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Abstract
Stable isotopes of water allow researchers to examine water pathways and better understand spatial and temporal vari-
ability in mixtures of municipal water sources. In regions such as Kyiv (Ukraine), with a water supply that is vulnerable 
to the effects of climate change, pollution, and geopolitical conflict, such understanding is critical for effective water 
management. Trends in stable isotope values and water sources can function as a confirmation of municipal data. Addi-
tionally, these data can provide an early signal for the effects of climate change on these sources, reducing uncertainty 
from physical measurements.
For this study, tap water, surface water, and groundwater were collected over 14 months in Kyiv and nearby Boryspil, 
Brovary, and Boyarka and measured for hydrogen (δ2H) and oxygen (δ18O) stable isotopes. The stable isotope values 
from the tap water for each district show a general seasonal trend in water sources, with more groundwater used in the 
supply in the winter for most districts. Spatially, groundwater use increases from south to north in the left-bank districts 
in Kyiv city and groundwater use generally decreases from south to north in the right-bank districts. As precipitation 
patterns shift and temperatures increase, the reliance on particular water sources may need to shift as well. Overall, δ2H 
and δ18O data provide a baseline expectancy for current water use throughout the year and, from this, deviations can 
be assessed early.
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1  Introduction

1.1 � Study rationale

Stable isotopes of water have been used to characterize evaporation of surface water [1–3], groundwater recharge [4–6], 
seasonal changes to streamflow [2, 3, 5, 7], and precipitation patterns [5, 8]. Stable isotope ratios have also been used 
during tap-water surveys to characterize input from complex water sources [9, 10] and spatial/temporal patterns in sup-
ply [9, 11–13]. Numerous studies have incorporated stable isotopes of tap water to investigate patterns of water sources 
and timing of these sources, from local and regional to country-wide scales e.g. [9, 11, 12, 14–20].
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Tap-water surveys can identify changes to water sources with climate change and confirm the mixture of these sources 
in the water supply. While many cities have well-documented sources and timings of changes between sources, relying 
only on geospatial analysis and field measurements can introduce uncertainty. Additionally, there can be significant 
water loss between the intake of water and delivery to individual homes. Stable isotope analysis can delineate and 
quantify sources and mixtures based on the collection of input samples (surface water and/or groundwater) and output 
samples (tap water). Analysis of these samples can yield monthly, seasonal, or spatial patterns and can help confirm or 
add information about water supply sources [9].

Characterization of spatial and temporal patterns of water supply is critical, especially in regions vulnerable to climate 
change [9]. In Ukraine, the risk of widespread drought has increased [21, 22] and it is predicted, using Representative 
Concentration Pathway (RCP) scenarios and the global climate model GFDL-ESM2M, that winter temperatures in northern 
Ukraine could rise by 3.2 °C by 2070 and by 5.0 °C by 2100 [23, 24]. As climate change progresses there will likely be an 
impact on water resources in Kyiv, as 89% of the city’s water supply is from surface-water sources (the Dnipro and Desna 
rivers) and 11% is from groundwater on average [25]. Furthermore, changes in timing and amount of precipitation can 
lead to flooding or drought, affecting the quantity and quality of water [26, 27]. For a city that heavily relies on surface 
water, it is critical to understand spatial and temporal patterns in the municipal water supply.

For this study, tap water, groundwater, and surface water samples were collected over a period of fourteen months in 
Kyiv (November 2019 through December 2020). While studies exist that examine tap water against both groundwater 
and surface water, these are more often regional or country-scale e.g. [17, 28, 29] rather than metropolitan studies e.g. [9, 
11, 30, 31] which examine sources to sections of the city and the surrounding regions in detail. Kyiv receives the majority 
of its water from surface water sources and is also vulnerable to the effects of climate change [32]. Therefore, it is criti-
cal to understand current trends in the water supply and how these may change in the future, specifically as increasing 
temperatures potentially shifts the timing and amount of precipitation.

1.2 � Study location

Kyiv, with a population of 2.9 million, is divided into ten administrative districts (Desnianskyi, Dniprovskyi, Darnytskyi, 
Obolonskyi, Podilskyi, Sviatoshynskyi, Shevchenkivskyi, Solomianskyi, Pecherskyi, and Holosiivskyi districts; Fig. 1). The 
population of each district varies from 163,672 in Pecherskyi to 384,616 in Solomianskyi. The districts with a population 
above 300,000 are Desnianskyi, Dniprovskyi, Darnytskyi, Obolonskyi, Sviatoshynskyi, and Solomianskyi. Districts with 
a population between 200,000 and 300,000 are Podilskyi, Shevchenkivskyi, and Holosiivskyi; Pecherskyi is between 
100,000 and 200,000 [36].

