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High-precision measurements implemented with light are desired in all fields of science. However, light acts
as a wave, and the Rayleigh criterion in classical optics yields a diffraction limit that prevents obtaining a
resolution smaller than the wavelength. Sub-wavelength interference has potential application in
lithography because it beats the classical Rayleigh resolution limit. Here, we carefully study second-order
correlation theory to establish the physics behind sub-wavelength interference in photon coincidence
detection. A Young’s double slit experiment with pseudo-thermal light is performed to test the second-order
correlation pattern. The results show that when two point detectors are scanned in different ways, super
sub-wavelength interference patterns can be obtained. We then provide a theoretical explanation for this
surprising result, and demonstrate that this explanation is also suitable for the results found for entangled
light. Furthermore, we discuss the limitations of these types of super sub-wavelength interference patterns
in quantum lithography.

Q
uantum lithography was first proposed by Boto et al.1 and allows an N-times smaller spacing of inter-
ference fringes than the classical Rayleigh limit2 for spatial resolution. To date, true laboratory verifica-
tion of quantum lithography remains extremely challenging because no lithographic materials exist that

are capable of N-photon absorption lithographic materials3. The alternative experiment to demonstrate quantum
lithography uses N detectors operating in coincidence to mimic the effect of a true N-photon absorbing resist. In
interferometric lithography, coherent light beams shine on a mask and form an interference pattern. If the spacing
of the interference fringes is smaller than the wavelength l, which is the classical Rayleigh limit2 (the Rayleigh
limitation is smaller than l, here we use l for easy comparison to sub-wavelength), one obtains the sub-wave-
length interference pattern, which can be used in lithography. This sub-wavelength interference pattern has been
obtained using entangled light4 by simultaneously scanning two point detectors in the same directions and also
using thermal light5–7 by simultaneously scanning the two point detectors in opposite directions. However, it is
unclear why the sub-wavelength interference pattern can be obtained only when the two point detectors are
scanned in those ways, and it is unknown whether other, better scanning approaches exist that provide a spatial
resolution smaller than l/2. In our study, we find that using the appropriate scanning method, even super sub-
wavelength interference patterns can be achieved. This surprising result encourages us to consider the physics
behind this phenomenon and to determine whether we can achieve an interference pattern with arbitrarily high
resolution. We address these questions in this manuscript and suggest how to obtain a full understanding of the
second-order intensity correlation.

In interference and diffraction experiments with light, the observed quantity is the first-order correlation
function of the light on a detection plane in the far-field region,

G 1ð Þ r,tð Þ~Tr rE {ð Þ r,tð ÞE zð Þ r,tð Þ
h i

, ð1Þ

where E(2)(r, t) and E(1)(r, t) are operators for the negative and positive frequencies of the light field, r is the
density matrix operator for the light source, and r is a transverse coordinate vector on the detection plane. The
measured first-order correlation in Eq. (1) directly represents the distribution of light intensity on the detection
plane.

In addition to the first-order correlation, light can have a second-order correlation, which is defined as

G 2ð Þ r1,t1; r2,t2ð Þ~Tr rE {ð Þ r1,t1ð ÞE {ð Þ r2,t2ð Þ
h

E zð Þ r2,t2ð ÞE zð Þ r1,t1ð Þ
i
: ð2Þ

In 1956, Hanbury-Brown and Twiss (HBT)8,9 first observed the second-order intensity correlation of light in
astronomy. This investigation arouse research interest into the second-order correlation properties of light10,11,
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and inspired Glauber’s work on quantum optics12,13. The HBT
experiment can be physically explained by either the classical stat-
istical correlation of the intensity fluctuations10 or by the interference
of two-photon (multiphoton) probability amplitude14. Although our
understanding of the physical mechanism behind the HBT experi-
ment has long been debated, the second-order correlation of light has
been widely applied in various fields, such as nonlocal imaging and
interference15–21, sub-wavelength interference4–7, and quantum
lithography3,22–24.

