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Abstract

The investigation of RNA-based regulation of cellular processes is becoming an

increasingly important part of biological or medical research. For the analysis of this

type of data, RNA-related prediction tools are integrated into many pipelines and work-

flows. In order to correctly apply and tune these programs, the user has to have a pre-

cise understanding of their limitations and concepts. Within this manuscript, we provide

the mathematical foundations and extract the algorithmic ideas that are core to state-of-

the-art RNA structure and RNA–RNA interaction prediction algorithms. To allow the

reader to change and adapt the algorithms or to play with different inputs, we provide an

open-source web interface to JavaScript implementations and visualizations of each

algorithm. The conceptual, teaching-focused presentation enables a high-level survey

of the approaches, while providing sufficient details for understanding important con-

cepts. This is boosted by the simple generation and study of examples using the web

interface available at http://rna.informatik.uni-freiburg.de/Teaching/. In combination, we

provide a valuable resource for teaching, learning, and understanding the discussed

prediction tools and thus enable a more informed analysis of RNA-related effects.

Author summary

RNA molecules are central players in many cellular processes. Thus, the analysis of RNA-

based regulation has provided valuable insights and is often pivotal to biological and med-

ical research. In order to correctly select appropriate algorithms and apply available RNA

structure and RNA–RNA interaction prediction software, it is crucial to have a good

understanding of their limitations and concepts. Such an overview is hard to achieve by

end users, since most state-of-the-art tools are introduced on expert level and are not dis-

cussed in text books. Within this manuscript, we provide the mathematical means and

extract the algorithmic concepts that are core to state-of-the-art RNA structure and RNA–
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RNA interaction prediction algorithms. The conceptual, teaching-focused presentation

enables a detailed understanding of the approaches using a simplified model for didactic

purposes. We support this process by providing clear examples using the web interface of

our algorithm implementation. In summary, we have compiled material and web applica-

tions for teaching—and the self-study of—several state-of-the-art algorithms commonly

used to investigate the role of RNA in regulatory processes.

This is a PLOS Computational Biology Education paper.

Background

Bioinformatics analyses have become indispensable to biological research. While platforms

like Galaxy enable the setup of tool pipelines without expert knowledge [1, 2], one requires a

general understanding of underlying concepts and algorithms to be able to successfully apply

and adapt these pipelines to biological data [3, 4]. Thus, bioinformatics is taught n both com-

puter science and biology studies.

It has been established that, when teaching mathematics, a combination of reflective exam-

ple study and problem solving by hand fosters learning. This learning effect is heightened

when done iteratively with increasing difficulty [5]. Thus, diverse examples covering different

aspects of the topic have to be provided to guide the learning process. This is even more impor-

tant in an e-learning or self-study context, in which the study of examples that show different

aspects of a problem might compensate for the missing interaction with a teacher [6, 7].

Here, we focus on RNA-related bioinformatics and especially on approaches for RNA

structure and RNA–RNA interaction prediction. Both are essential when investigating the vast

amount of regulatory RNA that is common to all kingdoms of life [8, 9]. The function of many

RNA species is guided by their structure that is defined by the formation of intramolecular

base pairs. For instance, prokaryotic small RNAs show evolutionary conserved unstructured

regions that regulate the expression of their target mRNAs via intermolecular base pairing [10,

11]. Thus, the prediction of both functional intramolecular structures of RNAs as well as their

intermolecular (RNA–RNA) interaction potentials are central bioinformatics tasks.

Most computational methods for RNA structure or RNA–RNA interaction prediction are

based on thermodynamic models and provide an efficient computation, since Richard Bellman’s

principle of optimality [12] can be applied. This means that optimal solutions of a problem can be

composed of optimal solutions of (independent) subproblems. This is used by dynamic program-

ming approaches that decompose a problem into smaller problems and tabularize partial solutions.

Robert Giegerich and colleagues developed a rigorous framework, namely Algebraic Dynamic Pro-

gramming (ADP) [13, 14], to systematically study and develop dynamic programming approaches

in a computer science context. In addition, they provided an online platform to study ADP pro-

grams for various problems also covering RNA related topics [15]. The central idea of ADP is to

separate the strategy of how a problem is decomposed into subproblems from the evaluation strat-

egy, i.e., the objective of the optimization. We use the counting of structure alternatives for a given

RNA to illustrate how dynamic programming can be applied to prediction problems. In particular,

we introduce the decomposition strategy for (nested) RNA structure models.

The teaching of dynamic programming approaches is typically split into a theoretical intro-

duction by the lecturer showing individual examples and a subsequent manual application by
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students in which the methods are implemented or applied to solve small-scale problems for

exercise. This leads often to a very small set of examples discussed due to the high amount of

work needed for manual application and the limited gain of knowledge by iterated usage of

once-understood solution strategies. To increase the number of examples, e.g., to focus on dif-

ferent aspects of an individual method or to compare different approaches, either partial solu-

tions have to be provided or implementations made available. Besides single instances like the

Nussinov algorithm, most state-of-the-art methods and their underlying algorithmic ideas are

not covered by textbooks, e.g., [16–18]. Resorting to the original literature for teaching these

algorithms, however, is complicated, as most approaches are introduced for very sophisticated

energy models. While these advanced energy models are required for a successful application

of these tools in real-world scenarios, they often mask the basic and transferable algorithmic

ideas for the nonexpert reader since they require a high level of background knowledge.

