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Abstract

An automated melanocytic lesion image-analysis algorithm is described that aims to repro-

duce the decision-making of a dermatologist. The utility of the algorithm lies in its ability to

identify lesions requiring excision from lesions not requiring excision. Using only wavelet

coefficients as features, and testing three different machine learning algorithms, a cohort of

250 images of pigmented lesions is classified based on expert dermatologists’ recommen-

dations of either excision (165 images) or no excision (85 images). It is shown that the best

algorithm utilises the Shannon4 wavelet coupled to the support vector machine, where the

latter is used as the classifier. In this case the algorithm, utilising only 22 othogonal features,

achieves a 10-fold cross validation sensitivity and specificity of 0.96 and 0.87, resulting in a

diagnostic-odds ratio of 261. The advantages of this method over diagnostic algorithms–

which make a melanoma/no melanoma decision–are twofold: first, by reproducing the deci-

sion-making of a dermatologist, the average number of lesions excised per melanoma

among practioners in general can be reduced without compromising the detection of mela-

noma; and second, the intractable problem of clinically differentiating between many atypi-

cal dysplastic naevi and melanoma is avoided. Since many atypical naevi that require

excision on clinical grounds will not be melanoma, the algorithm–in contrast to diagnostic

algorithms–can aim for perfect specificities without clinical concerns, thus lowering the exci-

sion rate of non-melanoma. Finally, the algorithm has been implemented as a smart phone

application to investigate its utility in clinical practice and to streamline the assimilation of

hitherto unseen tested images into the training set.

Introduction

The incidence of melanoma has increased substantially in the United States, Europe and Aus-

tralia over the last 30 years [1]. While incidence rates are projected to increase in both the

United States and Europe over the next two decades, they are expected to stabilise in Australia

[1]. Stabilisation of melanoma rates in Australia is largely thought to be a consequence of the

public awareness campaigns that began in the early 1980s. Increased physician diagnostic vigi-

lance and increased public awareness of melanoma–due to the aforementioned public aware-

ness campaigns–has, however, led to large increases in office surgery, where the majority of
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pigmented lesions excised are not melanomas [2]. This phenomenon can be captured by a

measure known as the ‘Number Needed to Treat’ (NNT), a term loosely defined as the number

of benign lesions excised per melanoma [3]. There exists a trade-off here–if the NNT is too

high, then many lesions are excised unnecessarily; in contrast, a low NNT suggests melanomas

may be missed. Too many excisions increases patient morbidity, can lead to problems associ-

ated with over-diagnosis [4], and will be associated with ballooning publicly funded health

care costs. On the other hand, a low NNT may imply a potential for increased mortality.

The considerations above raise the issue of what value an optimal NNT should assume. For

non-dermatologists, reported values include 19.6, 23, 22 and 30 [5–8]. In contrast, the NNT

for dermatologists may be lower–values of 6.3 and 6.5 have been reported [9,10]. If it is

accepted that dermatologists have greater diagnostic acumen than non-dermatologists in the

clinical asessment of melanocytic lesions, then it is likely that the former are not missing more

melanomas in comparison with the latter, despite their lower NNTs. How, then, can the aver-

age NNT, with respect to all practioners, be lowered without compromising melanoma detec-

tion? Evidence suggests further training of primary care physicians can increase the yield of

melanoma as a proportion of all excisions [11]. But the impact of further training will be lim-

ited if it is not sought by the majority of practitioners. On the other hand, the utilisation of

machine learning in the clinical setting by non-specialists has the potential to lower the NNT

without requiring practitoners to acquire additional skills. Importantly, it has been shown that

practitioners are willing to change their decision with respecct to melanocytic lesion manage-

ment if supplied with a machine learning decision [12]. Results from a large prospective clini-

cal trial demonstrate the utility and posible limitations of algorithm-based decision support in

melanoma diagnosis [13].