Results
In Fig. 1, we show the point-to-point correspondence between the
source and the detection plane; this correspondence can be described
by the impulse response function h(r, r9). If the source is thermal
light, the second-order correlation function on the detection plane
can be written as16

G 2ð Þ r1,r2ð Þ!
ðð

dr’1dr’2h� r1,r’1ð Þh r2,r’2ð Þ
����
� E {ð Þ r’1ð ÞE zð Þ r’2ð Þ
D E���2:

ð3Þ

Under the paraxial approximation and the assumption that the
source is covered by an object with a transmission function T(r9), the
impulse response function can be expressed as

h r,r’ð Þ~ eikz

ilz
e{ik

zr:r’T r’ð Þ, ð4Þ

where k 5 2p/l is the wave number. If the light source is fully
incoherent, as it is for thermal light, the first-order correlation func-

tion of light just emitted from the source E {ð Þ r’1ð ÞE zð Þ r’2ð Þ
D E

can

take the form nd r’1{r’2ð Þ, where d(r) is the Dirac delta function, and
n is the mean photon number. Here, we have assumed that the
intensity distribution of the incoherent light on the source plane is
uniform25. Then, the second-order correlation function in Eq. (3) can
be rewritten in the form

G 2ð Þ r1,r2ð Þ! fT2
k
z

r2{r1ð Þ
� �����

����2, ð5Þ

where fT2 rð Þ is the Fourier transformation of T2(r). This result
shows that a well-defined Fourier-transform image of the transmit-
tance of an object can be extracted from the second-order correlation
function.

Eq. (5) clearly shows that the second-order correlation function is
a four-variable function of the transverse coordinates (x1, y1) and (x2,
y2) of the detection plane. Simply but without loss of generality, a
one-dimensional object such as a double-slit is usually employed to
force the correlation function to become a two-variable function. For
a one-dimensional symmetric double-slit placed along the y-axis, the
correlation function is independent of the coordinates y1 and y2. In
this way, the second-order correlation function in Eq. (5) can be
further simplified to the form

G 2ð Þ x1,x2ð Þ! fT2
k
z

x2{x1ð Þ
� �����

����2: ð6Þ

Experimental test with pseudo-thermal light. The experimental
setup is shown in Fig. 2. Pseudo-thermal light is produced by a
semiconductor laser with a wavelength l 5 457 nm and a rotating
ground glass disk (GGD). The angular velocity of the GGD is
maintained at v 5 p rad/s. A double-slit is placed immediately
after the GGD. The width of each slit is a 5 0.038 mm, and the
distance between centres of the two slits is d 5 0.12 mm. The
diffracted light is split into two parts after the double-slit using a
beam splitter (BS) and is then recorded by two charge-coupled
devices (CCDs). Both of the CCDs are located at z 5 23 cm
behind the double-slit; therefore the CCDs are placed in the
Fraunhofer diffraction region with respect to the double-slit.

As shown above, the second-order correlation function Eq. (6)
describes the correlation between two arbitrary points on CCD1

and CCD2. Here, we extract the relevant row data from the two
CCDs, and construct the second-order correlation function. The
result is shown in Fig. 3, where x1 and x2 are the horizontal coordi-
nates on CCD1 and CCD2, respectively. Here, we use colour to rep-
resent the value of the second-order correlation function. This
second-order correlation function is the two-dimensional second-
order interference pattern of the double-slit.

A cross-sectional curve with arbitrary spatial resolution can be
obtained by choosing the correct line on the two-dimensional figure.
Line (a) in Fig. 3 describes the case when one point detector on the
CCD2 plane is fixed and another point detector on the CCD1 plane is
moved along the x1 direction. The curve obtained along this line, is
identical to the traditional Young’s interference pattern, as shown in
Fig. 4(a). The distance from the zeroth-order peak to the first-order
peak in Fig. 4(a) is 0.89 mm, consistent with the theoretical value of
0.88 mm. Synchronous scanning with two point detectors in oppos-
ite directions corresponds to line (b) in Fig. 3 and yields an interfer-
ence pattern with peak spaces of 0.44 mm, as shown in Fig. 4(b). This

Figure 1 | Schematic of the correspondence between the source and the
detection plane.

