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Abstract
The anthrax toxin receptors—capillary morphogenesis gene 2 (CMG2) and
tumor endothelial marker 8 (TEM8)—were identified almost 20 years ago,
although few studies have moved beyond their roles as receptors for the
anthrax toxins to address their physiological functions. In the last few years,
insight into their endogenous roles has come from two rare diseases:
hyaline fibromatosis syndrome, caused by mutations in CMG2, and growth
retardation, alopecia, pseudo-anodontia, and optic atrophy (GAPO)
syndrome, caused by loss-of-function mutations in TEM8. Although CMG2
and TEM8 are highly homologous at the protein level, the difference in
disease symptoms points to variations in the physiological roles of the two
anthrax receptors. Here, we focus on the similarities between these
receptors in their ability to regulate extracellular matrix homeostasis,
angiogenesis, cell migration, and skin elasticity. In this way, we shed light
on how mutations in these two related proteins cause such seemingly
different diseases and we highlight the existing knowledge gaps that could
form the focus of future studies.
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Introduction
In the early 2000s, two newly discovered proteins—capillary 
morphogenesis gene 2 (CMG2) and tumor endothelial marker 
8 (TEM8)—were demonstrated to be anthrax toxin recep-
tors (ANTXRs)1,2. Since then, much research has focused on 
their toxin-related pathogenic roles (most recently reviewed 
by Friebe et al.3 and Sun and Jacquez4). However, both 
CMG2, encoded by the ANTXR2 gene, and TEM8, encoded  
by the ANTXR1 gene, also possess physiological roles in ver-
tebrates, the study of which has not received nearly the same 
level of attention. What has helped to drive research into their 
endogenous roles is that both receptors are associated with 
recessive autosomal diseases: mutations in CMG2 lead to hya-
line fibromatosis syndrome (HFS), whereas mutations in 
TEM8 result in growth retardation, alopecia, pseudo-anodontia, 
and optic atrophy (GAPO) syndrome5–7. The literature contains 
reports of some 350 HFS patients of whom 112 have been  
genotyped, possessing 56 different mutations. In parallel,  
70 GAPO patients have been reported, 21 of which have geno-
type information, comprising 14 different mutations. Even 
though these diseases have grossly different symptoms, CMG2 
and TEM8 share 62% sequence similarity, reasonably allowing  
for some overlapping structure/function relationship and 
ensuring that a better understanding of the function of one 
receptor can prompt progress on the other. Therefore, this 
review aims to synthesize the latest information on these  
ANTXRs with earlier established observations to better under-
stand their physiological functions and provide open pathways  
for future research.

Anthrax toxin receptor structure and epistructure
Both CMG2 and TEM8 are type I transmembrane proteins con-
sisting of an extracellular von Willebrand factor type A (vWA) 
that is also found in integrins and participates in receptor– 
ligand interactions, an extracellular immunoglobulin-like  
(Ig-like) domain, and a long cytoplasmic tail that is predicted 
to be largely unstructured and contains an actin–cytoskeleton  
interacting domain (Figure 1). The structure of the extracellular 
domains was analyzed by low-resolution cryo-electron micro-
scopy, onto which the x-ray structure of the vWA domain8,9  
and a model of the Ig-like domain10,11 were successfully 
docked. CMG2 and TEM8 have long cytosolic tails of 148  
and 222 residues, respectively, which are predicted to be intrin-
sically unstructured like the cytoplasmic domains of many 
other signaling receptors12. These tails could allow sequential  
interaction with diverse partner molecules13 and were also 
found to be the site of various post-translational modifications, 
such as S-palmitoylation14, ubiquitination14, and tyrosine- 
phosphorylation15, all of which were found to be necessary for 
toxin-induced endocytosis3. The CMG2 and TEM8 tails are  
completely identical in certain segments but have no homol-
ogy in others16, pointing toward similarities and differences,  
respectively, in interacting partners. The most highly conserved 
portion between the two receptors, which is juxtamembrane, 
has homology with the actin-regulating Wiskott–Aldrich syn-
drome protein17. Relatedly, TEM8 was also consistently shown to  
interact with actin18,19, although this interaction may be indirect  
and require adaptor proteins, such as those observed for 
integrins20.