There exists a large literature regarding machine learning and melanocytic lesion assess-

ment [14–17]. Nearly all melanocytic lesion classification schemes reported thus far use mela-

noma, histologically diagnosed, as a unitary class in classification.. Such algorithms–which can

be labelled diagnostic algorithms–are designed to distinguish melanoma from non-melanoma

and are thus in effect making a diagnosis. However, these approaches are not without short-

comings, three of which are briefly considered here. First, there may exist training inaccuracies

due to the lack of consistency among pathologists regarding the diagnosis of atypical lesions

[18]. Second, the task of reliably differentiating between many atypical dysplastic naevi and

melanoma, on macroscopic morphologic grounds, is likely to be an intractable problem. And

finally, from the management perspective, the non-expert may be better served by knowing

whether a lesion in question should be excised, not whether it is melanoma or non-melanoma.

Consider a severely dysplastic naevus that a diagnostic algorithm correctly classifies as non-

melanoma. In this instance, the dermatologist is likely to excise the lesion despite correctly

favouring non-melanoma (if asked) as the diagnosis (to exclude the low, but nonetheless sig-

nificant possibility of melanoma). Such a scenario will create the undesirable outcome of dis-

cord between the management decision of the dermatologist and non-specialist.

Much of the difficulty in distinguishing between atypical naevi and melanoma arises

because the diagnostic morphologic features that are routinely used and detected by computer

algorithms (and clinicians) are never entirely specific for benign or malignant lesions. For

example, while ‘suspicious’ features such as asymmetry or poorly defined boundaries are com-

monly present in benign naevi (see Fig 1A), suspicious ‘melanoma-specific’ features such as

irregular globules may be present in atypical naevi. Many melanomas will be less atypical than

some atypical dysplastic naevi. In practice, however, by utilising multiple features, and apply-

ing a non-linear classification scheme–such as a support vector machine–these problems can

be mitigated. In some cases, algorithms may yield a probability of melanoma, requiring inter-

pretation by the clinician. Binary decision difficulties can be partially overcome by placing
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greater weight on sensitivity, with a reduction in the false negative rate. However, increased

sensitivity will result in decreased specificity. Yet it is often considered desirable for diagnostic

algorithms to have a ‘healthy’ false positive rate–this stems from the tacit assumption, noted

above, that it is likely to be impossible, in principle, to distinguish, on clinical grounds,

between many cases of atypical dysplastic naevi and melanoma. Colloqually speaking, the algo-

rithm may need to get it wrong to get it right.

Although the considerations above give pause to the idea of utilising diagnostic algorithms

in automated melanocytic assessment, they are nonetheless valuable and represent the state of

the art. Indeed, recent work published in Nature describes a deep convoluted neural network

trained to make a diagnosis of melanocytic (and other) dermatologic lesions based on tens of

thousands of training images, highlighting both the relevance of diagnostic algorithms, and

the value of brute-force computation [19]. However, the shortcomings noted above with

respect to diagnostic algorithms suggest that it may be worthwhile investigating the possibility

of an alternative approach: the development of a decision-making algorithm. In this case, the

label ‘decision-making’ is applied since such an algorithm will simply determine whether a

melanocytic lesion should be excised or not excised. The training set will be partitioned based

on expert dermatologists’ assessment regarding excision/no excision, rather than on histopath-

ological diagnoses, hence the algorithm will replicate decision-making expertise. Importantly,

there is no need for the false positive rate to be significantly less than 1; the algorithm can oper-

ate with specificities approaching 1 without any clinical concerns.

But should the feature set used by a decision-making algorithm be the same as that used for

a diagnostic algorithm? Although there will exist considerable overlap between any set of mor-

phologic criteria that identifies melanoma and identifies lesions requiring excision (after all,

Fig 1. Image segmentation and wavelet decomposition. (A) Benign naevus. Note the global asymmetry and irregular

and poorly-defined borders. (B) Chan-Vese segmentation of this lesion. (C) Graphical representation of a six-level

wavelet decomposition of the naevus shown in (A). Wavelet coefficients are reprented as a color-coded grid as follows:

HH (lower-right); HL (upper right) and (LH) lower-left. The LL band is similarly decomposed as per the upper left

square. This process is iterated six times.

https://doi.org/10.1371/journal.pone.0203459.g001
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the purpose of clinical evaluation of melanocytic lesions is to identify potential melanoma), the

feature set cannot be the same with respect to the classification problem because the respective

algorithms are classifying different classes of objects. If the same set of features are applied to

the classification of different classes of objects, then one or the other will be suboptimal. While

these observations do not prove that a feature set derived using well-defined morphologic

parameters could not be an efficient classifier with respect to a decision-making algorithm, it

is nonetheless apparent that feature selection would involve considerable subjectivity, and

require multiple rounds of training and testing.