Figure 2 | Schematic for the second-order correlation measurement of a
double-slit with charge-coupled devices (CCDs). The rotating ground

glass disk (GGD) and the double-slit are placed as close together as

possible. The two CCDs are placed in the Fraunhofer diffraction region

with respect to the double-slit. The CCD is a 1, 040 3 1, 392 array of 4.65 3

4.65 mm2 pixels, and the measurement is made with an exposure time of

0.2 ms.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4068 | DOI: 10.1038/srep04068 2



result is the sub-wavelength interference pattern described in Ref. 5,
6.

Obviously, the scanning method is not limited on the above two
cases. We can choose any scanning method that corresponds to a line
in Fig. 3 to obtain a diffraction pattern with arbitrary-wavelength
resolution. For example, along line (c) in Fig. 3, representing a scan-
ning method with x1 5 x, and x2 5 22x, we obtain a narrower
interference pattern than the sub-wavelength pattern, as shown in
Fig. 4(c). The peak spacing in Fig. 4(c) is 0.29 mm, which corre-
sponds to a spatial resolution of l/3. If we set x1 5 x, and x2 5

x/2, as represented by line (d) in Fig. 3, the resulting data displays
a spatial resolution of 2l (Fig. 4(d)). The experimental results
obtained here fit the theoretical prediction obtained using Eq. (6)
well. From the above discussion, we conclude that one-dimensional
cross-sectional curves of the second-order correlation function can
have super sub-wavelength behaviour if the appropriate detector
scanning method is chosen.

Results for an entangled light source. The above conclusion can be
applied to sub-wavelength interference from an entangled light
source. In this case, Angelo et al.4 showed that an interference

pattern with enhanced spatial resolution could be constructed, as
predicted by Boto et al.1. In this experiment, a double-slit is placed
immediately after the nonlinear crystal to ensure that two photons
are generated simultaneously at the upper or the lower-slit. Two
point detectors move in the same direction synchronously and
operate in coincidence mode to mimic the effect of a true two-
photon absorbing resist. Angelo et al. found that the two-photon
double-slit interference pattern is 2-fold narrower than the
traditional pattern obtained using coherent light. If one assumes
that the entangled photon pairs are generated simultaneously at
either the upper or lower-slit and propagate to the detection plane
independently, the coincidence count at the detection plane can be
approximately expressed in the form26–28

G 2ð Þ x1,x2ð Þ!cos2 kd
2z

x1zx2ð Þ
� �

: ð7Þ

For simplicity, the single-slit diffraction function has been
ignored. As shown in Eq. (7), the second-order correlation function
is a two-dimensional function of the detection plane coordinates. In
Fig. 5(1), the correlation function in Eq. (7) is plotted. This pattern is
similar to the experimental result obtained by Peeters et al.29.

As in the analysis for thermal light, line (a) in Fig. 5(1) represents
an interference pattern that has the same spatial resolution as the
normal Young’s double-slit experiment. The sub-wavelength result
obtained by D’Angelo4 can be rebuilt along line (b) in Fig. 5(1). The
cross-sectional curves along these two lines are plotted in Fig. 5(2)
(a)-(b). Lines (c) and (d) represent detector scanning methods with
(x1 5 x, x2 5 2x) and (x1 5 x, x2 5 2x/2), respectively. In Fig. 5(2)
(c)-(d), the cross-sectional curves corresponding to lines (c) and (d)
are plotted with peak spacings of l/3 and 3l, respectively. As
described in Ref. 28, the two photons that are simultaneously dif-
fracted by a double-slit will propagate independently; thus, the
photons in coincidence measurement are not limited to one line only
but completely fill the entire detection plane. Therefore, the one-
dimensional cross-sectional curve deduced from the two-dimen-
sional second-order correlation function may also have arbitrarily
narrow peak distances when entangled light is used as the source.

Discussion
Based on the above results for both thermal and entangled light, it is
clear that a cross-sectional curve can be constructed with arbitrary
spatial resolution by choosing the scanning method for the detectors

Figure 3 | Second-order correlation function Eq. (6) recorded using two
CCDs. x1 and x2 are the horizontal ordinates on CCD1 and CCD2,

respectively. The lines represent various scanning methods for the

detectors: line (a) for x1 5 x and x2 5 0; line (b) for x1 5 x and x2 5 2x; line

(c) for x1 5 x and x2 5 22x; line (d) for x1 5 x and x2 5 x/2.