Kyiv is located in the Forest-Steppe region [37] and is within zone Dfb of the Köppen-Geiger climate classification, 
which is humid with snowy winters and warm summers [38]. Historically, the average temperature for the warm season 
is 19 °C and the cold season is − 3 °C [39], though in the year 2020 these temperatures increased [40]. Historically, the 
maximum precipitation occurs in July and the minimum in February, with an average annual precipitation total of 651 mm 
[39]. However, this also shifted in 2020, with the maximum occurring in May and the minimum occurring in November, 
with an annual precipitation total of 564 mm [40].

The Dnipro River, one of the two rivers that supply surface water to the city water supply, separates Kyiv into the 
right and left banks, with three districts (Desnianskyi, Dniprovskyi, and Darnytskyi) on the left bank and seven (Obolon-
skyi, Podilskyi, Sviatoshynskyi, Shevchenkivskyi, Solomianskyi, Pecherskyi, and Holosiivskyi) on the right. Dams along 
the Dnipro River, notably the Kyiv and Kaniv dams in the vicinity of the study area, create reservoirs [41]. The average 
temperature of the Dnipro River has increased, and winter ice cover and thickness have decreased, after the construc-
tion of the Kyiv and Kaniv Reservoirs (north and south of Kyiv city, respectively) [42, 43]. For water supply from the Kyiv 
Reservoir there are two withdrawals per day during winter, one in the morning and one in the evening, and only one 
in the evening during the summer [42]. The Desna River, the other surface water source for tap water in Kyiv, meets the 
Dnipro River at the north of the city (Fig. 1).

The ten districts in Kyiv use differing water source percentages between surface water and groundwater to supply 
drinking water to the population via tap water. In the city, the water supply is 339.6 million m3/hour. This includes both 
the sale of water (283.1 million m3/hour, which includes 236.4 million m3/hour for the total population of the city) and 
lost/unaccounted-for water (56.5 million m3/hour) [25]. As of 2013, the available groundwater for drinking and industrial 
water in the Upper Dnipro River Basin was 1,137,990 m3/day [41].



Vol.:(0123456789)

Discover Water            (2022) 2:13  | https://doi.org/10.1007/s43832-022-00021-x	 Research

1 3

2 � Methods

2.1 � Sample collection

From November 2019 through December 2020, tap-water samples were collected from each district in Kyiv, Ukraine 
and three cities in the Kyiv oblast (province) (Boryspil, Boyarka, and Brovary). Cold water samples were collected after 
allowing the faucet to run for at least 30 s to clear any standing water from the pipes. Volunteers were recruited through 
students from National University Kyiv-Mohyla Academy and were provided training in-person and via video; all sam-
pling supplies were provided. Samples were collected during the final week of each month, with the majority on the 
final day or two of the month, and from the same locations each month when possible (some disruptions occurred due 

Fig. 1   Study location. Kaniv Reservoir and its dam (not pictured) are located approximately 50 km and 85 km south of Kyiv city, respectively 
(or within and 9 km south of Kyiv oblast, respectively). Tap water sampling locations are shown by blue circles, groundwater sampling loca-
tions by green squares, precipitation collection locations by purple triangles, and river sampling locations by orange diamonds. On the inset 
map, reservoir locations along the Dnipro River are indicated by a gray circle and a number (1 = Kyiv,  2 = Kaniv, 3 = Kremenchutske, 4 = 
Kamianske, 5 = Dniprovske, and 6 = Kakhovske). Base maps from ESRI and district shapefile from R. Hijmans [33–35]
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to COVID-19 restrictions). Any changes in locations were noted and considered when calculating the isotopic average 
and percentage contributions from sources.

Groundwater samples were collected most months from public water wells located in each district. Only wells with 
stable groundwater isotopic signals were used since an unstable signal indicates potential leaks in the pipes. Stability 
was defined as remaining within ranges of 4.5‰ and 0.65‰ for δ2H and δ18O, respectively, though most locations were 
well below these thresholds. More than one well from each district was sampled throughout the year when possible and 
locations where the isotopic signal was not stable were discarded. If both locations were isotopically stable, then both 
locations were included in the dataset. Wells were in constant use immediately before collection so standing water in 
the pipes should not have been an issue.