We approach the aforementioned problems in two ways. First, we have stripped the model-

specific energy details from the state-of-the-art methods for RNA structure prediction and

RNA–RNA interaction prediction and present their underlying (or basic) algorithmic ideas. For

that purpose, we use the most simple energy model available. State-of-the-art energy models take

the structural context of base pairs into account. To this end, RNA structures are decomposed

into loops (i.e., a region that is enclosed by one or more base pairs) to calculate their overall

energy. However, the algorithmic principles are essentially the same when using an energy

model that considers base pairs without their structural context as basic units. Since all methods

are presented using the same mathematical nomenclature, relationships and differences are easy

to understand. Second, we provide a web interface that provides interactive implementations of

all algorithms discussed with extensive visualizations. This interface (i) helps to understand and

follow the algorithms, (ii) eases the generation of interesting examples for different aspects to

teach, and (iii) provides master solutions for comparison with your own calculations or imple-

mentations. Each section closes with a list of advanced questions that exemplify what can be

studied and answered using the provided web interfaces available at http://rna.informatik.uni-

freiburg.de/Teaching/.

RNA structure prediction topics covered within this manuscript are the formalization of RNA

secondary structures and simplified energy models, computation of the number of structures with

regards to the given model [19, 20], identification of the minimum free energy structure [21, 22],

computation of partition functions [23], probability calculation for single base pairs and unpaired

regions [23, 24], and identification of the maximum expected accuracy structure [25, 26].

RNA–RNA interaction prediction approaches are grouped according to their algorithmic

idea, as in [27], into hybrid-only interaction prediction [28–30], concatenation-based/cofold-

ing interaction prediction [31, 32], and accessibility-based interaction prediction [24, 33, 34].

Results and discussion

In the following, we will briefly introduce the available algorithms and their respective applica-

tions to life science. Most algorithms are dynamic programming approaches. Thus, we also

provide the corresponding recursions for the simplified RNA structure model, which we intro-

duce first.

RNA

Ribonucleic acid (RNA) is a linear molecule built from nucleotides. The ribose sugars of the

nucleotides are bound via interlinking phosphate groups. Furthermore, each sugar is con-

nected to a nitrogenous base, typically one of adenine (A), guanine (G), cytosine (C), or uracil

(U). The bases can form hydrogen bonds between two (nonconsecutive) nucleotides, which is
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then called a base pair. Although other forms are possible, the typically considered base pairs

are G−C, A−U, and G−U in both orientations. Pairing between nucleotides of the same mole-

cule (intramolecular) defines its three-dimensional structure. In order to fulfill a certain regu-

latory function, typically a stable structure is needed. Thermodynamic analyses have identified

base (pair) stacking as the major stabilizing force within RNA structures [35], and according

energy estimates have been identified experimentally, e.g., refer to [36]. The functional struc-

ture of an RNA can regulate, e.g., other RNA molecules by direct (intermolecular) base pairing,

i.e., forming base pairs between two RNAs, called RNA–RNA interactions. While the probabil-

ity of an initial contact is dependent on many factors, such as concentration or location, the

subsequent formation of a stable RNA–RNA interaction is assumed to follow the same ther-

modynamic principles as single structure formation. Thus, most ideas and parameters from

RNA structure prediction are transfered to RNA–RNA interaction prediction approaches. It is

important to note that thermodynamics-based approaches are again models that do not con-

sider all factors that influence structure/interaction formation, e.g., already bound molecules,

specific solution conditions, or kinetics of structure formation. Nevertheless, they typically

allow for accurate predictions for the majority of RNA molecules [37].

RNA secondary structures

In the following, we provide the mathematical framework needed to define and solve RNA-

related problems. The primary structure of an RNA molecule can be described by its sequence

of bases. That is, an RNA molecule of length n is defined by its sequence S2{A,C,G,U}n of

respective International Union of Pure and Applied Chemistry (IUPAC) single-letter codes

[38].

The secondary structure P of an RNA S is defined as a set of (ordered) base pairs, i.e., P�[1,

n]×[1,n] with (i,j)2P!i<j. Typically, it is assumed that each nucleotide can pair with at most

one other nucleotide, i.e., 8(i,j) 6¼ (p,q)2P:{i,j}\{p,q} = ;, and that only the introduced Wat-

son–Crick or G−U base pairs are allowed, i.e., 8(i,j)2P:{Si,Sj}2{{A,U},{C,G},{G,U}} extraneous

to order. Such base pairs are said to be complementary. Furthermore, to restrict computational

complexity of prediction algorithms, structures are constrained to be noncrossing (nested),

i.e., ∄(i,j),(p,q)2P:i<p<j<q. Using noncrossing structures generally allow a good estimate of

the overall structure stability. However, it is important to note that crossing base pairs do exist,

albeit not as abundant as noncrossing base pairs, and contribute to the final stability of the

three-dimensional shape. It is typically assumed that first noncrossing structural elements are

formed that subsequently are linked via few crossing base pairs [39]. Thus, the majority of the

structure can be modeled/predicted via nested base pairing, which strongly reduces the

computational complexity. Finally, it is commonly enforced that pairing bases have a minimal

sequence distance of l, also called minimal loop length, to incorporate steric constraints of

structure formation. In the following, we will denote with P the set of all possible structures

(also referred to as structural ensemble or structure space) that can be formed by a given

sequence S. It has been shown that the size of the structure space P grows exponentially with

sequence length n. For a minimal loop length l of 3, the growth is about 2.3n [40].

Nested secondary structures can be visualized as outerplanar graphs in which nucleotides

are represented by nodes, and edges represent base pairs or sequential backbone connections.

Furthermore, dot-bracket strings can be used that encode for each position i whether it is

unpaired “.”, it is the smaller index (opening) of a base pair “(,” or the larger (closing) index

“)”.

