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Abstract

We describe a mobile app that measures early cortical visual processing suitable for use in clinics.

The app is called Component Extraction and Motion Integration Test (CEMIT). Observers are asked to

respond to the direction of translating plaids that move in one of two very different directions.

The plaids have been selected so that the plaid components move in one of the directions and the

plaid pattern moves in the other direction. In addition to correctly responding to the pattern

motion, observers demonstrate their ability to correctly extract the movement (and therefore the

orientation) of the underlying components at specific spatial frequencies. We wanted to test

CEMIT by seeing if we could replicate the broader tuning observed at low spatial frequencies for

this type of plaid. Results from CEMIT were robust and successfully replicated this result for 50

typical observers. We envisage that it will be of use to researchers and clinicians by allowing them

to investigate specific deficits at this fundamental level of cortical visual processing. CEMIT may

also be used for screening purposes where visual information plays an important role, for example,

air traffic controllers.

Keywords

Component Extraction and Motion Integration Test, clinical test, visual cortex, motion integration,

component extraction

Introduction

Two-dimensional images can be uniquely described in terms of a collection of sinusoidal
luminance patterns that vary in orientation, spatial frequency, phase, and contrast. These
sinusoidal patterns (components) may be thought of as an alphabet of the visual image, and
extracting these patterns from the image is critical to early visual processing. The visual
systems of humans and other mammals have evolved to extract these patterns at a local
level to efficiently encode the vast number of visual images perceived (Campbell & Robson,
1968). There have been a number of methods developed for measuring early visual processing
performance in humans (Beaudot & Mullen, 2006; Blakemore & Nachmias, 1971;
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Movshon and Blakemore, 1973; Ringach, 1998). These methods, however, are aimed at
understanding the underlying physiological mechanisms and can involve complex stimuli,
lengthy observations, and training the observers.

Currently, there are no simple psychophysical tests to measure early visual cortical
performance that would be quick, simple, and robust. Brain imaging is expensive and
would not provide the specific detailed information that one would get from a traditional
psychophysical approach, where an observer has to prove that they can respond accurately to
a stimulus. A forced-choice task is often used in psychophysics, where some property of the
stimulus is varied and makes it more or less difficult to respond to. The percentage of correct
responses follow a psychometric function where the threshold is determined at which
observers no longer respond at chance level. By convention, this is the 75% point on the
function, and this is the detection threshold that is frequently provided as proof that an
observer has accurately detected the stimulus during a forced-choice task. This traditional
approach has not been designed for clinical use, so we have chosen to develop a completely
new method using some of this carefully developed knowledge from vision research.

Materials and Methods: Critical Properties of CEMIT Stimuli

When two moving sinusoidal components are combined to form a plaid pattern, perceived
pattern direction is different from either of its two component directions. Pattern direction is
however predictable from the properties of individual components (Adelson & Movshon,
1982; Bowns, 1996; Bowns & Alais, 2006; Yo & Wilson, 1992). Figure 1 illustrates two
examples of the relationship between component velocity and pattern velocity. Images of
two components are shown Figure 1(a) and (b); an arrow illustrates their veridical velocity,
direction (angle of the arrow), and speed (length of the arrow). Their combined pattern is
shown in Figure 1(c) (the plaid), together with the resulting pattern direction as perceived by
a typical observer using a combination method known as the intersection of constraints rule
(Adelson & Movshon, 1982). The difference between the component direction and pattern
direction is unusually large, therefore making it easily distinguishable and an optimal plaid in

Figure 1. Illustration of the component and pattern velocities for the test and control patterns; (a) and (b)

illustrate the two components used to create the plaid shown in (c). The arrows indicate their veridical

velocities (enlarged for clarity). The plaid velocity in (c) is computed using the Intersection of Constraints

rule. Mirror images of the test and control plaids are used to counterbalance with respect to direction.
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a forced-choice task. The task is to respond to the motion direction as moving in a clockwise
or anticlockwise direction relative to a reference line, equidistantly positioned between the
component and pattern directions. Although it has been shown that pattern direction can
change with the duration of the stimulus (Yo &Wilson, 1992), the specific plaids illustrated in
Figure 1 remain stable at different durations (Bowns, 1996; Bowns & Alais, 2006). Our test
plaids have component orientations that vary by just 23�. This is an important property
because this difference is optimal in revealing broader tuning of orientation at different
spatial frequencies. It is known that observers fail to respond to the plaid motion at low
spatial frequencies and instead perceive component motion suggesting broader tuning
to orientation, that is, an inability to perceive two separate components (Bowns &
Beckett, 2010).