Surface-water samples were collected each month from the Dnipro and Desenka Rivers. During the months of March, 
May, and June the sample location was changed due to COVID-19 restrictions and disruptions to public transit. Most 
months samples were collected with weighted bottles from the middle of the river at Pivnichnyi Bridge. In March, May, 
and June, samples were collected by wading approximately 3 m from the banks at Park Bridge (Dnipro River only). Sample 
locations are shown on Fig. 1.

All samples were collected in 40- to 60-mL HDPE bottles, sealed with Parafilm, and stored in a refrigerator until analysis 
except during transport from Ukraine to the United States.

2.2 � Stable isotope analysis

Samples were analyzed at the University of Kentucky using a Los Gatos T-LWIA-45-EP liquid water isotope analyzer. All 
water samples were first filtered with sterile 0.45-μm filters. Samples were then injected via autosampler nine times, with 
the first four injections ignored to mitigate between-sample memory effects. The raw hydrogen and oxygen isotopic 
data were then normalized to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipi-
tation) scale using two different certified standards with contrasting isotopic values: USGS49 Antarctic Ice Core Water 
(δ2HVSMOW-SLAP = –394.70‰, δ18OVSMOW-SLAP = –50.55‰) [44] and USGS50 Lake Kyoga Water (δ2HVSMOW-SLAP =  + 32.80‰, 
δ18OVSMOW-SLAP =  + 4.95‰) [45]. Multiple in-session measurements of a third standard, USGS45 Biscayne Aquifer Drinking 
Water (δ2HVSMOW-SLAP = –10.30‰, δ18OVSMOW-SLAP = –2.24‰) [46], were used to evaluate the precision and accuracy of the 
isotopic data, with a long-term standard deviation of 0.16 ‰ for δ2H and 0.08 ‰ for δ18O over 120 analyses.

2.3 � Water source percentage calculation

Using IsoSource [47], all possible percentages of contributions to tap water from groundwater, the Dnipro River, and the 
Desenka River (which receives water from the Desna River) were calculated based on the δ2H and δ18O values from the 
input (groundwater and the river samples) and the output (tap water samples from each district). This was repeated for 
each district each month of the year 2020. IsoSource calculates the source contributions through a linear mixing model. 
The contributions are calculated in increments designated by the user (in this study 1%) and the calculated contributions 
sum to 100%. IsoSource will report all calculated contribution percentages that fall within the mass balance tolerance, 
so multiple possible solutions may be reported. Since all solution combinations are equally likely, it is common practice 
to report all the possible solutions as a range [48], as in this study.

Data were not available detailing the depth of groundwater collection or supply in any district. To account for this 
unknown, both high and low groundwater isotope values were used each month for the entire right bank and the entire 
left bank. This means that the highest and lowest groundwater isotope value for the left bank was used for contribution 
calculations for Desnianskyi, Dniprovskyi, and Darnytskyi districts and the highest and lowest groundwater isotope value 
for the right bank was used for contribution calculations for Obolonskyi, Podilskyi, Sviatoshynskyi, Shevchenkivskyi, 
Solomianskyi, Pecherskyi, and Holosiivskyi districts.

IsoSource was also used to estimate the percentages of contributions to the Dnipro River from groundwater and 
precipitation for each month of the year 2020. Stable isotope values of groundwater from the Podilskyi and Dniprovskyi 
districts were used as the groundwater inputs since these were the districts nearest to the river sampling location.
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2.4 � Mean transit time estimation

Because groundwater contributes to the flow of the Dnipro River, it is necessary to consider the importance of 
this contribution with the possibility of future stress on water resources due to climate change. To use the isotopic 
data in IsoSource, it was first necessary to calculate mean transit time to determine the time period for which pre-
cipitation data should be selected. For instance, if the mean transit time is 6 months, then precipitation data from 
6 months prior to the collection of the groundwater and Dnipro River data was used as an input.

Due to the last hydrograph data available for this region being from 2015 [49], mean transit time has been esti-
mated only. Mean transit time for the Dnipro River was estimated using the stable isotope values from precipitation 
and river water, along with a hydrograph from 2015 downstream from Kaniv Reservoir south of Kyiv [49], using 
methods from Dosa et al. [50]. To calculate mean transit time from the stable isotopes, the equation used is

where τr is mean transit time in years and f is the amplitude damping. Amplitude damping, f, is found from the amplitude 
of δ18O in runoff divided by the amplitude of δ18O in precipitation. To calculate mean transit time from the hydrograph, 
the equation used is

where τc is mean transit time, tr is the total hydrograph recession time, L is the maximum flow path length, and eλ is the 
topographic index. The total hydrograph recession time, tr, and the maximum flow path length, L, were estimated from 
Fig. 2 of Obodovskyi et al. [49]. The topographic index, eλ, was estimated from the slope at Hidropark (0 to 8%) given in 
Pozharska [51] and a catchment area of 90,090 km2 at Kyiv Reservoir, taken from the River Basin Management Plan [41].