As motivated by Ruth Nussinov and coworkers [21], we relate the stability of an RNA structure

directly with its number of base pairs. Since some algorithms require explicit energy contributions
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of individual base pairs (e.g., McCaskill’s algorithm to compute base pair probabilities), we set the

energy of any base pair Ebp to −1 for simplification purposes. Thus, the energy of a structure is

given by E(P) = |P|�Ebp. Note, this is in stark contrast to state-of-the-art RNA structure prediction

approaches (e.g., using Zuker’s algorithm [22]), which typically apply a Nearest Neighbor energy

model [41, 42] and experimentally derived energy contributions [36]. Furthermore, all algorithms

for RNA–RNA interaction prediction ignore concentration dependence and other factors influ-

encing the duplex formation, which is typically modeled within the Nearest Neighbor model by

an “initiation” energy term [24, 33, 34]. Nevertheless, the use of the simplified base pair-focused

model enables a much clearer presentation of the algorithms, which is better suited (and suffi-

cient) to understanding their ideas and mechanisms. The transfer from the simple base pair maxi-

mization to the advanced energy models, as done by Michael Zuker and Patrick Stiegler [22], is

generic and can be applied to all problems discussed within this manuscript. References to

extended versions and implementations are provided for each approach.

Counting structures via dynamic programming

A first task that introduces the general structure of dynamic programming approaches used for

RNA structure prediction is to compute the number of structures a sequence S can form, i.e., jPj.
Since the structure space P grows exponentially, explicit enumeration is inefficient. In order to

apply dynamic programming, we first have to have a strategy of how to decompose such a prob-

lem into independent subproblems. Let us consider the subsequence Si..Sj. We can easily split the

problem into two independent problems by introducing a case distinction for its last position Sj;
case (1) Sj is not involved in any base pairing, and case (2) Sj is paired with some position Sk
(i�k<j). Both cases are depicted in Fig 1. The first case can be easily reduced to a smaller problem,

namely to Si..Sj−1, since the unpaired position Sj does not allow any structural alternatives. Thus,

the reduced problem directly provides a count for case 1. On the contrary, each possible base pair-

ing of Sj in the second case decomposes the problem into two smaller independent problems (one

to the left of and one enclosed by the base pair (k,j)), since no base pair is allowed to cross (k,j)
(nestedness condition, see section on RNA secondary structure). Since any structural alternative

of the left subproblem can be combined with any of the enclosed ones, we have to multiply the

numbers from these smaller subproblems to get the overall count for case 2.

Michael S. Waterman and Temple S. Smith applied this idea to solve the counting problem

using a table C [19, 20]. An entry Ci,j provides the number of structures for a subsequence Si..
Sj. Thus, we initialize Ci,i = 1 for all positions i, since any subsequence of length one is confined

to the unpaired structure. The recursion for longer subsequences is given by

Ci;j ¼ Ci;j� 1 þ
X

i � k < ðj � lÞ

Sk;Sj compl:

Ci;k� 1 � Ckþ1;j� 1 ð1Þ

which combines the two discussed cases to consider all possible “states” of nucleotide Sj in valid

Fig 1. Secondary structure decomposition by Waterman and Smith (1978). The figure illustrates for a given

subsequence Si..j a unique nested secondary structure decomposition based on the distinction of all possible pairing

states of the last nucleotide Sj. Note, this scheme applies to all RNA structure-related algorithms presented here.

https://doi.org/10.1371/journal.pcbi.1006341.g001
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structures. The first (Ci,j−1) covers all cases where Sj is unpaired, and the second counts all cases

where Sj is paired with an Sk within the subsequence (second case). Note, the base pair (k,j) has to

respect the minimal loop length l. The overall number of structures is accessed by jPj ¼ C1;n.

Given l and an RNA sequence, our user interface computes and depicts the filled matrix C.

Example questions

• The decomposition and counting of RNA structures was introduced for a case distinction on

Sj. Rewrite Eq 1 using a case distinction on Si.

• Compute the numbers of nested structures that can be formed by random RNA sequences

of different lengths. Compare the exponential growth of the structure space with the approx-

imation 2.3n mentioned earlier.

Optimal structure prediction

Ruth Nussinov and coworkers introduced in 1978 [21] a first algorithm that efficiently predicts

a nested structure with the maximal number of base pairs for a given RNA sequence S, i.e.,

argmaxP2PðjPjÞ. The corresponding recursion

Ni;j ¼ max
Ni;j� 1 Sj unpaired

max
i�k<ðj� lÞ
Sk;Sj compl:

ðNi;k� 1 þ Nkþ1;j� 1 þ 1Þ Sk;Sj pair ð2Þ

8
><

>:

is strongly related to the counting approach from Eq 1. Here, an entry Ni,j stores the maximal

number of base pairs that can be formed by the subsequence Si..Sj. Thus, summation in Eq 1 is

replaced by maximization and multiplication with summation, while the second case considers

the formed base pair with “+1.” N is initialized with 0 and can be filled in O(n3) time while

using O(n2) memory. A depiction of the recursion is given in Fig 2.

The maximal number of base pairs formed by any structure can be found in N1,n, and a

respective optimal structure P can be identified via traceback starting in N1,n. Thus, for a given

cell Ni,j, the traceback discovers how the value of Ni,j was obtained. To this end, the case distinc-

tions of the (filling) forward recursion (e.g., from Eq 2) are considered. If it holds Ni,j =Ni,j−1

(first case), position j is found to be unpaired, and the traceback proceeds with cell Ni,j−1. Other-

wise, position j has to form a base pair with some position i�k<j, which is identified in accor-

dance to the second case of Eq 2. The base pair (k,j) is stored as part of the final structure P and

the traceback proceeds for both subintervals represented byNi,k−1 and Nk+1,j−1.

For the identification of functional structures or the study of structural alternatives, the

enumeration of suboptimal structures is of interest. A generic approach was introduced by

Fig 2. Recursion by Nussinov and coworkers (1978). The figure illustrates the recursion to compute the maximal

number of base pairs that can be formed by a given sequence by distinction of all possible pairing states of the last

nucleotide Sj.

https://doi.org/10.1371/journal.pcbi.1006341.g002
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Stefan Wuchty and coworkers [43] that enables the enumeration of all structures that are in a

certain range of the minimal energy. An implementation is also available in our web interface.