Method

We wanted to test CEMIT by seeing if we could replicate broader tuning of orientation filters
at low spatial frequencies. This has been estimated to be at spatial frequency values less than
0.5 cpd (Bowns and Beckett, 2010). Therefore, the range of spatial frequencies used was a
four-octave range from 0.2 cpd to 1.6 cpd. We used the vertical orientation of the plaids as
shown in Figure 1. We refer to this as the standard test because this is the condition we believe
would be most suitable for use in clinics.

All observations were carried out under a variety of environmental conditions in order to
simulate clinical rather than laboratory conditions. Observers viewed the display with two
eyes. In a clinical context, because the test is easy and fast, it could be repeated monocularly if
the subject shows abnormal performance in the binocular condition. Distance was always
measured using the front-facing camera of the iPad (see Appendix for method and accuracy
of calibration) and observers were asked to maintain their distance to the screen, to fixate the
red central dot during each trial, and to only respond to motion. The accuracy of the distance
was measured independently during testing and found to be very accurate, as described in the
Appendix, that is, within 1 cm at a distance of up to 70 cm. Observers had normal or
corrected vision and were randomly selected from a student population. Observers were
asked if they had normal or corrected vision as determined by their own optician.
However, as the spatial frequency range was relatively low and the orientation difference
of the components greater than 20� across the range tested, it would be highly unlikely that
our results would be influenced by minor eye problems such as astigmatism or mildly blurred
vision. (CEMIT contains a form for entering clinical and other individual information.) The
CEMIT mobile app was run on the iPad, Model MC705B, running iOS 5.1.1. Viewing
distance was determined by CEMIT using the front facing camera, and the display used
CEMIT’s Gamma correction (see Appendix).

Stimuli

There were four types of plaids: one test plaid, one control plaid, and the mirror image plaids
of these two. Each of these four plaids was presented at a range of different spatial
frequencies. The mirror image plaids controlled for direction bias. The control plaid
ensured that the spatial properties remained similar to the test plaid while the motion
direction was in a similar direction to the component directions. This is a Type 1 plaid
(Ferrera & Wilson, 1991) where the pattern direction falls between the components and in
this case was equal to the vector average of the components. If observers responded to the
spatial properties, results for the control plaid would be the same as the test plaid and
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therefore incorrect. A comparison of pattern velocities and spatial properties of the test and
control plaids is shown in Figure 1. For the test plaid, the vector average of the component
directions and the pattern direction had equal clockwise or anticlockwise direction relative to
a comparison line. The test plaid pattern that had the clockwise pattern direction comprised
components with orientation 202� and 225� where 0� was set at the horizontal. The mirror
test plaid was constructed using orientation values �202� and �225� and had an
anticlockwise pattern direction. The first frame of each component was in cosine phase
and was shifted through a fixed phase shift on subsequent frames to create the motion.
The phase shifts used were 40� and 18� respectively, thus creating a Type II plaid (Yo &
Wilson, 1992), where the pattern direction is known to be perceived in a direction predicted
by the intersection of constraints direction of 61.7� at short and long durations (Bowns, 1996;
Bowns and Alais, 2006), and the vector average of the component directions is 119.1�

Therefore, there was a large difference between the pattern and component directions of
57.4�, making the task easier than other plaid stimuli, and in addition keeping variables
that affect motion direction constant. For a discussion of these variables and the equations
used to generate the stimuli, see Bowns and Beckett (2010). The plaids moved in a circular
aperture, with a viewing angle of 8� Each of the four plaids was presented at four different
spatial frequencies spanning a four-octave range from 0.2 cpd to 1.6 cpd. Speed remained
constant at 2�/s. Each moving plaid was presented 10 times. Therefore, an observer was
presented with 160 trials for each test, which took approximately 3 to 4 minutes. Each
moving pattern appears for 0.5 seconds. All experiments were carried out in accordance
with The University of Nottingham ethics and risk assessment procedures, ‘‘in accordance
with the Code of Ethics of the World Medical Association (Declaration of Helsinki).’’
Consent was obtained for experimentation with human subjects.

Procedure

Once the observer’s distance had been computed by CEMIT, the observer was asked to press
a green arrow to begin the test. A red fixation dot appeared along with a green dot that
indicated the virtual reference line. The plaids were presented pseudo randomly. Observers
used the touch screen to indicate the direction of the movement relative to the virtual line.
Their response triggered the next trial.