3 � Results

3.1 � Stable isotopes

For the ten districts and three cities where tap-water samples were collected, stable isotope values ranged from 
− 87.9‰ to − 55.8‰ for δ2H and from − 12.1‰ to − 7.3‰ for δ18O (Figs. 2, 3; Additional file 1: Table S1). Gener-
ally, for all districts and the city of Brovary, stable isotope values were the most negative in the winter and spring 
and the least negative in the summer and fall. The exception to this trend is the isotope values of the tap water 
from the Desnianskyi district, which were most negative in winter and fall and the least negative in spring and 
summer. For the districts of Darnytskyi, Pecherskyi, and Holosiivskyi, lower coverage meant that some seasons did 
not have enough samples to calculate averages. However, both Darnytskyi and Pecherskyi had enough samples to 
calculate three of the seasons, with winter the most negative and summer the least negative. The cities of Boryspil 
and Boyarka were seasonally invariant due to tap water being supplied by groundwater at the location sampled.

Stable isotope values from surface water collected in Kyiv ranged from − 73.2‰ to − 57.6‰ and − 63.2‰ to 
− 58.2‰ for δ2H and from − 10.2‰ to − 7.4‰ and − 8.2‰ to − 7.5‰ for δ18O from the Dnipro River and Desenka 
River, respectively (Additional file 1: Table S2). Surface water samples collected from the Dnipro River in Cherkasy 
(~ 190 km south of Kyiv) had similar stable isotope values, from − 70.5‰ to − 56.3‰ for δ2H and from − 9.8‰ to 
− 7.2‰ for δ18O. Groundwater collected from each district showed relatively consistent isotope values throughout 
the year. These values ranged from − 89.5‰ to − 71.2‰ for δ2H and from − 12.2‰ to − 9.6‰ for δ18O (Additional 
file 1: Table S3). While stable isotope values from the groundwater plot near the global meteoric water line (GMWL), 
similar to the precipitation samples (Fig. 2), those from the tap water and surface water samples plot below the 
GMWL, indicating alteration of the original isotopic signal by evaporation [53].
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3.2 � Source contributions to tap water

Calculated source contributions to tap water, determined using the IsoSource mixing model, are compiled in Table 1. 
The contribution of groundwater to tap water from each district generally was the highest in the fall and winter 
months, with the highest contribution from surface water in late spring and summer. For this study, a majority 
contribution is considered at least 67%. Since there can be large ranges of possible contribution percentages, a 2/3 
majority was chosen to indicate a clear groundwater or surface water signal rather than simply anything over half. A 
majority contribution from surface water is more typical than a majority contribution from groundwater for nearly 
all districts, which is expected due to a higher reliance on surface water as a drinking water resource in this region. 
Incidences of majority contributions from groundwater or surface water are identified with bold numbers in Table 1. 
Two notable exceptions were tap water from Sviatoshynskyi with a majority contribution from surface water for the 
entire year and Desnianskyi with no clear majority contribution throughout the year (Table 1). Pecherskyi and Hol-
osiivskyi districts did not have enough samples collected to make detailed observations for the entire year.

3.3 � Dnipro River mean transit time

River transit times are necessary to quantify the groundwater and precipitation contributions to surface waters 
and to attribute the correct isotope value to source calculations. The mean transit time estimated at Kaniv through 
isotope versus hydrograph methods varies, with the stable isotope values resulting in approximately 6-month transit 
times, while hydrographs estimated 9 months. The discrepancy between the two methods is normal, as the hydro-
graph method depends on the interpreted length of the falling limb of the hydrograph [50]. Because the estimate 

Fig. 2   Stable isotope (δ2H and δ18O) values of tap water. In the upper right, δ2H and δ18O values of tap water, precipitation, groundwater, 
and surface water are plotted against the global meteoric water line (GMWL) [8] and local meteoric water line (LMWL) [40] for Kyiv. At the 
upper left and lower right, the δ2H and δ18O values, respectively, are shown in histograms for the tap water samples
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in this study used a different year and location (south of Kyiv rather than north of Kyiv) for the hydrograph method 
based on available data at the time of publication, this discrepancy is expected. For instance, in Dosa et al. [50], the 
isotope method and the hydrograph recession method could have a difference of up to 30 months using the longer 
hydrograph recession interpretation or up to 10 months using the shorter hydrograph recession interpretation. In 
this study, the shorter hydrograph recession interpretation was used to estimate the 9-month mean transit time, 
while a longer hydrograph recession interpretation yielded a mean transit time of 13 months for the Dnipro River.