Figure 1. TEM8 and CMG2 are similar in gene and protein structure: mutations in the former lead to GAPO and those in the latter 
lead to HFS. Tumor endothelial marker 8 (TEM8) (blue) and capillary morphogenesis gene 2 (CMG2) (green) have similar exon schemes 
and protein structures. Crystal structures of the von Willebrand factor type A (vWA) domain of TEM8 (Protein Data Bank [PDB]: 3N2N8) and 
CMG2 (PDB: 1TZN9) are shown aligned. The immunoglobulin (Ig)-like and transmembrane domains have been modelled on CMG2 and are 
shown in gray10. The cytosolic tails, longer for TEM8 than for CMG2, are intrinsically disordered with a conserved juxtamembranous actin-
binding domain (ABD). The number of reported occurrences of mutations in growth retardation, alopecia, pseudo-anodontia, and optic 
atrophy (GAPO) is depicted next to TEM8, and the corresponding number in hyaline fibromatosis syndrome (HFS) is shown next to CMG2. 
The number of HFS patients with mutations in CMG2 is almost an order of magnitude higher than those of GAPO/TEM8.
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Receptors for anthrax toxin
The function of CMG2 and TEM8 as ANTXRs has been  
extensively studied. The surface residence time of ANTXRs 
is regulated by S-palmitoylation at three or four sites in their  
cytoplasmic tails, as shown for TEM814, and under “resting” 
conditions, TEM8 is associated with the actin cytoskeleton15,21  
(Figure 2A). As opposed to how integrins concurrently inter-
act with their ligand and the cytoskeleton, upon binding of a 
ligand such as anthrax toxin protective antigen (PA), the inter-
action of TEM8 with the actin cytoskeleton is released. Upon  
ligand binding, PA oligomerizes into a heptameric or octa-
meric complex, leading to clustering of the receptors2,22,23.  
This, in turn, triggers src family kinase-mediated phosphor-
ylation of cytoplasmic tyrosines in the ANTXR tails15,24 and  
subsequent recruitment of the adaptor protein β-arrestin, 
allowing an E3 ligase (Cbl for TEM8) to bind and facilitate  
ubiquitination14,24. Ubiquitinated ligand-bound ANTXRs are 
taken up by an adaptor protein 1 (AP-1)-dependent and clathrin- 
mediated endocytic route24. Upon arrival in sorting endo-
somes, in the presence of a multivalent ligand, ANTXRs 
are sorted into nascent intraluminal vesicles. The exact  
mechanism and molecular requirements for this sorting 
have not been investigated. Although a bird’s-eye view of  
toxin-induced endocytosis is available, little is known about the 
physiological endocytic trafficking of ANTXRs, particularly  
whether they undergo endocytosis and recycling for re-utilization.

HFS-causing CMG2 mutations
HFS is now the unifying term for two diseases previously 
described in the literature: infantile systemic hyalinosis (ISH), 

which was named in 198625, and juvenile hyaline fibromatosis 
(JHF), first described in 1873 by Murray26 and named in 197627.  
Initially, these terms were thought to describe two different dis-
eases with overlapping symptoms, including subcutaneous 
nodules, gingival hypertrophy, painful joint contractures, and  
persistent infections. ISH is, however, more severe with death 
occurring before the age of two because of protein-losing enter-
opathy. In the early 2000s, patients with both JHF and ISH 
were found to have mutations in CMG25,6,28, pointing to the  
disease causality. This allowed the classification of a unified 
syndrome with a symptom grading system, placing the pre-
viously named ISH and JHF on two ends of a continuum of  
disease severity29,30. We strongly encourage the community to 
adopt a single nomenclature—HFS instead of ISH or JHF—to  
ensure clarity in the literature.

HFS-causing mutations in CMG2 fall into four classes:  
(a) missense mutations in the vWA domain that specifically 
affect ligand binding; (b) missense mutations in exons 1 to 11 
that affect folding/stability of the ectodomain, leading to protein  
degradation; (c) frameshift mutations that lead to premature 
stop codons, nonsense mutations, and those that affect splicing,  
leading to rapidly degraded mRNA; and (d) missense muta-
tions in the cytosolic tail that do not affect protein abundance or 
localization but likely affect some aspect of CMG2 function16.  
Casas-Alba et al. recently published an exhaustive review on  
phenotype–genotype correlations of patients with HFS31. The 
authors used the aforementioned grading system30 to support  
the general notion that missense mutations in exons 1 to  
12 and nonsense and frameshift mutations lead to more severe 