Our interactive user interface enables the computation of both optimal and suboptimal

structures. For a user defined sequence as well as recursion and traceback parameters, the

dynamic programming table is provided along with a list of (sub)optimal structures. On selec-

tion, the according traceback is highlighted within the matrix. This is complemented with a

graphical representation of the structure using Forna [44].

Different recursions can be chosen to examine the effects of ambiguous recursions versus

the original one. In the following, such an ambiguous variant from [17] is presented.

Ni;j ¼ max

Niþ1;j Si unpaired

Ni;j� 1 Sj unpaired

Niþ1;j� 1 þ 1 ifSi;Sj compl: and iþ l < j

max
i<k<ðj� 1Þ

Ni;k þ Nkþ1;j decomposition

ð3Þ

8
>>>>>><

>>>>>>:

While this recursion also computes the same entries of N and thus maximal number of possi-

ble base pairs (N1,n), it is not using a unique decomposition of the structure, i.e., the same

structural variant is considered by different recursion cases.

This causes duplicated enumeration of (sub)optimal structures when using Wuchty’s trace-

back algorithm, which can be studied in our web server for different recursions. Furthermore,

it is not possible to use variants of ambiguous recursions like Eq 3 to count structures (consider

relation of Eqs 2 and 1) or to compute the partition function of the structural ensemble (as dis-

cussed next), since both requires a unique consideration of each structure.

In 1981, Michael Zuker and Patrick Stiegler introduced a dynamic programming approach

that efficiently computes minimum free energy structures using a Nearest Neighbor energy

model [22]. Using further restriction, the same time and space complexity compared to Nussi-

nov’s algorithm is kept. The approach with according decomposition depictions and how it

relates to Nussinov’s algorithm is introduced in detail, e.g., in [45]. Implementations like

UNAFold [46] (formerly mfold [47]) or RNAfold [31, 37] are the current state-of-the-art tools

for RNA secondary structure prediction.

Example questions

• Find RNA sequences that fold uniquely into (i) a single hairpin, (ii) two hairpins, and (iii)

three hairpins. What guided your design?

• Find an RNA sequence that shows the ambiguity of Eq 3. What are the differences to Eq 2

that cause this ambiguity?

• Define formally what is represented by the entryN1,n when using an energy minimizing vari-

ant of Eq 2 that uses Ebp instead of “+1.” Provide a recursion to compute this value.

Partition function and probabilities

To estimate the probability of a given structure P within the structural ensemble P, statistical

mechanics typically dictate a Boltzmann distribution when using minimal assumptions [48].

Thus, the probability of a structure P is directly related to its energy E(P) by

PrðPÞ ¼
expð� EðPÞ=kBTÞX

P02P

expð� EðP0Þ=kBTÞ
ð4Þ
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given the Boltzmann factor kB and the system’s temperature T. Note, when using an energy

model with units “per mole,” which is typically the case when using a Nearest Neighbor model

with measured energy contributions, one has to replace kB with the gas constant R. Note fur-

ther, the structure with minimal free energy, e.g., predicted with algorithms discussed above,

will always have maximal probability according to Eq 4. Thus, the most stable structure is auto-

matically the most likely structure.

The nominator of Eq 4 is called Boltzmann weight (of structure P). The denominator is

called canonical partition function Z, which is the sum of the Boltzmann weights of all struc-

tures in P. Since P grows exponentially, its exhaustive enumeration to compute Z is

impracticable.

Nevertheless, it is possible to compute Z efficiently using a variant of the counting algo-

rithm. This approach was first introduced for the Nearest Neighbor energy model by John S.

McCaskill (1990) [23], and we rephrase a variant for the simplified base pair model. First, we

have to note that the Boltzmann weight of a structure P can be computed based on the energy

of its base pairs Ebp, as follows

expð� EðPÞ=kBTÞ ¼ exp �
X

ði;jÞ2P

Ebp=kBT
� �

¼
Y

ði;jÞ2P

expð� Ebp=kBTÞ: ð5Þ

That is, the structure’s weight is computed by the product of individual base pair weights. To

simplify notation in the following, qbp = exp(−Ebp/kBT) refers to the Boltzmann weight of a sin-

gle base pair. Given this, we can alter the counting recursion from Eq 1 to

Qi;j ¼ Qi;j� 1 þ
X

i�k<ðj� lÞ
Sk;Sj pair

Qi;k� 1 � Qkþ1;j� 1 � q
bp: ð6Þ

This directly provides the partition function Z =Q1,n in O(n3) time.

For some approaches and research questions, probabilities of individual base pairs

Prbp(i,j) are of interest. This is the probability that a base pair (i,j) is formed by some struc-

ture, which can be calculated by summing up the probabilities of all structures containing

(i,j), i.e.,

Prbpði;jÞ ¼

X

P2P
ði;jÞ2P

expð� EðPÞ=kBTÞ

Z
: ð7Þ

As for counting, the base pair (i,j) decomposes all structures into the enclosed and outer

subsequence that are independent concerning base pairing. Thus, the partition functions of

the according subsequences can be used to compute Prbp(i,j) efficiently. To do so, we need

an auxiliary matrix Qbp. Each entry Qbpi;j holds the partition function for the subsequence Si..
Sj, with the side constraint that i and j form the base pair (i,j). If this is not possible due to

noncomplementarity or the minimal loop constraint, the entry is 0. Given this, we can

rewrite Eq 6 as follows

Qi;j ¼ Qi;j� 1 þ
X

i�k<ðj� lÞ

Qi;k� 1 � Q
bp
k;j ð8Þ

Qbpi;j ¼
Qiþ1;j� 1 � qbp if Si;Sj complementary

0 otherwise
ð9Þ

(
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and compute the base pair probability using