Additionally, as only one year of stable isotope values for precipitation exists for Kyiv, this presented more uncer-
tainty for estimating precipitation contribution to the river in the first half of 2020 (since data from 2019 do not 
exist). For the purpose of this estimation, it was assumed the stable isotope values of precipitation for 2019 would be 
similar to the results collected in 2020. While significant interannual variation in values is possible [53], our estima-
tion yielded similar results to the groundwater contribution percentage stated in the River Basin Management Plan 
[41]. This supports the use of 2020 data as a proxy for 2019, at least within the objectives and resolution of this study.

Fig. 3   Spatial and temporal patterns of δ18O of tap water samples [34, 52]
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Table 1   Percentage 
groundwater and surface 
water contribution to district 
tap water by month.

District Month Groundwater (%) Surface water (%)

Desnianskyi Dec-19 74 26
Jan-20 60–66 34–40
Mar-20 100 0
Apr-20 46–51 49–54
May-20 16–20 80–84
Jun-20 14–20 80–86
Jul-20 59–62 38–41
Aug-20 51 49
Sep-20 62–66 34–38
Oct-20 62–66 34–38
Nov-20 63–71 29–37
Dec-20 95–100 0–5

Dniprovskyi Dec-19 42–43 57–58
Jan-20 35 65
Feb-20 34 66
Mar-20 20–23 77–80
Apr-20 36–41 59–64
May-20 25–28 72–75
Jun-20 3–6 94–97
Jul-20 8 92
Aug-20 17–24 76–83
Sep-20 50–52 48–50
Oct-20 36–57 43–64
Nov-20 50 50
Dec-20 41 59

Darnytskyi Feb-20 50–51 49–50
Jul-20 0 100
Aug-20 12–17 83–88
Sep-20 46–49 51–54
Oct-20 35–39 61–65
Nov-20 36 64
Dec-20 41 59

Obolonskyi Jan-20 67–72 28–33
Mar-20 37–43 57–63
Apr-20 0 100
May-20 0 100
Jun-20 2–5 95–98
Jul-20 0 100
Aug-20 0 100
Sep-20 9–12 88–91
Oct-20 5–9 91–95
Nov-20 0 100
Dec-20 0–3 97–100
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Table 1   (continued) District Month Groundwater (%) Surface water (%)

Podilskyi Dec-19 56 44

Jan-20 1 99

Feb-20 72 28

Apr-20 5–10 90–95

May-20 0 100

Jun-20 6 94

Jul-20 0 100

Sep-20 0 100

Oct-20 76 24

Nov-20 51–52 48–49

Dec-20 0 100
Sviatoshynskyi Dec-19 0–2 98–100

Jan-20 0 100
Apr-20 0 100
Jun-20 5 95
Jul-20 0 100
Aug-20 0 100
Sep-20 4 96
Oct-20 0 100
Nov-20 4 96
Dec-20 0–3 97–100

Shevchenkivskyi Dec-19 33 67
Jan-20 40–47 53–60
Feb-20 7–15 85–93
Mar-20 11 89
Apr-20 0 100
May-20 0–6 94–100
Jun-20 4 96
Jul-20 0 100
Aug-20 8–9 91–92
Sep-20 39 61
Oct-20 34–52 48–66
Nov-20 37 63
Dec-20 86–87 13–14

Solomianskyi Jan-20 48–59 41–52
Feb-20 42 58
Mar-20 38–41 59–62
Apr-20 68 32
May-20 65–66 34–35
Jun-20 8–15 85–92
Jul-20 10–13 87–90
Aug-20 12–14 86–88
Sep-20 30–33 67–70
Oct-20 39–44 56–61
Nov-20 44–53 47–56
Dec-20 76–99 1–24

Majority contribution (above 67%) is noted in bold italics. At times there may be multiple unique solu-
tions in IsoSource and these are reported as a range of values (e.g. 60–66% groundwater contribution for 
Desnianskyi district in January 2020)
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4 � Discussion