Motivated by these considerations, an alternative approach will be implemented: the feature

selection process desribed here will be limited to obtaining and analysing the statistical proper-

ties of wavelet coefficients derived from dermoscopic image data of melanocytic lesions. The

feature selection process does not then explicitly characterise well-defined morphologic

parameters (for example, the blue-grey veil) and thus reduces the subjectivity associated with

generating a feature selection list that may need to be different from that associated with a

diagnostic algorithm. Wavelet coefficients encode textural information at different length-

scales and are thus well-suited to the analysis of pigmented melanocytic lesion image data

given the fractal structure of the latter [20]. This approach is also partially motivated by the

idea that an experienced dermatologist will know when a lesion requires excision, but it may

not be possble for he or she to precisely specify, with a list of well-defined computer-recognisa-

ble features, why this is so. In contrast, defining a list of features that (imperfectly) characterise

melanoma is a relatively straightforward task.

In the following sections it wil be shown that the use of wavelet coefficients per se does not

compromise accuracy: high sensitivities and specificities, approaching the expertise of derma-

tologists, can be achieved. If machine intelligence can reproduce the decision-making of a

dermatologist, then the average NNT of practitioners in general will be lowered. Here it is pro-

posed that the algorithm should act as a decision support tool [21]; that is, the clinician should

use any other external information about any lesion under consideration as deemed relevant,

such as size, site, history and context, in order to arrive at a management decision. The follow-

ing sections describe the approach to this problem, the results, and discuss the utility of the

algorithm–which has been developed as a smart-phone application for research purposes–in

the clinical setting.

Methods and results

Database

Two hundred and fifty polarised dermoscopic images were obtained from the Department of

Dermatology at the Medical University of Graz in Austria over the period 2003–2008. Digital

photographs were taken using a DermLite FOTO lens (3Gen LLC; Dana Point, CA, USA) cou-

pled to a 4500 CoolPix digital camera (Nikon Corporation, Tokyo, Japan) without flash using

the camera’s auto setting. Eighty-five lesions were considered benign by an expert dermatolo-

gist and were not excised. Note, however, that a benign diagnosis does not always imply that

the lesion is trivially bland (Fig 1A). All remaining lesions were considered atypical enough to

warrant excision and were subsequently examined microscopically by expert dermatologists

using standard diagnostic criteria. Eighty-five of these lesions were diagnosed as melanoma

while eighty lesions were diagnosed as dysplastic naevi.

Image pre-processing

All images were rescaled to 1000 pixels wide in the maximal dimension. Lesion segmentation

was performed using a two-level Chan-Vese algorithm [22] (Fig 1B), which, in the current
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implementation, can operate on color images [23]. The Chan-Vese algorithm iteratively mini-

mises the functional

f ðc1; c2 ; FÞ ¼ m1ðφÞL þ m2 ðDÞA þ l1 ∬DjF � c1j
2dxdy þ l2 ∬O=D jF � c2j

2dxdy

where f is parametrized by the length penalty μ1, the area penalty μ2 and the level penalties λ1

and λ2. The total image region O is divided into 2 segments D and O=D with contour

C ¼ ðD, while c1 and c2 are constants given by the mean of F in D and the mean of F in O=D
respectively. The values of all adjustable parameters were used at their default settings [23].

A bounding box was then drawn at the lesion extremities and all images, using blank pixels,

were extended in the shortest dimension to form a square such that the final dimensions were

29 x 29 = 512 x 512 pixels. No other pre-processing steps, such as histogram normalisation, fil-

tering, or removal of artefacts, were undertaken prior to analysis. Severely compromised

images, such as those exhibiting excessive hair or prominent specular reflections from scales,

were excluded from the database.