Prbpði; jÞ ¼
Q1;i� 1 � Q

bp
i;j � Qjþ1;n

Q1;n

þ
X

p<i;j<q

Prbpðp; qÞ �
qbp � Qpþ1;i� 1 � Q

bp
i;j � Qjþ1;q� 1

Qbpp;q
:

ð10Þ

The first term in Eq 10 covers structures where (i,j) is an external base pair, i.e., not enclosed

by any other base pair. The second term considers all structures in which (i,j) is directly

enclosed by a base pair (p,q) and corrects the respective base pair probability Prbp(p,q) by

the probability of the structure subensemble that contains both base pairs and no “in-

between spanning” base pair (k,l) with p<k<i<j<l<q. The latter probability is defined by

the fraction within the second term. Note (again) that by using a simple energy model, we

omit all the complex case distinctions, which allows one to concentrate on the main cases of

algorithmic importance. In the full model, the first case would have been the same, whereas

the second one would have been split to consider specifically each structural context a base

pair can have.

In analogy to base pair probabilities, it is also possible to define and compute the unpaired

probability Prss(i,j) of a subsequence Si..Sj (Eq 11), i.e., the probability of all structures that

show no base pairing in the single-stranded subsequence.

Prssði;jÞ ¼

X

P2Pss
i::j

expð� EðPÞ=kBTÞ

Z
ð11Þ

with Pss
i::j ¼ fPj∄ðk;lÞ2P : k 2 ½i;j� _ l 2 ½i;j�g � P ð12Þ

The unpaired probability is also sometimes termed “accessibility,” as an unpaired region in an

RNA is accessible for pairing to another RNA. For the computation of Prss(i,j), we only have to

replace Qbpi;j with 1 in Eq 10, since only the unpaired structure with energy zero has to be con-

sidered for Si..Sj, which has a Boltzmann weight of 1.

Stephan H. Bernhart and coworkers provide in [49] details for the extension of the intro-

duced recursions to the Nearest Neighbor model, which is also nicely detailed in [45]. Imple-

mentations are for instance available in the Vienna RNA package [37]. The authors also show

how to reduce the time complexity of the probability computation from O(n4) to O(n3). To

this end, they introduce another auxiliary matrix Q̂bp that provides the “outer” partition func-

tion, which reflects only base pairs not enclosed by respective subsequences.

Our web implementation enables the computation of both base pair probabilities as well as

unpaired probabilities. To provide insights into how the temperature and energy model influ-

ence structure and base pair probabilities, the user can alter the used temperature as well as

Ebp. Besides a visualization of the partition function tables Q and Qbp, the user is provided with

a visualization of the base pair and unpaired probabilities using the established dot plot format

(e.g., used also by UNAfold/mfold [46, 47] or RNAfold [37, 50]). Within this matrix-like illus-

tration, each base pair probability is represented by a dot of proportional size, i.e., the higher

the probability, the larger the dot and small probabilities are not visible. With a bit of visual

practice, dot plots enable an easy identification of highly probable substructures and the study

of structural alternatives.
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Example questions

• Find an RNA sequence that folds uniquely into a single hairpin but shows an

alternative hairpin with high base pair probabilities. What are the difficulties for such

a design?

• What changes are observed for the partition functions when increasing the system’s temper-

ature? What is expected for limT!1?

• Where are subsequences with high unpaired probability typically located?

Maximum expected accuracy

So far, individual structures were evaluated based on their number of base pairs or energy.

This focus on single structures might hide that some substructures (base pairs or unpaired

positions) are very common among highly probable structures but not found, e.g., in the most

probable structure and thus are lost from the prediction. To face this problem, the expected

accuracy can be used for structure evaluation [25, 26, 51].

Here, we follow Chuong B. Do and coworkers [25] and define the expected accuracy of a

structure P by

accðPÞ ¼
X

ði;jÞ2P

g � 2 � Prbpði; jÞ þ
X

k:ði;kÞ;ðk;jÞ2P

PruðkÞ: ð13Þ

It is basically the weighted sum of all base pair probabilities of the respective structure, together

with unpaired probability estimates for all its positions k not involved in any base pair, i.e., fea-

tures of the whole structural ensemble are mapped to individual structures. The position-wise

unpaired probability is computed by

PruðkÞ ¼ 1 �
X

i<k

Prbpði;kÞ �
X

k<j

Prbpðk;jÞ ð14Þ

from base pair probabilities, which is equivalent to Prss(k,k) from Eq 11. Base pair probabilities

in Eq 13 are weighted by a factor of two to reflect that two sequence positions are covered. Fur-

thermore, a weighting factor γ is introduced, which scales the importance of unpaired versus

base pair probabilities.

Given this measure, we can compute the maximum expected accuracy (MEA) structure,

i.e., a structure formed by the most accurate/likely base pairs rather than simply maximizing

their number (or minimizing the overall energy). To calculate the MEA and an according

structure, a variant of the Nussinov algorithm (Eq 2) can be applied, i.e.,

Mi;j ¼ max

(
Mi;j� 1 þ Puj Sj unpaired

max
i�k<ðj� lÞ
Sk;Sj compl:

ðMi;k� 1 þMkþ1;j� 1 þ 2gPrbpðk;jÞÞ Sk;Sj pair; ð15Þ

where unpaired positions are weighted by Pru (case 1) and base pairs with 2gPrbpi;j (case 2).M is

initialized with 0. The MEA is found inM1,n while a corresponding structure can be identified

via traceback. A recursion variant adapting Eq 3 can be found in [25].