4.1 � Temporal and spatial patterns

In general, districts on the left bank used a higher percentage of groundwater during the year, though temporal patterns 
were similar to districts on the right bank (for instance, higher percentage of groundwater use in the winter and a lower 
percentage of groundwater use in the summer). This pattern also varied spatially, with Desnianskyi district generally 
using the highest percentage of groundwater and Darnytskyi using the lowest percentage of groundwater on the left 
bank. Desnianskyi district’s large contribution from groundwater is also indicated in the temporally different pattern in 
the stable isotopes from tap water, which are most negative in winter and fall. This agrees with the timing of the greatest 
contribution of groundwater to the tap water, since, across Kyiv, the isotope values in the groundwater are more nega-
tive than those in the surface water during the entire year. The other districts more closely follow the precipitation trend 
of most negative stable isotope values in winter and spring and least negative in summer and fall. The tap water from 
these districts also receives more surface-water contributions throughout the year as compared to Desnianskyi district.

There is both more temporal and spatial variability on the right bank, including seasonal variability in surface versus 
groundwater sources. With the exception of Pecherskyi, all districts on the right bank use a lower percentage of ground-
water than those on the left bank. Obolonskyi, Podilskyi, and Sviatoshynskyi have the greatest surface water contribu-
tion, with < 10% groundwater contribution percentage at least half the year (Fig. 4, Table 1). However, the groundwater 
contribution in these districts increases up to 76% briefly during the fall or winter. Tap water from Shevchenkivskyi 
district also shows a strong influence from surface water (Fig. 4, Table 1), but with a more consistent groundwater signal 
of more than 10% for most of the months of the year. Neighboring Solomianskyi shows the expected pattern of higher 
percentage of groundwater contribution in the winter with a gradual decrease in percentage to the summer and then 
a gradual increase again leading into fall and winter. The percentage pattern is similar to that of the districts on the left 
bank (Fig. 4, Table 1). Spatial patterns on the left bank show a decrease in reliance on groundwater from north to south, 
while the opposite is generally true for the right bank. However, due to COVID-19-induced difficulties in travel, samples 
for Pecherskyi and Holosiivskyi districts were only collected in the first half of the year, so the most southern portions of 
the right bank are not included in this assessment.

Outside of Kyiv city and the study boundary, but within Kyiv oblast, tap water from Boryspil and Boyarka were season-
ally invariant, consistent with a groundwater source. These samples came from sampling locations with a groundwater 
well, not municipal tap water, and were excluded from analysis trends. However, isotope values of tap water from Brovary 

Fig. 4   Percent range of surface water contribution to tap water each month by district. The width of the line represents the range of pos-
sible contribution percentages given by IsoSource (for instance, a wider line represents a larger range of possible contribution percentages, 
while a thin line represents fewer possibilities)
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showed a similar pattern to those from Desnianskyi district. While groundwater samples were not collected from Brovary, 
it is expected that, based on the stable isotope values and the city’s proximity to the district, groundwater and surface 
water percentages would be similar to those of Desnianskyi district.

The stable isotopes of the groundwater samples also showed some slight spatial patterns, with more enriched 2H and 
18O values in groundwater samples collected from districts generally in the northern portion of the city and mostly along 
the Dnipro River. It is possible that the proximity to the river and the Kyiv reservoir could influence these values if river 
water is infiltrating into the aquifer. However, groundwater from Boyarka had similar stable isotope values to those from 
Obolonskyi, Pecherskyi, and Dniprovskyi, despite its location approximately 20 km from the Dnipro River. Locations with 
groundwater samples that were more depleted in 2H and 18O were generally in the southern portion of the city and/or 
farther from the Dnipro River. These patterns occurred both on the right and left bank, though the elevation ranges from 
89 to 208 m above sea level (asl) [40], with the right bank being higher elevation than the left. While it is possible that 
the Dnipro River influences groundwater in the districts nearby, based on the similarity of groundwater from Boyarka, 
it is likely that the main driver of differences in stable isotope values among the groundwater samples is retrieval from 
different depths. However, as it was not possible to determine the depths of the public wells, this cannot be certain and 
should be determined in future studies in this area.