Wavelets

Wavelets are short wave-like functions that can represent any signal, including time series or

image data, by appropriate scaling and translation. They have been previously used, with some

success, in the automated diagnosis of melanoma [24–26]. As noted in the Introduction, a

wavelet decomposition is a numeric representation of an image at different scales–its spectral

properties. The tree of wavelet coefficients at level j comprises coarse coefficients c given by the

forward transform

cjþ1; n ¼
ffiffiffi
2
p X

m
am� 2nþ2 cj;m

and fined-grained coefficients d given by the forward transform

djþ1;n ¼
ffiffiffi
2
pX

m
bm� 2nþ2cj;m

where the c0,n represent original image data and the ai and bi are the low and high-pass filter

coefficients respectively. A six-level wavelet decomposition of all images was performed using

the Shannon4 discrete wavelet transformation (Fig 1C). Each decomposition level yields 4 fre-

quency sub-bands (High-High, High-Low, Low-High and Low-Low), calculated with respect

to pixel values associated with each of the RGB colour channels and the luminance channel.

For each channel and for each sub-band, four statistical measures (the mean, the absolute

mean, the energy and the variance) was measured. For each channel and sub-band the mean

and the variance was calculated with respect to the skewness and kurtosis, where for the latter

each calculation is derived from each single array of pixels in both the vertical and horizontal

directions. This procedure thus generated 6 (decompositions) x 4 (sub-bands) x 4 (channels) x

12 (4 global measures and 4 x 2 axis-specific measures) = 1152 feature values per image. These

data are available as Supporting Information files.

Feature selection

To rank the features in their ability to separate the classes (which are lesions excised versus

lesions not excised) the ReliefF algorithm was employed [27]. ReliefF is a reliable and widely

used algorithm with respect to the analysis of microarray data [28]. By analogy, it is therefore a

suitable choice for melanocytic lesion classification: the bioinformatics problem often involves

finding a set of genes that best distinguish two classes (for example, good versus poor-
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prognosis subsets). In addition, the data matrix of a typical microarray result has an identical

structure to the wavelet coefficient matrix. The methodology proceeds in an iterative manner

by measuring distances between data points, which, in this case, are embedded in a 1152

dimensional feature space. The output converges to an ordered ranking of features that best

separate the classes (Fig 2A). Choosing the optimal combination of features from an ordered

list of length N that best separates the classes is, in general, an intractable problem since the

solution may not necessarily include all of the first n features, where n is an integer between 1

and N. The feature selection problem is addressed here as follows: first, the cumulative feature

count of the ordered list obtained from running the ReliefF algorithm is plotted against perfor-

mance (here the performance is given by the mean of the sensitivity and specificity; and where

the aforementioned metrics are calculated with respect to 10-fold cross-valdation). Second,

local maxima, if present, will be identified. It will be shown below that these plots exhibit a

threshold number of features n such that classification performance is not improved for

Fig 2. The ReiefF algorithm, model sensitivity and specificity and the receiver operated characteristic (ROC) curve. (A) Running the ReliefF algorithm

yields an ordered list of features that best separate the classes. Here the best 600 features are plotted against their utility in separation. The first 50 feature values

are shown in detail (Inset). Note that the major inflection point occurs at approximately feature 125. (B) Ten-fold cross-validation sensitivity (mustard) and

specificity (blue) as a function of the number of first N features used in the model. Of all parameter choices (see Table 1), the two best performed SVM, RF and

LR models are shown in the first, second and third rows respectively. Note that the SVM outperforms the RF and LR models, and note that incorporating

additional features beyond 125 does not improve performance, an observation that is independent of the choice of algorithm. (C) Leave-one-out cross

validation ROC curve utilising the Shannon4 wavelet decomposition and the SVM. The SVM outputs a probability of diagnosis with respect to the classes. The

upper left of the curve reveals two important points dependent on the decision probability cutoff: a sensitivity of 0.97 and a specificity of 0.89; and a sensitivity

of 0.93 and a specificity of 0.93. Both points are equally accurate, but the latter is closer to the point (0,1).

https://doi.org/10.1371/journal.pone.0203459.g002
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feature counts greater than n. This finding indicates that it is possible to calculate the mini-

mum number of features that add information to the class separating task.