Our MEA web interface computes base pair and unpaired probabilities using the recursions

introduced above for the simplified energy model. Thus, the effects of temperature or base pair

energy Ebp on MEA computations can be directly studied. As for the Nussinov algorithm, struc-

ture and traceback visualization is enabled as well as suboptimal MEA enumeration using our
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generic implementation of Wuchty’s algorithm [43]. An alteration of the γweighting factor for

base pair probabilities provides insights into its importance for accurate structure prediction.

Example questions

• Compare the prediction results for MEA and base pair maximization (energy minimization).

What do you observe and how could you explain your observations?

• What happens when altering the base pair probability weight γ?

Hybridization-only interaction prediction

The fastest class of RNA–RNA interaction prediction approaches focuses only on the identifi-

cation of the interaction site, i.e., only on the intermolecular base pairs, without considering

the intramolecular structures of the interacting RNAs. To this end, the prefix-based decompo-

sition scheme of global sequence alignment [52] can be adapted.

Given two RNA sequences S1 and S2 of lengths n andm, respectively, we denote with S 2
j

the reversely indexed S2 to simplify the index notation, since RNA molecules interact in anti-

parallel orientation. The latter applies to both intra- and intermolecular base pairing. When

considering S1 and S 2
j , we can design a dynamic programming approach for the simplified

energy model using a two-dimensional matrixH. An entryHi,j will provide the maximal num-

ber of intermolecular base pairs for the prefixes S1
1::i and S 2

1::j.

The decomposition scheme for the recursion of Eq 16 to computeHi,j is visualized in Fig 3.

Hi;j ¼ max

Hi� 1;j� 1 þ 1 if S1
i ; S
 2

j are complementary

Hi� 1;j

Hi;j� 1

: ð16Þ

8
>>><

>>>:

As already mentioned, Eq 16 is a variant of the global sequence alignment approach intro-

duced by Saul B. Needleman and Christian D. Wunsch [52] using an adapted scoring scheme

(base pair instead of match/mismatch scoring for S1
i ; S
 

2
j and no gap cost). Thus, initializing all

Hi,0/H0,j with 0, the entryHn,m provides the maximal number of intermolecular base pairs that

can be formed, and a traceback starting atHn,m yields the respective interaction details. This

approach enables very low runtimes (O(nm)), as observed by Brian Tjaden and coworkers,

who presented in [30] a variant of Eq 16. When computing hybridization-only interactions via

minimizing a more sophisticated energy model, the strategy has to be altered to follow a

scheme similar to local sequence alignment as defined by Temple Smith and Michael S. Water-

man [53], which is detailed in [30].

Fig 3. Recursion scheme to maximize intermolecular base pairs between two RNAs S1 and S2 represented in

orange/blue, respectively. The optimal number for the interaction of S1
1::i and S2

j::n is identified based on a distinction

whether or not the ends S1
i and S2

j might form a base pair or not.

https://doi.org/10.1371/journal.pcbi.1006341.g003
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The web interface of our implementation identifies and reports all optimal interaction sites.

For each, an American Standard Code for Information Interchange (ASCII) visualization of

the intermolecular base pairs is provided. Note, to reduce code redundancy, we do not use an

implementation of Eq 16 but use a base pair-maximization variant of Eq 19, which is discussed

in the next section.

Adaptations of this approach to the Nearest Neighbor model have been discussed in [28]

and, e.g., implemented in the tools TargetRNA [30], RNAhybrid [29], or RNAplex [54]. While

such methods have been successfully applied for target site identification of very short RNAs,

they often overestimate the length of target sites since intramolecular base pairing is ignored

[33, 54]. These problems are tackled by concatenation- and accessibility-based approaches dis-

cussed next.

Example questions

• Provide a variant of Eq 16 that uses the original sequence S2 and according indexing, i.e.,

entryHi,j provides the maximal number of intermolecular base pairs for S1
1::i and S2

1::j. Think

about the computation order of entries for this matrix.

• Develop a dynamic-programming recursion for hybridization-only RNA–RNA interaction

prediction (base pair maximization) that restricts the lengths of unpaired subsequences

enclosed by interacting base pairs. What is the runtime complexity of your recursion?

Concatenation-based RNA–RNA interaction prediction

Among the first approaches to predict the interacting base pairs for two RNA molecules are

concatenation-based or cofolding approaches [31, 32]. Here, two or more RNA sequences are

concatenated into a single sequence with special interspacing linker sequences. The resulting

hybrid sequence is used within an adaptation of a standard structure prediction that takes spe-

cial care of the linker sequences. The linked sequences are forbidden to form base pairs, and

the structural elements containing linker sequences are treated energetically as external, as dis-

cussed by Ivo L. Hofacker and colleagues [31].

The extension of standard structure prediction approaches to RNA–RNA interaction pre-

diction directly yields the possibility to compute according probabilities of interaction sites or

intermolecular base pairs [55]. A first implementation of concatenation-based prediction

using the Nearest Neighbor energy model was reported for mfold [47] and later implemented

in, e.g., the tools MultiRNAFold [56] and RNAcofold [55].

Our implementation extends the Nussinov recursion from Eq 2 with a special handling for

linker sequence characters “X.” Base pairs (case 2) are not allowed to involve a linker position.

No special energy treatment is necessary for the simplified energy model since we treat intra-

and intermolecular base pairs equally and without considering their context. The input is

restricted to two RNA sequences that are concatenated by a linker of length l+1 (where l is the

minimal loop size) to ensure the presence of a linker and that the concatenated sequence ends

can form a base pair.