The data collected improve our understanding of water use at a seasonal and/or oblast scale, particularly since this 
information was not publicly available at the time of this study, while highlighting regions more susceptible to changes 
in water supply. The Dnipro and Desna Rivers rely on runoff from snow and precipitation each year, as well as contribution 
from groundwater (Fig. 5). As climate change progresses and the timing and amount of precipitation shift [40], water 
managers may have to adjust the timing and amount of surface water used in each district. Since shifts in precipitation 
patterns will also affect the timing and amount of recharge to groundwater [29], stable isotope analysis of inputs and 
outputs to the municipal water supply can provide critical early warning of changes that physical measurements could 
take longer to identify due to uncertainties [9].

In Kyiv, the effects of climate change have already become apparent. Boychenko et al. [54] analyzed long-term mete-
orological data for the past 100 to 130 years from 25 stations across Ukraine. Those authors found that the annual tem-
perature had increased by 1.0 ± 0.2 ℃ per 100 years in the northern and northeast regions, and that there has been an 
increase in cold-season temperature of 1.0–2.0 ℃ per 100 years and a decrease of 10–15% in annual precipitation for 
the northern and northwest regions. Besides rising air temperatures and changes in precipitation patterns, the average 

Fig. 5   Schematic of sources to Kyiv water supply. Shown are inputs to the sources and amounts if they are publicly known, percent contri-
bution of the sources to the water supply, and amount output from the supply, including losses from leaking infrastructure [25, 39, 41, 61]
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temperature of the Dnipro River has also increased and winter ice has decreased [42]. The thinning and disappearance 
of winter ice coincides with the timing of the highest groundwater withdrawals for the majority of the districts. As the 
ice continues to decrease, this could make more surface water available in the winter. The potential shift in timing of 
surface water availability may require less adjustment from districts that commonly use more surface water throughout 
the year if this increases availability in the winter.

For the Dnipro and Pripyat river basins, under Representative Concentration Pathway (RCP) 2.6, mean annual discharge 
is predicted to decrease by as much as 20% for both 2041–2070 and 2071–2100, though the Desna river basin shows 
a lesser change (from − 10% to + 6%) during these same time periods [55]. Under RCP 8.5, mean annual discharge is 
projected to decrease nearly 25% for the Dnipro River and more than 25% for the Pripyat River, while the Desna River is 
expected to have either a very small positive change or no change [55]. The decrease predicted for the Dnipro and Pripyat 
rivers is expected for the entire year, except in some cases during February–March [55], which means that there may be 
some adjustment in using the Dnipro for a municipal water source. As less surface water is available for use, districts that 
rely more on this source year-round, such as Sviatoshynskyi, may need to utilize more groundwater. Both these scenarios 
illustrate the potential danger in favoring a single water source as climate change progresses in the region.

4.2 � Similar studies in Ukraine and worldwide

Stable isotopes of tap water have been studied in another region of Ukraine (Kharkiv). The water supply of this city differs 
from Kyiv in that tap water comes almost exclusively from surface water, while groundwater is a drinking water source 
in addition to tap water [6]. In one study at this location, δ2H, δ18O, and chloride were used to investigate leaks from 
drinking water and sewage infrastructure. The authors found that urban groundwater was more enriched in 2H and 18O 
than rural groundwater, and that surface water sources were more enriched in both isotopes than both groundwater 
sources. Isotopic enrichment of urban groundwater was attributed to infiltration of precipitation and water of other 
origins, such as leaking infrastructure [56]. Further studies have continued to investigate this anthropogenic recharge 
to the groundwater, including identifying sewage source types [6].

Like Kharkiv, Kyiv is an urban environment, and it is possible that similar processes are occurring in both locations. In 
this study it was also observed that 2H and 18O values of surface water were more enriched than those of the ground-
water. In general, the enrichment seen in the 2H and 18O values is likely mainly controlled by evaporation from both the 
reservoir and the more warm/dry (compared to historical values) years of 2019–2020 [40]. Additionally, in drier condi-
tions with intensive evaporation, it is possible that precipitation will not be as effective in recharging groundwater [57]. 
Since the drier, hotter months are when the precipitation shows a more enriched 2H and 18O signal [40], it could be also 
that the groundwater is not receiving as much of this signal. Finally, the urban setting does present some other possibili-
ties. According to the River Basin Management Plan [41], wastewater is discharged into the Dnipro River. The mixing of 
wastewaters and river waters can also lead to some of the observed enrichment of 2H and 18O in the surface water [5, 58].