Machine intelligence

Three algorithms were investigated in terms of their utility in modelling the class separation:

the SVM [29, 30], the random forest algorithm (RF) [31] and logistic regression (LR) [32]. All

algorithms were investigated utilising the Shannon4 wavelet decomposition. Optimisation of

the classification task was performed by investigating parameter space: this was achieved by

varying the value of C with respect to the SVM; by varying the number of trees Ntr with respect

to the RF algorithm; and finally, by varying either the L1 or L2 regularisation parameters with

respect to the LR algorithm. For each algorithm 10-fold cross validation was performed with

respect to the number of selected top ranked features, ranging from 1 to 200 [23]. These results

are shown in Table 1 and Fig 2B. Note that the SVM (briefly desribed below) yields the most

accurate result, and that the value of n is around 125 (Fig 2B); this latter value is largely inde-

pendent of the algorithm used in the analysis.

Support vector machines

Given that the SVM achieves the best performance with respect to the calculations described

above, the RF and LR models will not be pursued. These results, although not exhuastive, are

consistent with findings reported elsewhere: among all kernel-based methods, it is widely rec-

ognised that SVMs are likely to yield the best performance [33].

Developed by Vatnik [29], SVMs originated within the field known as statistical learning

theory, where the objective is to minimise the risk, or generalisation error, of the model.

Briefly, the SVM provides a decision function g which is the optimal solution to a quadratic

programming problem subject to constraints [30]. The quadratic programming problem

incorporates a parameter C: its value quantifies the trade-off between the width of the margin

separating the classes and classification error. For all subsequent SVM calculations, the kernel

K is given by the Gaussian radial basis function

Kðx; xjÞ ¼ Exp
1

s
½� ðx � xjÞ � ðx � xjÞ�

where σ is an adjustable parameter. The output of the SVM provides a probability of class

membership; for all binary decisions reported above and below a cut-off of 0.5 was used.

Table 1. Classifier-dependent 10-fold cross-validation error rates.

SVM

C 0.5 2 10 30 40 50

Error 0.114 0.107 0.086 0.087 0.084 0.087

RF

No. of trees 80 120 160 200 240 280

Error 0.142 0.141 0.146 0.145 0.144 0.143

LR

Reg. Param. 0.001 (L1) 0.01 (L1) 0.1 (L1) 0.001 (L2) 0.01(L2) 0.1 (L2)

Error 0.138 0.133 0.130 0.127 0.121 0.119

Best-performing ten-fold cross validation models (of all models with feature counts between 1 to 200) for each classification algorithm and for different parameter

values. For the SVM, the value of the gamma scaling parameter is optimised at 0.007. For the random forest model, the leaf size is optimised at 1 for any number of trees.

Note that for the logistic regression model L2 regularisation outperforms L1 regularisation, but does not achieve the accuracy of the SVM, even for poor choices of C.

https://doi.org/10.1371/journal.pone.0203459.t001
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Current applications, for example, include computational biology [34, 35], and in the classifi-

cation of melanocytic lesions [21, 36].

Model accuracy

To further characterise the SVM, 10-fold, 25-fold and leave-one-out cross validation was per-

formed for six different values of C; repeating the cross validation 50 times for each combina-

tion of C and level of cross validation [37]. These results are shown in Table 1. Note how the

model accuracy improves as the training set increases in size, and note how the optimal value

of C is 30. The best result overall is achieved with leave-one-out cross-validation where the

overall diagnostic accuracy is 0.92. The receiver-operated characteristic (ROC) curve for this

model is shown in Fig 2C.

Feature extraction

While the cross-validation results presented above indicate that the model generalises well

with respect to the database, it is, however, the generalisation properties of the model with

respect to a wider range of dermoscopic images that are paramount. Unfortunately creating a

model using 125 features from a database of up to only 249 images is likely to suffer from the

problem of overfitting. Although it may appear paradoxical to assume that the generalisation

properties of the model may suffer when tested on a wider range of images (given that its gen-

eralisation performance is maximised with approximately 125 features with respect to the

cohort under investigation) it is likely that the model will perform better with the dataset at

hand in comparison with a wider range of lesions. This may be due to the potential similarity

of lesions in the dataset: for example, images are all obtained with the same camera using the

same settings, and the dataset may include multiple lesions obtained from the same patient.

