table). The PCR product was
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then digested by NcoI and BamHI and cloned into the NcoI/BamHI linearized pTrc99A vector.

The plasmids were verified by sequencing. The pRBS-erpA plasmid was cloned as described by

Larson et al. [40]. Briefly, we designed primers hybridizing at erpA RBS region (Ec-F and Ec-

R), which were used to PCR-amplify the whole plasmid (psgRNA). The plasmid was verified

by sequencing using primers Ec-F colony and Ec-R colony. The sgRNA obtained was comple-

mentary to the erpA non-template strand.

RNA preparation and reverse transcription

The E. coliwt strain (BE1000) was grown in LB. When the culture reached mid-exponential

phase, the culture was divided in four aliquots, three were treated for 30 min with norfloxacin

only (30 ng/mL), with PMS only (30 μM), or with both norfloxacin and PMS, while the last sam-

ple remained untreated. Three biological independent experiments were performed. RNAs were

prepared from E. coli strain cultures (10 mL) grown in appropriate conditions. The cells were

harvested and frozen at -80˚C. Total RNAs were isolated from the pellet using the Maxwell 16

LEV miRNA Tissue Kit (Promega) according to the manufacturer’s instructions and an extra

TURBO DNase (Invitrogen) digestion step to eliminate the contaminating DNA. The RNA

quality was assessed by tape station system (Agilent). RNA was quantified spectrophotometri-

cally at 260 nm. For cDNA synthesis, 1 μg total RNA and 0.5 μg random primers were used with

the GoScript Reverse transcriptase according to the manufacturer instruction (Promega).

Quantitative real-time-PCR for transcriptional analyses

Quantitative real-time PCR (qPCR) analyses were performed on a CFX96 Real-Time System

(Bio-Rad). The reaction volume was 15 μL and the final concentration of each primer was

0.5 μM. The cycling parameters of the qRT-PCR were 98˚C for 2 min, followed by 45 cycles of

98˚C for 5 s, 55˚C for 10 s, 72˚C for 1 s. A final melting curve from 65˚C to 95˚C is added to

determine the specificity of the amplification. To determine the amplification kinetics of each

product, the fluorescence derived from the incorporation of EvaGreen into the double-

stranded PCR products was measured at the end of each cycle using the SsoFast EvaGreen

Supermix 2X Kit (Bio-Rad). The results were analyzed using Bio-Rad CFX Maestro software,

version 1.1 (Bio-Rad). The RNA16S gene was used as a reference for normalization. For each

point a technical duplicate was performed. The amplification efficiencies for each primer pair

were comprised between 80 and 100%. The primers used for qRT-PCR are reported in the

S2 Table.

β-Galactosidase assay

β-Galactosidase assays were carried out as described previously by J.H. Miller [62].

Test for E. coli sensitivity to redox-cyclic compounds

The E. coli strains were grown overnight in LB and inoculated (1/100) in fresh LB medium.

The cultures were grown to an OD600 of 0.2, and were each split into two flasks, one with PMS

added (time zero), while the other was left untreated. Cultures were further incubated at 37˚C

and growth was monitored by following OD600. To test the E. coli sensitivity to redox-cyclic

compounds on plates, overnight cultures were diluted in sterile PBS and 5 μL were directly

spotted onto LB plates containing PMS. The plates were incubated overnight at 37˚C before

growth was scored.
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ErpA depletion

The LL401 strain carrying the chromosomal copy of erpA gene under the ParaBAD promoter

[38] was grown overnight in LB. Fresh LB medium supplemented with glucose (0.2%) was

then inoculated at 1/100. The strain carrying the plasmids allowing controlling erpA expres-

sion by CRISPRi, pdCas9 and pRBS-erpA, was grown overnight in LB and then inoculated (1/

100) in fresh LB supplemented with anhydrotetracycline (aTc) (2 μM).
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units. The experiments were repeated at least three times. The means and standard deviations
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was left untreated (dotted line). All cultures were further incubated at 37˚C with shaking and

β-galactosidase activity was monitored and expressed as Miller units. All the experiments were

repeated at least three times. The means and standard deviations are shown (A, B, D, E and F)

and a representative experiment is presented in panel C.
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Methodology: Yohann Duverger, Emmanuelle Bouveret.

Supervision: Frédéric Barras, Béatrice Py.
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