Results

Figure 2(a) shows the average results for 50 observers for the vertical orientation test, that
is, the version we refer to as the standard test. The percent perceived in the pattern
direction (as determined by the Intersection of Constraints) was plotted against the
spatial frequency. As there was no precedent for a theoretical curve fitting to this type
of data, we have used a power function to fit the data; error bars show the standard error
of the mean. The average results show that results are similar to those previously reported
and were robust. There is a dramatic change in response where observers failed to resolve
the orientation of the components below 0.5 cpd as predicted. In addition to the test data,
we show the control data. Response to the control plaids is close to 100% in the pattern
direction and therefore shows that observers were not using spatial information rather than
motion. It is known that the ratio of the spatial frequency to the stimulus envelope can affect
the spatial frequency bandwidth; however, when this ratio is held constant, the broader
tuning to orientation remains and therefore cannot explain our results (Bowns & Beckett,
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2010). Control data also show that the observers responded appropriately to the spatial
frequencies and other properties of the components shared with the test stimuli. Data
from the mirror plaids were combined with the test and control plaids. Observers who
failed to obtain greater than 75% on the control have been removed from the data
because they either cannot do the task or they are using spatial rather than movement
information. The results for these six observers are shown in Figure 2(b) and are mostly
around chance performance. Although their test results are sometimes above chance at the
lower spatial frequencies, they could achieve this by using spatial information. This
relationship can be seen in the graph, when performance is low on the control, indicating
the use of spatial information, it is higher on the test.

To see if our results would differ as a function of plaid orientation, we repeated our test at
four different orientations for two observers. Observer 1 was a naive observer and had never
performed any psychophysical or similar task before. Observer 2 was a trained observer.
Results for the two observers are shown in Figure 3(a) and (b), respectively. The
characteristic dramatic change in performance at low spatial frequencies is clear for both
individual observers at all four plaid orientations.
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Figure 2. (a) CEMIT results for 50 typical observers. The percentage of responses perceived in the pattern

direction (IOC) is plotted against spatial frequency. The dramatic shift at low spatial frequencies is as

predicted. Results for the control are close to 100% correct and show that observers were not responding to

spatial information. (b) Results for six observers unable to do the task. Although some of their test results are

slightly above chance at lower spatial frequencies, their control results suggest that they were using spatial

information more often at these frequencies.
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Discussion

Advantages of Our Approach

Suitable for mobile clinical use. We are able to measure performance for a plaid series covering a
four-octave range of spatial frequencies in approximately 3 to 4 minutes, and the task is easy.
CEMIT was implemented as a comprehensive mobile app for iOS devices (iPhone, iPod
touch, and iPad), with the abilities to specify and preview the stimuli properties, design
and run the test, and save and export the experimental results. It provides a method for
computing the distance between the observer and the screen using the front-facing camera
and has a facility for gamma correction.

Excellent control of stimulus parameters. Our results cannot be attributed to first order, second
order, vector averaging, intersection of constraints, or contrast; these are held constant as a
function of spatial frequency. Spatial properties and direction bias are specifically controlled
for.

Orientation tuning of filters at varying spatial frequencies. Broad tuning of orientation leads
to loss of information. This can be measured using CEMIT. Results for typical
observers described above show robust data on the limitations of orientation tuning at
low spatial frequencies. CEMIT may reveal different tuning patterns for specific clinical
groups.
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Figure 3. CEMIT results for two individual observers at four different plaid orientations. Both observers

show the dramatic shift at low spatial frequencies at all four plaid orientations.
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Pattern motion integration. Results from CEMIT provide a clear indication of an observers’
ability to integrate component motion into pattern motion.

General Discussion

Testing using CEMIT was fast, for some observers it took just 3 minutes. CEMIT has the
potential to provide very specific information at the cortical level and also provide valuable
information about a specific deficit. Results from CEMIT reveal information about the limits
of performance that we could use as performance markers to explore individual differences
across populations. We hope to use these limits, together with specific deficits to investigate
both typical and clinical populations. Indeed various visual impairments due to neural
dysfunctions in several brain disorders or diseases can be investigated psychophysically
(Beaudot, 2009). The aim of our test is to seek individual differences, so we were pleased
that around 10% of our observers performed differently from the typical observers. We do
not set out in this paper to address specific clinical groups and therefore cannot identify why
they performed atypically.