Although the generalisation properties of the model are likely to improve with a feature

extraction procedure that reduces the risk of overfitting, there exists the possibility that some

model accuracy will be lost. However, if model accuracy is retained with a smaller number of

features, then the overall performance of the model should be enhanced.

There exist a large number of different possible feature extraction methods [38]. The major

alternatives lay between linear and non-linear approaches: for example, linear discriminant

analysis (a supervised method) and kernel-principal component analysis (where a kernel must

be chosen and its free parameters optimised). Other methods include, for example, indepen-

dent component analysis, Isomap, autoencoders (within the framework of neural networks),

factor analysis and non-negative matrix factorisation [38]. Ultimately, the best choice of fea-

ture extraction methodology is data-driven; that is, there is generally no a-priori method best-

suited to all possible datasets.

Principal component analysis

Here the feature extraction method known as principal component analysis (PCA) is applied

[39]. Linear PCA is a suitable choice given the frequent occurrence of linear relationships in

the feature set–either between different levels of decomposition for a particular statistical mea-

sure; or between different statistical measures at a particular level of wavelet decomposition.

PCA is a widely-used, unsupervised, robust and computationally simple methodology that

maintains as much data variance–given its linear constraint–as possible. Interestingly, and

although clearly not the last word on the topic, in a recent study comparing a wide range of

non-linear dimension reduction techniques on natural and artificial data sets, it was found

that the more complex models–including, for example, Isomap and kernel-PCA–were often

incapable of outperforming PCA [40].
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With respect to PCA, choosing a value for the single free parameter determines how many

principal components are kept, and this choice is facilitated by inspection of the resultant

eigenvalue curve. The performance of the classifier is described below and is determined with

respect to variation in the number of principal components utilised, where the range investi-

gated is informed by inspection of the eigenvalue curve. Although the feature set generated by

PCA does not have any physical interpretation, this is less of a problem here since the original

features represent statistical measures of wavelet coefficients at particular levels of decomposi-

tion and sub-banding–none of which have any readily identifiable physical interpretation.

The singular value decomposition of the normalised (zero mean and unit variance) training

data matrix X of Xj with dimensions p� q is given by

W � D � VT

where p are the number of training samples, q are the number of features, D is a diagonal

matrix with elements d1. . .q corresponding to the square roots of the eigenvalues of X � XT , and

where the columms of V are the eigenvectors of XT � X (where the superscript T denotes the

transpose). The principal components PCtrain of X are given by

PCtrain ¼ X � V

Feature extraction corresponds to taking the first n of q columns of PCtrain

For the purposes of cross-validation, the standardised test data matrix Y with dimensions

r×q r � q is obtained from the data matrix Y j by subtracting the mean and dividing by the

standard deviation of the training data. Y is then transformed to the othogonal coordinate sys-

tem PCtest given by

PCtest ¼ Y � V

The first n of q columns of PCtest are used as appropriate input for the SVM. For individual

lesion assessment, the same operations are performed with the data matrix Y reducing to a

row vector with dimensions 1×q.

Fig 3A shows a plot of the sorted eigenvalues corresponding to their associated principal

component, obtained from the singular value decomposition of the standardised data matrix

desribed above (here the whole database is used, thus the data matrix X has dimensions 250 x

125; the latter value corresponds to the first 125 native features determined utilising the ReliefF

algorithm). Note that the eigenvalues begin to decay more slowly for values of n around 25,

indicating that the first 20–30 principal components can be taken with minimal information

loss. Indeed, using the SVM as the image classifier, Fig 3B shows the results of 10-fold cross

validation for n with values ranging between 7 and 40. With 22 features (principal compo-

nents), the model achieves a 10-fold cross validation sensitivity of 0.93 and a specificity of 0.87.

Inspection of the top panel of Fig 2B reveals that taking the first native 22 features yields a

10-fold cross-validation sensitivity and specificity in the mid 80s and high 60s respectively.