Our interactive cofolding web interface lists (sub)optimal hybridization structures using

our generic suboptimal traceback implementation. Within the reported dot-bracket strings,

intramolecular base pairs are encoded using parentheses “(),” intermolecular base pairs (span-

ning the linker) are represented by brackets “[],” and the linker itself is depicted by linker char-

acters “X.” For each hybridization structure, a traceback is visualized on selection along with a

Forna 2D structure graph visualization. Furthermore, an ASCII visualization of only the inter-

molecular base pairs is provided.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006341 August 30, 2018 12 / 19

https://doi.org/10.1371/journal.pcbi.1006341


Concatentation-based approaches do incorporate the competition of intra- and intermolec-

ular base pairing, which is a central weakness of hybridization-only prediction algorithms.

Still, not all important interaction patterns can be predicted using cofolding approaches since

the hybrid structure has to be nested. For instance, common kissing stem–loop or kissing–

hairpin interactions cannot be predicted because they form a crossing structure in the

concatenated model (see Fig 4). To predict such patterns, accessibility-based approaches, dis-

cussed next, can be applied.

Example questions

• Find RNA sequence pairs that show (i) only or (ii) no intermolecular base pairs within opti-

mal structures. Study the suboptimals of the latter. Is it possible to find sequence pairs that

do not prefer (among optimals) but still enable intermolecular base pairs (within subopti-

mals) using this model?

• Find example sequences for the interaction patterns from Fig 4. For Fig 4B, find a sequence

that can theoretically form all base pairs of the given pattern, but no suboptimal prediction

contains all pairs at the same time. Think of other patterns that cannot be predicted by con-

catenation-based approaches and try to find corresponding sequences.

• Find an RNA sequence pair that shows more intermolecular base pairs within optimal

hybrid structures using a hybrid-only approach compared to a concatenation-based predic-

tion. What is key to finding such sequences?

Accessibility-based interaction prediction

The previously introduced concatenation-based approaches directly reflect the competition of

intra- and intermolecular base pairing by optimizing both at the same time. Nevertheless, they

are neglecting that the intramolecular structure is established before an intermolecular interac-

tion is formed. That is, intramolecular base pairs (might) have to be opened/broken such that

intermolecular base pairs can form a stable interaction. To be favorable, the interaction energy

must outweigh the energy needed to make the subsequences accessible. This two-step process

is modeled by accessibility-based interaction prediction approaches.

The following formula, depicted in Fig 5, is used to compute the final interaction energy

values Ii;kj;l that incorporate both the hybridization/duplex energy D as well as the penalties ΔE1,

ΔE2 for inaccessible sites of the RNAs S1,S2, respectively.

Ii;kj;l ¼ D
i;k
j;l þ DE1

i::k þ DE2

j::l: ð17Þ

Note, DE2
j::l is computed for the reversely indexed sequence S 2 to ease the notation. This

reversal has to be taken into account for hybridization energy computations, since Nearest

Fig 4. RNA–RNA interaction examples. (a) an interaction pattern that can be predicted by cofolding algorithms but

not using standard accessibility-based methods, and a (b) kissing stem–loop or (c) kissing hairpin interaction pattern,

both cannot be predicted by cofolding but using accessibility-based approaches. The RNA molecules are depicted in

orange and blue, while the linker is indicated in dotted green. Base pairs are illustrated in black.

https://doi.org/10.1371/journal.pcbi.1006341.g004
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Neighbor models have to incorporate the chemical 50- to 30-end orientation of RNAs. The entry

of I with minimal energy is used to traceback the interaction details of the optimal interaction.

Only entries in Iwith an energy lower than zero mark favorable interactions since here, the

duplex energyD outweighs the ΔE penalties to make the respective subsequences accessible.

The energy penalties ΔEi..j resemble the free energy needed to make the interaction site Si..Sj
accessible, i.e., to unfold the site’s intramolecular base pairs [24, 33]. To reflect the structural

flexibility of RNAs, the terms are based on the structure ensembles that can be formed rather

than individual structures. The penalties can be computed from the energy difference of the

structure ensemble with accessible site that is single stranded, Ess
i::j, versus the whole structure

ensemble, Eens. Both energies can be computed from the respective partition functions Zss
i::j (for

Pss
i::j from Eq 12) and Z using the inverse Boltzmann weight. In the following, we show the rela-

tion of ΔE and the unpaired probability Prss.

DEi::j ¼ Ess
i::j � E

ens

¼ � ðRT � logðZss
i::jÞ � RT � logðZÞÞ ¼ � RT � logðZss

i::j=ZÞ

¼ � RT � logðPrssði;jÞÞ:

ð18Þ

Note, since Prss(i,j) is�1, all ΔEi..j penalties are�0.

To add such site-specific terms to duplex energies, we cannot simply use the prefix-based

recursion from Eq 16, sinceHi,j only provides the optimal value for all interaction sites with

right ends S1
i and S 2

j and not for individual sites. Thus, for exact results, we have to relate to a

subsequence-based computation that explicitly stores values for all subsequence combinations.

To further simplify the recursions, we use dedicated calculations (and matrices) for the duplex

energy (matrix D, Eq 19) and the overall interaction energy including inaccessibility penalties

(matrix I, Eq 17). Both matrices are four-dimensional, in which an entry Di;kj;l provides the

duplex energy of the interacting sites S1
i::k and S 2

j::l under the assumption that the boundaries

form the intermolecular base pairs (i,j) and (k,l); otherwise, the entry is set to1.