In the USA, Tipple et al. [9] were able to identify not only unique sources to a municipal water supply but also chang-
ing of sources over time in the San Francisco Bay area (California), which contains numerous municipalities and different 
water districts. Similarly, in the Salt Lake Valley region (Utah), Jameel et al. [11] compared municipal water sources for 
different water districts and noticed a trend towards evaporation over the 3-year study period. Both studies showed 
temporal and spatial patterns of stable isotopes in tap water, depending on the sources to the water supply, and in the 
case of surface water sources, seasonal patterns. In Kyiv there is also a temporal and spatial trend in the stable isotopes of 
tap water, which connected with the changing percentages of surface water and groundwater in the districts’ municipal 
water supplies.

In the Qinghai-Tibet Plateau (China), Du et al. [28] found that the stable isotope values of tap water could indicate 
particular sources in the case of a mixed water supply. The stable isotope values of tap water showed spatial patterns 
across the region and indicated a dominant surface water signal. In the region supplied primarily by groundwater, stable 
isotope values of tap water did not show seasonal variation. In contrast, in the neighboring region supplied primarily by 
surface water, seasonal variation was observed in the stable isotope values of the tap water.

In South Africa. West et al. [17] found that the stable isotopes of tap water and groundwater provided spatial pat-
terns that could be predicted by a geostatistical model. The stable isotope values for tap water were similar to those of 
groundwater or showed an influence of recent precipitation or evaporation of the water source during storage/transport. 
This study provided a baseline for a region that has not had tap water surveys performed before, as is the case in the 
current study.
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4.3 � Groundwater contribution to the Dnipro River

A mean transit time of 6 to 9 months is used to interpret percentage of precipitation and groundwater contributions 
to the Dnipro River in Kyiv. For 6-month and 9-month mean transit times, the yearly contribution is estimated at 30% 
and 23%, respectively. The River Basin Management Plan [41] reports that groundwater contribution to the upper 
Dnipro River is 27%, consistent with the estimated range from this study. Estimated groundwater contributions to 
the Dnipro River for both 6-month and 9-month mean transit times are greatest in the winter months, when there is 
typically ice cover on the river. The greatest groundwater contribution comes in December, at 60% and 51% for the 
6-month and 9-month calculations, respectively.

Generally, in most districts (except for Sviatoshynskyi), winter and fall are the seasons with the highest ratio of 
groundwater in the water supply. These are also the times when the groundwater contribution percentage to the 
Dnipro is the highest. As climate change progresses and winter ice cover continues to decrease [42], the timing of 
maximum and minimum precipitation amounts may shift, and the total yearly precipitation amount may shift [40]. 
Consequently, groundwater withdrawals for the municipal water supply could affect the flow of the Dnipro. Fur-
thermore, if the discharge of the Dnipro River decreases as predicted by Didovets et al. [55], the river may depend 
more upon the groundwater contribution. While the estimated percent contribution of groundwater to the Dnipro 
River during this time agrees with previous findings, continued unpredictable precipitation may begin to impact 
this percentage.

5 � Conclusions

Tap-water surveys have been increasingly used to identify spatial and temporal patterns in municipal water sources. 
In Kyiv, where most of the city’s water comes from two rivers that are vulnerable to influences from climate change 
and pollution [59, 60], understanding the reliance on these sources in the context of climate change is critical. As the 
air and Dnipro River temperatures are increasing and the timing and amount of precipitation are already shifting, 
early preparation for disruption in water resources is necessary for effective water management.

The stable isotope values for tap water collected from November 2019 through December 2020 show a general 
seasonal trend for most of the districts, with more negative isotope values in the winter and less negative values in 
the summer. These patterns follow the general trends of the isotopic values from precipitation, though the actual 
numbers show a clear addition of groundwater. The groundwater percentage contribution also follows this general 
trend, with a higher percentage of groundwater used in the winter and a lower percentage in the summer for most 
of the districts. There is also a clear spatial trend, with a higher percentage of surface water used in the districts on 
the right bank and a lower percentage used in the districts on the left bank. Furthermore, there is a north-to-south 
trend on each bank, with the northern districts on the right bank using a higher percentage of surface water, while 
the northern districts on the left bank use a lower percentage of surface water. As climate change progresses, this 
can affect both the quantity and quality of surface water and groundwater, making it critical to assess sources of 
municipal water continually. Stable isotope ratios in tap water and the source waters provide a way to assess changes 
to the sources, reduce the uncertainty associated with physical measurements, and adapt the water supply accord-
ingly. Samples from a finer geographical scale and across a longer temporal range will be necessary to confirm and 
expand on this dataset and to examine spatial and temporal variation within each district.
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