Figure 4 | Cross-sectional curves of (a), (b), (c), and (d) represent the corresponding lines in Fig. 3.
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in the detection plane. However, cross-sectional curves represent
only part of the information obtained from the second-order inter-
ference. To obtain all of the information, we should consider all
possible combinations of arguments for the second-order correlation
function. For example, when including all possible variations of the
two arguments, the full picture of the second-order interference of a
double-slit is a two-dimensional pattern.

It remains challenging to achieve a true laboratory demonstration
of quantum lithography due to the absence of lithographic (N-
photon absorption) materials, although proof-of-principle experi-
ments that display certain aspects of quantum lithography have been
performed. In these proof-of-principle experiments, N photons
should appear at same point on the N detectors simultaneously
because the N-photon absorber is simulated by N-fold coincidence.
From this perspective, we can see that if N detectors scan with dif-
ferent paces and in different directions, it is impossible to take
advantage of the resulting super sub-wavelength patterns to achieve
quantum lithography. In other words, for thermal light, the second-
order interference pattern becomes flat when two detectors scan in
the same directions (x1 5 x2), and this method clearly can-not be
used for writing sub-Rayleigh structures. However, for entangled
light, a sub-wavelength interference pattern is obtained when two
detectors are scanned with x1 5 x2 (as shown in Fig. 5(2) (b)). Thus,
an entangled light source has potential for application in quantum
lithography, although the efficiency obtained may be an obs-
tacle27,28,30. We also note that measurement of the two-dimensional
pattern is not limited in the space-momentum system. For example,
this approach can be applied to entropic entanglement measure-
ments of a photon’s orbital angular momentum31.

In summary, based on the well-known fact that the second-order
interference is in general a high-dimensional pattern instead of a
one-dimensional curve, we showed that in double-slit second-order
interference experiments with either thermal or entangled light,
when two point detectors move in a certain way on the signal and
reference detection planes, the result obtained from the coincidence
count of the detectors is merely a cross-sectional curve of the two-
dimensional interference pattern. In principle, one can construct a
cross-sectional curve of arbitrary spatial resolution by appropriately
choosing the scanning method for the two point detectors on the
detection plane. Furthermore, we find that it is impossible to apply
this type of super sub-wavelength interference to quantum litho-
graphy using thermal light. Our theory and experimental method
for second-order interference may provide a deep understanding of
higher-order correlations and holds promise for the development of
applications of these correlation.

Methods
The two variables x1 and x2 described in Eq. (6), represent the positions of two
detectors. Thus, all the information available from the second-order correlation

function can be obtained only by considering all possible combinations of x1 and x2 in
the detection plane. In previous sub-wavelength interference experiments using a
thermal light source5,6, l/2 spatial resolution cross-sectional curves were obtained
when two point detectors were scanned in opposite directions (x1 5 x, x2 5 2x).
However, there are no mathematical or physical reasons to limit the scanning
methods for two detectors to the coordinates x1 and x2 in Eq. (6). For example, if the
two point detectors move in the detection plane along x1 5 x, x2 5 x/2, one can obtain
the cross-sectional curve with spatial resolution 2l. In contrast, if the two point
detectors move in the detection plane along x1 5 x, x2 5 22x, one can obtain cross-
sectional curve with spatial resolution l/3. In general, the cross-sectional curve with

spatial resolution Nl or
1
N

l (where N . 0) can be obtained when the two point

detectors scan in the detection plane along x1 5 x, x2~
N{1

N
x or x1 5 x, x2 5

(1 2 N)x, respectively. Therefore a cross-sectional curve with arbitrary spatial reso-
lution can be obtained merely by choosing an appropriate scanning method. The
result that the physical quantity G(2) is not independent of the scanning method
appears surprising. However, noting the second-order correlation function Eq. (6),
we can find the reason for this effect—the second-order correlation pattern is a two-
dimensional surface rather than a one-dimensional curve. To further clarify our
argument, we perform a second-order interference experiment using pseudo-thermal
light with a setup similar to that employed in Ref. 5, 6 as described in the Results
section.
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