This result indicates, as expected, that feature extraction is a superior method in comparison

with a feature selection method that simply takes the first 22 features that best separate the clas-

ses. On the other hand, the feature extraction method utilising 22 features (Fig 3B) yields the

same result as 10-fold cross validation utilising 125 features (Fig 2B, top left panel), (accuracy

0.90 v 0.90 respectively), and exhibits slightly diminished performance compared with the best

leave-one out cross validation utilising 125 features and an optimised value of C (accuracy 0.90

v 0.92 respectively; see Table 2).
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Discussion

This model is not the first to use the wavelet decomposition of image data for the purpose of

classifying pigmented lesions, but it is likely to be the first that utilises the statistical properties

of wavelet coefficients to classify lesions requiring excision from those not requiring excision.

It is shown that the model, utilising the SVM as the classifier, and with only 22 orthogonal fea-

tures, can achieve 10-fold cross-validation sensitivities and specificities of 0.93 and 0.87, yield-

ing a diagnostic-odds ratio of 247. A previous meta-analyses from a total of 13 studies, where

all metrics relating to the accuracy of melanocytic lesion diagnosis relied on cross-validation,

revealed a diagnostic odds ratio of 15.9 [41]. Although the results presented here improves on

this latter result by a considerable margin, it should be noted that the meta-analyses desribe

the performance of diagnostic algorithms, not decision-making algorithms. From the clinical

perspective, the reduced specificities in the diagnostic models are not surprising or necessarily

problematic given the inherent difficulties in distinguishing melanoma from atypical naevi.

However, the large diagnostic-odds ratio obtained with respect to the decision-making algo-

rithm is likely to give the clinician more confidence–the output simply replicates the decision-

making of an expert dermatologist with high accuracy. In contrast with diagnostic algorithms,

the clinician will not need to be as vigilant regarding the possibility of false negatives.

A limitation of the present study is the relatively low number of training images; certainly a

much larger training set will be required before the algorithm could be implemented in patient

Fig 3. Principal component analysis. (A) Plot of the sorted eigenvalues of the covariance matrix associated with the data matrix X :Note that the eigenvalues

begin to decay more slowly at about n = 30. (B) SVM sensitivity (top curve) and specificity as a function of the number of principal components used in the

feature reduction procedure. Note the best result overall occurs utilising 22 principal components, but the best sensitivity occurs with 16 principal

components.

https://doi.org/10.1371/journal.pone.0203459.g003

Table 2. SVM cross-validation error rates.

C 1 15 30 35 40 50

Fold

10 0.149 0.095 0.088 0.086 0.088 0.091

25 0.143 0.092 0.081 0.082 0.083 0.085

250 0.144 0.096 0.076 0.080 0.080 0.084

Mean values of error rates for the SVM following 50 replications for different levels of N-fold cross-validation and values of C. Note that the optimal value of C is around

30 independent of level of cross-validation and that the model improves with a larger training set.

https://doi.org/10.1371/journal.pone.0203459.t002
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management. Another limitation is more general: a problem for any machine learning algo-

rithm attempting to reproduce human classification expertise may reside in its training set

labels–there is potential for a lack of consistency in these labels due to non-concordance in the

decision-making of human experts. If an algorithm is trained with conflicting examples, its

performance may be compromised. As noted in the Introduction, this is a potential problem

when classifying pigmented lesions based on histopathological diagnoses. Yet clinical deci-

sion-making will also suffer from the same limitation. By restricting the human classifier to

one renowned expert, consistency can be achieved at the expense of potential bias. On the

other hand, using a majority rule among multiple experts’ decisions can mitigate bias at the

expense of consistency. The trade-off between consistency and bias and its impact on the

veracity of training data is thus an important consideration. Reassuringly, in the training set

reported here, all lesions were classified by only a small number of dermatologists, and all the

dermatologists received their specialist training under the same conditions.