Figure 2. Depictions of ligand-free TEM8 and ligand-bound CMG2. (A) Ligand-free tumor endothelial marker 8 (TEM8) is palmitoylated 
and bound directly or indirectly to the actin cytoskeleton. Through this association, it plays a role in cell spreading and migration as well as 
wound healing. Red zigzag lines represent S-palmitoylation modifications of TEM8, which increase resident time of either receptor at the cell 
surface. (B) When bound to collagen VI (ColVI) or anthrax toxin protective antigen (PA), capillary morphogenesis gene 2 (CMG2) becomes 
phosphorylated (“P”) and ubiquitinated (“Ub”). This allows CMG2 to signal downstream within the cell, endocytose the receptor–ligand 
complex, and degrade ColVI in the lysosomes.
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forms of the disease than missense mutations in exons 13 to  
1731. The gravest mutations largely affect protein abun-
dance due to mRNA or protein degradation, whereas the  
milder mutations do not affect protein expression levels16. 
One exception is the missense mutations that prevent ligand  
binding, which still produce normal amounts of protein but are 
even more severe than mutations that lead to near-complete pro-
tein loss. This observation raises interesting possibilities. Either  
ligand-binding-deficient CMG2 not only loses its initial function 
but may gain a new pathogenic one or unliganded CMG2 has  
important signaling functions that need to be switched off 
by ligand binding. Upon mutation of the ligand binding site,  
sustained signaling could be detrimental.

GAPO-causing TEM8 mutations
The symptoms of GAPO were first described by Andersen and 
Pindborg in 194732 but the term was not coined until 198433.  
The name of the disease itself, GAPO, describes its most  
characteristic symptoms: growth retardation, alopecia, pseudo- 
anodontia, and optic atrophy; however, since optic atrophy is seen 
in only a small fraction of patients, there is an appeal to rename 
the O to “ocular manifestations”, as many patients do have  
other eye defects, such as glaucoma34. Although only a few cases 
of GAPO lead to death before adulthood34–36, it is still a severe 
disease that often gives patients a geriatric appearance. The  
link between GAPO manifestation and mutations in TEM8 
was found only in 20137, 10 years after the connection between  
CMG2 and HFS was discovered.

Recently, Abdel-Hamid et al. reported on seven new GAPO 
patients and their associated mutations37, almost doubling the 
known mutations. It is still premature to identify any mutational 
hot spots in TEM8 like we observe in the juxtamembranous 
exon 13 of CMG2 for HFS (Figure 1). However, the mutant  
categories for GAPO will likely be similar to those of HFS, with 
missense mutations that map to the TEM8 cytosolic tail lead-
ing to milder phenotypes, as suggested by the description of a  
homozygous patient presenting with pseudo-anodontia and no  
other reported symptoms38.

Converging physiological functions of anthrax toxin 
receptors
Extracellular matrix homeostasis and remodeling
What is clearest about the physiological roles of CMG2 and 
TEM8 is that they both interact with the extracellular matrix 
(ECM), although the specific ECM–protein interaction part-
ners have been a point of contention in the literature. Early 
in vitro studies reported that CMG2 can bind collagen (Col)  
IV and laminin17. That experiment relied on testing five ECM 
proteins (those two and osteopontin, fibronectin, and albumin)17,  
overlooking other potential ECM ligands. Recent and more  
comprehensive in vitro studies have instead indicated that  
CMG2 has a higher affinity for ColVI than ColIV or laminin39.  
TEM8 was also found to bind the cleaved C5 domain of  
ColVI(α3)40. In mice, the lack of CMG2 or TEM8 can lead to 
an accumulation of ECM in various tissues, and there is some 
controversy as to which components accumulate. In mice lack-
ing CMG2, an accumulation of only ColVI39 or both ColI and 

ColVI41 was observed, whereas in mice lacking TEM8, an  
increase in both ColI and ColVI was detected42,43.

Significant insight into the physiological function of CMG2 
and its involvement in HFS has come from the recent 
work of Bürgi et al., who analyzed HFS patient nodules to 
reveal that they are predominantly made up of ColVI39. The 
authors also showed that CMG2 is a cellular receptor for this  
non-fibrillar collagen and that it can mediate the degradation of  
ColVI in lysosomes (Figure 2B)39. Strikingly, they observed 
that whereas female mice lacking CMG2 have hypertrophic 
uteri and parturition defects (seen previously41,44), mice  
deficient for both CMG2 and ColVI were able to deliver pups  
normally39. Furthermore, this study did not implicate matrix  
metalloprotease inhibition as a mechanism for extracellular 
ColVI accumulation, as was proposed in earlier studies41,43,45.  
Thus, it appears to be the inability of CMG2 to control the 
abundance of ColVI in the extracellular space that leads to  
the formation of nodules in patients with HFS. Explaining 
other HFS symptoms, such as life-threatening protein-losing  
enteropathy in infants, will require further investigation.