Di;kj;l ¼ min

(
Ebp S1

i ; S
 2

j compl:;i ¼ k;j ¼ l

min
i<p�k
j<q�l

ðEbp þ D
p;k
q;l Þ S1

i ; S
 2

j compl:;i < k;j < l

þ1 otherwise

: ð19Þ

The first case represents the initiation of a new interaction that covers only the intermolecular

base pair (i,j) with according energy Ebp. The second case extends an already-computed

Fig 5. Depiction how accessibility-based approaches score an interaction of two RNAs S1 and S2 in orange and

blue, respectively. The final interaction energy Ii;kj;l is only defined for subsequence combinations enclosed by two

intermolecular base pairs (i,j),(k,l), marked in black. It is composed of the duplex contribution Di;kj;l (via intermolecular

base pairs), shown in grey and the energy needed to break the intramolecular base pairing of each subsequence, i.e.,

ΔE1+ΔE2, depicted in red.

https://doi.org/10.1371/journal.pcbi.1006341.g005
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interaction of S1
p::k, S
 

2
q::l with a new base pair (i,j), while the third case is applied if the base pair

(i,j) cannot be formed or the indices violate order constraints. Note, the given recursion has anO
(n6) time complexity due to arbitrarily large gaps in the second case. Given the typically applied

thermodynamic model and statistics from known interactions, the sequential distance between

neighbored intermolecular base pairs is normally restricted to a small constant<30 [24], which

reduces the time complexity toO(n4). The space complexity can be reduced toO(n2), as shown in

[33], by interactively computing parts ofD for a fixed right-boundary base pair (k,l).
Our implementation provides the list of all optimal interactions and visualizes the selected

interaction details using an ASCII chart. Due to the four-dimensionality of the matrices D and

I, only the value Ii;kj;l for the current selection as well as the penalty tables ΔE1+ΔE2 used for

computation are shown.

The interactive web interface enables a straightforward comparison of the effects and

restrictions of the three different interaction prediction approaches introduced. For instance,

using the simple example sequences S1 = CCC and S2 = CCCGGGGGG, the hybridization-only

optimization reports (as expected) any interaction patterns of S1 with G nucleotides of S2. In

contrast, intermolecular base pairs predicted by the cofolding approach are restricted to the 30-

end of S2 since the central G nucleotides are blocked by an intramolecular hairpin structure

(similar to Fig 4A). Both approaches neglect that RNA S2 will first (most probably) fold into a

hairpin structure (with unpaired/accessible nucleotides in the center) before both interact.

Thus, it is most likely this central unpaired region of S2 where interaction formation with S1

will start. The growing interaction would have to break the already-formed intramolecular

base pairs for larger interaction patterns, which is not necessarily favorable. This scenario is

modeled by accessibility-based approaches, which predict interactions to be restricted to the

loop region only. The resulting interaction resembles a kissing stem–loop pattern (see Fig 4B).

Note, while accessibility-based approaches are well suited to predict interaction patterns like

stem–loop or kissing hairpin interactions, they are still not able to model arbitrary interaction pat-

terns. For instance, double kissing hairpin interactions can not be modeled correctly [57].

The first accessibility-based approach RNAup for the Nearest Neighbor model was intro-

duced by Ulrike Mückstein and colleagues [24]. While it is still among the state-of-the-art pre-

diction tools [27], its vast runtime requirements of O(n4) render it inapplicable for large-scale

data analyses, such as genome wide target screens. This problem was tackled by Anke Busch

and coworkers with IntaRNA [33, 34], which implements a heuristic version of an accessibil-

ity-based approach that extends fast hybridization-only recursions with ΔE penalties. IntaRNA

results in a much lower O(n2) time complexity [33] when using precomputed or approximate

ΔE terms, as introduced in [58]. A detailed introduction is also given in [45]. A similar heuris-

tic extension was recently reported for TargetRNA2 [59]. Current versions of the initially

hybridization-only approach RNAplex [54] and its webserver RNApredator [60] incorporate

an approximate, position-specific accessibility model to increase prediction quality [61].

Example questions

• Rewrite Eq 19 to directly compute the final interaction energy values from Eq 17.

• Why can interaction patterns enclosing intramolecular base pairs (see Fig 4) not be predicted

by the introduced basic accessibility-based approaches?

Implementation

All discussed algorithms and visualizations have been implemented in JavaScript. This enables

client-side computation (no backend server hardware needed) as well as local download and
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application (from GitHub repository) for offline usage. Since all algorithms are dynamic-pro-

gramming approaches, a generic inheritance hierarchy was implemented to reduce code

redundancy and to simplify maintenance and extensibility. We use Knockout.js as the control-

ler to bind input/output elements from within the HTML pages with the JavaScript data struc-

tures and computations.

Conclusion

The understanding of RNA structure and RNA–RNA interaction prediction approaches is

central to ensure correct result interpretation and an awareness of their limitations, both

essential to avoid wrong conclusions. Furthermore, it ensures proper embedding in RNA-

related analysis pipelines or their extension to new fields of applications.

To gain this level of understanding, the original literature is often of limited didactic value,

since scientific articles are typically not meant for educational use. Thus, approaches are either

represented on a very detailed expert level or sketched briefly, since the manuscript focuses on

the biological results rather than algorithmic details.

Here, we provide a compact summary of the relevant theoretical background for the most

common algorithmic approaches and their state-of-the-art instances currently used. Algo-

rithms are stripped from complicating energy model details to enable an easy understanding

of the underlying concepts and the resulting limitations. Furthermore, we provide web-based

implementations and visualizations of all presented approaches for their ad hoc use. The latter

is of importance, since example-driven (self-)study is known to significantly foster learning

and understanding. To further support such self-learning efforts based on our manuscript and

web service, we provide small exemplary tasks for each algorithm group that can be tackled

using our web implementations.

The web service [62] is being continually extended with the implementation and visualiza-

tion of additional methods. Planned implementations cover pseudoknotted (crossing) struc-

ture prediction approaches as well as comparative approaches for RNA structure and RNA–

RNA interaction prediction, e.g., discussed in [57].

Eventually, we provide both a comprehensive review of current RNA thermodynamic-

focused prediction approaches to spark ideas for new approaches and interactive teaching

material, which will help ensure that available tools are correctly applied and interpreted.
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