There are a number of clinical conditions where visual problems have been identified. For
example, poor readers or people who have some types of dyslexia have problems detecting
motion, but the precise nature of the motion problem has yet to be identified, that is, whether
or not it occurs at specific directions or spatial frequencies, or varies with observers
(Cornelissen, Richardson, Mason, Fowler, & Stein, 1995; Demb, Boynton, Best, & Heeger,
1998; Everatt, Bradshaw, & Hibbard, 1999; Ridder, Borsting, & Banton, 2001). Visual
processing problems also occur in observers with autism spectrum disorder (ASD), but
again little is known about the precise nature of the problem (Bertone, Mottron, Jelenic,
& Faubert, 2003; Bertone & Faubert, 2006; Kaiser & Shiffrar, 2009; Koldewyn, Whitney, &
Rivera, 2011; Milne et al., 2002). Similarly, problems with early cortical visual processing
have also been identified in patients with Alzheimer’s disease (Leuba & Kraftsik, 1994) and
Parkinson’s disease (Trick, Kaskie, & Steinman, 1994). CEMIT may help to provide a more
precise description of any deficits of early cortical visual processing in these and other clinical
populations, or possibly aid early diagnosis. We are currently investigating observers with
Asperger’s syndrome and have preliminary results that show atypical performance in the
range of spatial frequencies relevant to face processing.

One of the unique properties of CEMIT is the potential to specifically identify
performance deficits at the cortical level. If participants are unable to see the stimuli
clearly due to faulty optics their responding would be random (50% in the direction of the
IOC) and not systematically either in the IOC direction or in the component direction.
Chance performance would also be expected if the observer had an attention deficit, or
when they are unable to do the task, or did not want to cooperate. Surprisingly, 90% of
our observers did not fall into any of these categories. Responding correctly is also
independent of retinal processing because neurones that respond to orientation do not
occur at this very early stage of visual processing. CEMIT for the first time provides a
way of examining cortical visual processing very precisely in a simple manner that could
be carried out in a clinical environment with little training. CEMIT facilitates examination of
the tuning of neurones and motion integration in early cortical visual processing. This allows
research to go a step further and examine the visual cortex noninvasively. The results from
CEMIT are robust and may be used to identify or characterise problems by measuring the
limits of performance, or linking idiosyncratic performance with a specific clinical condition.
It may also be used as a simple screening device for many researchers and clinicians who need
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to understand the specific contribution of fundamental cortical visual deficits in their tests or
investigations.
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Appendix

The CEMIT was implemented as a comprehensive mobile app for iOS devices (iPhone, iPod
touch, and iPad) with the abilities to specify and preview the stimuli properties, design and
run the test, and save and export the experimental results.

The drifting plaid stimulus was generated and displayed in real time at a frame rate of
60Hz using the OpenGL API supported by the iOS devices. The spatial properties of the
stimuli were properly calibrated based on the viewing distance to the subjects and the display
size and resolution for each device type. Gamma calibration is not necessary, as previous
testing had shown that this does not affect the subjects’ performance; however, Gamma
calibration is available. All aspects of the plaid stimulus were customised using a graphical
user interface built in the mobile app: direction of the comparison, spatial frequency, aperture
diameter, speed, phase jump for each plaid component, duration, and contrast. Different
stimuli configurations can be set up and run in separate sessions. After each session,
performance for each stimulus condition is shown in a graph, that is, as separate plotting
of performance for test and control conditions as a function of the spatial frequency.

The viewing distance between the display of the iOS device to the subject was estimated
using the front-facing camera of the device: The CEMIT app detects and estimates the size of
the subject’s face and automatically infers the visual distance after performing a calibrating
process that correlates the size of a face with the actual visual distance (roughly inversely
proportional). The precision and accuracy of this estimation decreases with the visual
distance, both remaining below 1 cm when holding the device at arm’s length (70 cm). The
app also provides a one-point calibration process to adjust the estimation of the visual
distance to account for the individual variability in face size. Moreover, to ensure that the
subjects maintain a constant viewing distance, the app monitors it in real time during the
session to detect and report abnormal variations in case the subject changes his/her position
relative to the display. This can be used to discard data from untrustworthy sessions.

The mobile app has been designed to be as versatile as possible: Each session result can be
either recorded on the device database or anonymously sent to a remote server dedicated to a
large-scale analysis. In addition, the mobile app has the ability to track the subject’s face and
automatically estimate the viewing distance using the front-facing camera of the device. The
mobile app can also run on a secondary device then acting as a remote control
(communicating through WiFi or Bluetooth) in case one needed to test viewing distances
that do not allow touch-screen based inputs, or if the subject has problems providing such
inputs (in this case the remote device would be operated by the experimenter to enter the
subject’s responses provided orally).

The CEMIT and CEMIT Lite (this version has a fixed set of conditions) mobile apps are
available on the Apple AppStore to disseminate this new test as well as to collect data from a
wide range of clinical populations.
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