The fact that CMG2 is a bona fide ColVI receptor is new, although 
the literature had previously hypothesized that the ANTXRs reg-
ulate collagen clearance, and CMG2 itself was already thought 
to be the cellular receptor responsible for collagen internaliza-
tion and degradation44. Meanwhile, TEM8 was postulated to 
be involved in collagen degradation through an endocytosis- 
mediated pathway46, and TEM8 recycling was posited to  
lead to ColI and ColVI clearance47. In one of the earlier reports 
of GAPO, Wajntal et al. theorized that the disease symp-
toms were due to ECM accumulation and hypothesized that 
GAPO was the result of an autosomal recessive defect in a gene  
responsible for ECM component breakdown48. However, TEM8  
is unable to compensate for ColVI degradation in human fibrob-
lasts upon silencing of CMG2 or in cells of patients with HFS, 
suggesting that even though TEM8 might have the ability to bind  
ColVI, it does not escort it to lysosomes, at least not in  
fibroblasts, as CMG2 does39. Since TEM8 was found to bind 
the C5 domain of ColVI, which is processed during maturation,  
TEM8 might have a different role in ColVI homeostasis.

Angiogenesis and cancer
Both CMG2 and TEM8 were originally discovered because 
of their connection to angiogenesis. In 2000, TEM8 was 
found to be the eighth most upregulated marker in the tumor 
endothelium49, and in 2001, the gene encoding for CMG2 was  
uncovered as the second most upregulated gene in in vitro  
capillary morphogenesis in three-dimensional collagen  
matrices17. Consistent with these findings, anthrax PA was 
observed to prevent angiogenesis in a moderate yet significant 
manner50. Additionally, a heterozygous mutation in the transmem-
brane domain of TEM8 is associated with infantile hemangiomas,  
benign tumors arising from disorganized angiogenesis51.

Since angiogenesis is a major hallmark of cancer, research-
ers have investigated the roles of CMG2 and TEM8 in  
cancer since their initial discovery. For TEM8, the literature is  
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consistent in that its overexpression results in more aggressive  
cancer, especially for osteosarcomas52, gallbladder carcinomas53,  
melanomas42, and lung54, breast55,56, and colorectal57 cancers. 
However, for CMG2, there are mixed reports of the effect 
of its overexpression on cancer progression; some show that 
lower CMG2 correlated with a more aggressive soft-tissue  
sarcoma58 and breast cancer59, and others reveal that higher 
CMG2 resulted in a worse survival rate in patients with gastric  
cancer60 and glioblastoma61. Although these studies link these 
proteins to angiogenesis, mechanistic explanations of the 
cancer-related roles of ANTXRs are still lacking. Research  
has also focused on targeting CMG2 or TEM8 for cancer  
therapy62, especially using anti-TEM8 antibodies63,64, CMG2 
vWA domain fragments65, or anthrax toxin itself66 for slowing  
cancer progression. Recently, Szot et al. demonstrated the  
potential of delivering antibody drug conjugates targeting 
TEM8 to tumor-associated stromal cells, thereby unexpectedly  
but effectively killing nearby cancer cells67. Meanwhile, Byrd  
et al. successfully used TEM8 chimeric antigen receptor  
T cells to target and regress xenograft tumors derived from  
patients with triple-negative breast cancer68.

Actin cytoskeleton and cell migration
As mentioned earlier, both ANTXRs contain a putative actin-
interacting peptide sequence in their cytoplasmic tails (jux-
tamembrane residues 355 to 420), and it has been shown that  
ligand-free TEM8 binds to the actin cytoskeleton24 (Figure 2A).  
Furthermore, it was proposed that the actin cytoskeleton  
can regulate the affinity of TEM8 for its extracellular ligands21,69. 
More specifically, Go et al. showed that mutating tyrosine 
383 to cysteine in TEM8 (mimicking an HFS mutation,  
Y381C) decreased actin–cytoskeleton interactions but increased 
anthrax-toxin binding69. This type of inside-out signaling  
is reminiscent of integrins. The fact that integrins are involved 
in cell adhesion, spreading, and migration has led to studies  
asking whether TEM8 could be involved in similar cellu-
lar processes. TEM8 was reported to affect cell adhesion and  
spreading by coupling the ECM with the actin cytoskeleton19,47. 
However, while integrins simultaneously bind extracellular 
ligands and the intracellular actin cytoskeleton, thus generat-
ing force, the mutually exclusive interaction of TEM8 with  
ligands and actin indicates that the contribution to spreading must 
occur via different mechanisms, which remain to be elucidated.