The relatively small number of features used in the model– 22 –suggests that over-fitting is

unlikely to be a problem, thus, from the perspective of model complexity, its generalisation

properties will not be compromised. Importantly, however, by virtue of its modularity and

flexibility, the analysis pipeline will permit the model to evolve, and thus improve its generali-

sation capabilities as new training data are acquired. Its major modular components are: (i)

the choice of wavelet function; (ii) the level of wavelet decomposition; (iii) the statistal measures
derived from the wavelet coefficients; (iv) the method of ranking the utility of features in the classi-
fication task; (v) the feature selection methodology; (vi) the feature extraction methodology; and

finally, (vii) the choice of artificial intelligence algorithm. Any or all of the modular choices used

in the current implementation can be substituted with alternatives, and tested, as new training

data are acquired. Interestingly, as noted in the Results section, the performance of the model

in 10-fold cross validation reached a maximum at around 125 features. This observation sug-

gests that increasing the number of training set examples may not necessarily lead to further

increases in the optimal number of native features required to best separate the classes. If ~125

native features optimise cross-validation performance with two thousand training samples,

then it may not be necessary to extract a reduced number of principal components, as overfit-

ting these data may not then be an issue.

Consider the implementation of the algorithm in the clinical setting. Although the findings

are based on a relatively small training sample, the results are encouraging. By appoximating

the performance of expert dermatologists, the high sensitivities indicate that the model shows

potential in not compromising melanoma detection, while the high specificities suggest the

model may be of assistance in reducing the number of unnecessary excisions, thus lowering

the NNT of practitioners in general. As defined elsewhere [21], the algorithm can act as a deci-

sion support tool; more specifically, it is envisioned that if either the clinician, on clinical

grounds, and/or the algorithm, based purely on morphologic grounds, indicates that the lesion

should be excised then it should be excised. The lesion should only not be excised if both clini-

cian and algorithm agree that the lesion does not require excision.

Although this strategy appears simple and effective, there are problems associated with the

use of automated tools in pigmented lesion assessment. While size, site and history of a given

lesion can yield information that may determine a management decision irrespective of the

morphology per se, it is context that poses the major problem for any automated assessmnet tool

[42]. For example, a single darkly pigmented melanocytic lesion present on the posterior leg in

a female red-head should probably be excised, irrespective of its morphology. Yet if the lesion

appears to be a benign compound naevus, then the decision-making algorithm is likely to rec-

ommend no excision. On the other hand, some patients can exhibit multiple atypical pigmented

lesions, particularly if there is a history of excessive sun exposure. The majority of these lesions,
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however, are usually benign junctional naevi. The decion-making algorithm described here

may suggest, wrongly, that all lesions should be excised. Yet all is not lost: in the case of the red

head the algorithmic decision not to excise should be ignored; while in the case of patients with

multiple atypical naevi the algorithm may have utility–given its probabilistic output–in detect-

ing the ‘ugly duckling’; that is, the lesion that is most likely melanoma [43].

Finally, a smart device application has been developed, based on the Wolfram platform

[23], which allows clinicians to easily utilise the algorithm in the clinical setting (Fig 4A).

Using, for example, the HandyscopeTM attachment to an iPhoneTM, the clinician is able to take

high quality polarised images of pigmented lesions and immediately input them to the algo-

rithm, where the computations take place in the cloud. Alternatively, images can be saved on

the smart device or transferred to a computer and submitted for analysis at any time. Results

are displayed on the smart device within 30 to 45 seconds and can be given as either a binary

output (excise; do not excise) or as a probability of class membership (Fig 4B). It is planned to

introduce the algorithm as a research tool where the aims are twofold: first, to formally assess

the application’s clinical acceptability; and second, to utilise the images obtained to periodi-

cally expand the training set, update the algorithm, and re-evaluate its performance.

Hardware and software

All computations were performed on a MacBook Pro, running at 2.5GHz and with 8GB RAM

(Apple Corporation, California, USA). All computations were performed using either Mathe-
matica V10 (Wolfram Research, Illinois, USA) or the R platform: (R Core Team (2014). R: A

language and environment for statistical computing. R Foundation for Statistical Computing,

Vienna, Austria. URL: http://www.R-project.org/).

Supporting information

S1 File. noexcision.

(CSV)

S2 File. excision.

(CSV)

Fig 4. Screenshots of the application as it appears on a smart device. (A) Data entry page showing the image to be

analysed (which can be imported directly using the smart device’s camera, or from a file by dragging or using a file

directory), the patients ID code, the site of the lesion, and the probability threshold (which is by default set to 0.50). (B)

The output page is self-explanatory. (Reproduced with permission [23]).

https://doi.org/10.1371/journal.pone.0203459.g004
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