One process that combines angiogenesis, cell migration, and 
ECM remodeling is wound healing. In 2016, Wang et al. 
demonstrated that TEM8 expression is increased in acute or 
chronic wounds as compared with normal skin70. When they 
depleted TEM8 in keratinocyte cells, they saw decreased migra-
tion and proliferation70. However, the exact molecular role of  
TEM8 in regulating wound healing is still unknown.

Surprisingly, CMG2 has not yet been characterized to inter-
act with the actin cytoskeleton. Instead, zebrafish Antxr2a, a  
CMG2 ortholog, was shown to be involved in positioning the 
mitotic spindle in a process that involves the small GTPase 
RhoA and its downstream effector mDia71. Consistent with a 
putative role of CMG2 in actin cytoskeleton rearrangements, 

CMG2 knockdown led to decreased migration in human uter-
ine smooth muscle cells while its overexpression led to increased  
migration45.

Skin physiology and organ fibrosis
Both HFS and GAPO patients have issues with the skin: skin 
thickening in HFS and alopecia in GAPO. Although few his-
topathological analyses have been reported for patients with 
GAPO37, the dermis of one patient with GAPO was shown to have 
abundant hyaline material with increased collagenous fibers48,  
suggesting that, like HFS (the earliest histopathological analyses72 
to the latest73), GAPO is a disease of the connective tis-
sue. This increased ECM could interfere in the development  
and cycling of the hair follicles74 but this is still unproven.

An analysis of TEM8 knockout (KO) mice was consistent with 
patient molecular observations in that increased ECM is seen 
in organs that consequently develop fibrosis42,43. Whereas ear-
lier reports did not observe gross changes in the TEM8 KO 
mice42, more recent studies on a different KO mouse line indi-
cate that mice rather accurately mimic the GAPO phenotype43.  
Hu et al. recently showed that fibroblasts isolated from older 
mice deficient in TEM8 have an increased expression of ColI, 
fibronectin, and the connective tissue growth factor (CTGF)75. 
They argue for a cell-autonomous mechanism wherein  
TEM8 targets CTGF to regulate ECM production, meaning 
that TEM8-lacking cells have higher CTGF, thus a higher  
ECM production that leads to fibrosis75.

It is important to note that nodules develop months or years 
after birth in patients with HFS and that hair loss starts around 
age two for patients with GAPO16,37. Similarly, ECM accumu-
lation was predominantly seen in older patients with GAPO7. 
In mice lacking CMG2, the uterine fibrosis phenotype was seen 
only in sexually mature mice41; similarly, progressive fibrosis 
was observed for mice deficient for TEM843. This could mean  
either that the organism can temporarily buffer disease or that 
the accumulation of ECM reaches a threshold that causes 
these manifestations. One obvious implication is that CMG2 
might partly compensate for TEM8 function and vice versa 
before the cell is overwhelmed and the disease symptoms arise.  
Interestingly, double-KO mice are viable but produce no pups 
when mated76, suggesting that the receptors have non-redundant  
roles in fertility, embryonic development, or parturition.

Conclusions and Outlook
In recent years, significant progress has been made in under-
standing the functions of CMG2 and TEM8 in vertebrates. 
Specifically, the fact that these two receptors act as causative 
genes for strikingly different diseases was perplexing, as their 
main domains are conserved so they likely have similar physi-
ological roles in the cell. The similarity in underlying molecular  
defects—both receptors contribute to ECM homeostasis,  
angiogenesis, cell migration, and skin pathology—has helped 
to explain this. However, the devil appears to be in the details 
that remain elusive: which collagen(s) do they bind, how do 
they (directly) interact with actin, can they endocytose ECM 
components for lysosomal breakdown without depleting the 
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extracellular environment of their ligand, which signaling  
cascades do they trigger, and in which cells do they primarily  
function? Furthermore, the role that these ANTXRs play at a 
molecular level in angiogenesis, cell migration, and wound 
healing remains to be elucidated. We hope that this review has 
provided sufficient evidence of the analogous nature of the  
ANTXRs to guide future research into these two receptors.
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