

PLASTOME REPORT

The complete chloroplast genome of *Clematis serratifolia* (Ranunculaceae) from Jilin province, China

Yi Cui^{a*}, Lihua Yang^{b*}, Qian Wang^c, Yunhe Wang^a, Zeliang Lü^a and Zhongming Han^a

^aCollege of Chinese Medicinal Materials, Jilin Agricultural University, State Key Laboratory of JLP-MOST for Ecological Restoration and Ecosystem Management, Changchun, China; ^bCollege of Life Science, Changchun Sci-Tech University, Changchun, China; ^cThe 3rd Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China

ABSTRACT

Clematis serratifolia has high medicinal and ornamental value. In this study, we characterize and report, for the first time, the complete chloroplast genome sequence of C. serratifolia based on high-throughput sequence dates. The whole chloroplast genome of C. serratifolia is a circular molecule of 159,648 bp in length, consisting of a large single-copy (LSC) region of 79,394 bp, a small single-copy (SSC) region of 18,112 bp, and two inverted repeat (IR) regions of 31,071 bp. The overall GC content of the chloroplast genome is 38%, while that in the LSC, SSC, and IR regions is 36.3%, 31.3%, and 42.1%, respectively. The chloroplast genome of C. serratifolia contains 133 genes, including 89 coding genes, 8 ribosomal RNAs, and 36 transfer RNAs. Among them, 14 protein-coding genes have a single intron, and 2 genes have two introns. The phylogenetic analysis showed a close relationship between *C. serratifolia* and *C. heracleifolia*.

ARTICLE HISTORY

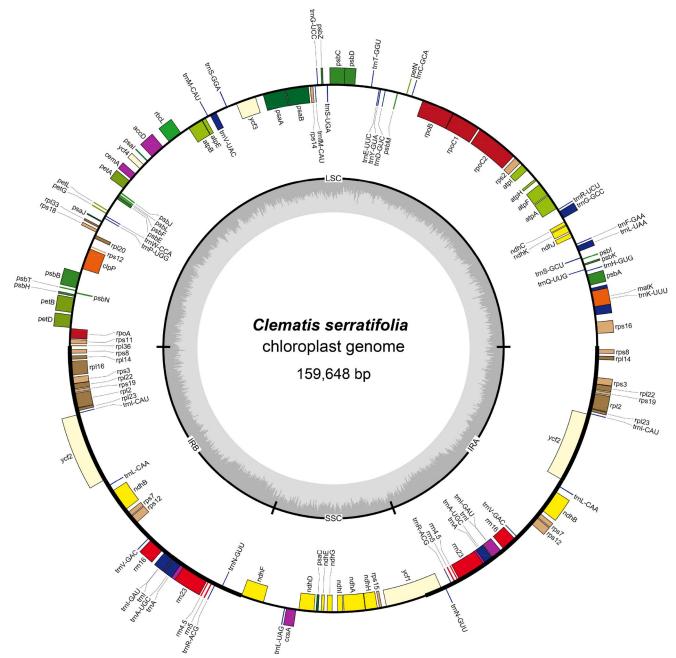
Received 18 April 2024 Accepted 24 September 2024

KEYWORDS

Clematis serratifolia: chloroplast genome; phylogenetic tree; Ranunculaceae

Introduction

Clematis serratifolia Rehd (1910) is a herb that belongs to the Ranunculaceae family and grows in mountain forests at an altitude of 400 m, as well as on roadsides and cobbled fields. It is distributed in the east and central regions of Liaoning and the east region of Jilin (Wang et al. 1980). The seed of this plant species has high economic value because of its seed oil with a high iodine content (Wang et al. 1980). The chloroplast is a semi-autonomous organelle with circular DNA, whose genome has been the focus of molecular evolution and phylogenetic relationships (Clegg et al. 1994; Jansen et al. 2007; Moore et al. 2010). In recent years, the complete chloroplast genomes of Ranunculaceae have been reported to investigate their


Figure 1. The image of C. serratifolia. It was taken by Zeliang Lü and holotype specimen was collected from the Fusong County, Baishan, China in may 2021.

CONTACT Zhongming Han 🔯 hanzm2008@126.com 🔁 College of Chinese Medicinal materials, Jilin Agricultural University, No. 2888, Xincheng Street, Changchun, Jilin 130118, China

Supplemental data for this article can be accessed online at https://doi.org/10.1080/23802359.2024.2411374. *Authors contributed equally to this work.

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

Figure 2. The complete chloroplast genome map of *C. serratifolia*. Color codes represent different functional gene groups. Genes lying inside and outside the outer circle are transcribed clockwise and counterclockwise, respectively. The GC and at content variations are colored darker gray and lighter gray, respectively. The thick lines indicate the extent of the inverted IRa and IRb separated by a large single-copy region (LSC) and small single-copy (SSC) region.

phylogenetic relationships (Liu et al. 2018). However, *Clematis serratifolia's* systematic genetic location is unclear (Yang et al. 2020). For this reason, it is necessary to construct a high-quality assembled chloroplast to understand the relationships between *C. serratifolia* and other Ranunculaceae species at the molecular level. This can provide the foundation for further studies on phylogeny and molecular breeding, as well as offer valuable information regarding the evolution process of *C. serratifolia*.

Materials and methods

Fresh leaves of *C. serratifolia* were collected from Fusong County, Baishan, China (42°20'31.27" N, 127°16' 49.30"E)

(Figure 1). The voucher specimen was deposited in the Herbarium of the College of Chinese Medicinal Materials, Jilin Agricultural University (https://zhongyao.jlau.edu. cn, Zeliang Lü, Ivzeliang@foxmail.com) under voucher number *Y. Cui 2021013* (Figure 1). In this study, genomic DNA was extracted using a plant genome extraction kit (RC1010/301, CONCERT). Then, DNA integrity and concentration were detected using agarose gel electrophoresis and Nanodrop, respectively. High-throughput sequencing was performed using the Illumina Hiseq 2500 (Illumina, USA) with 150 bp paired-end reads. A total of 1.4 Gb raw reads were obtained and assembled into contigs using metaSPAdes (Nurk et al. 2017), taking the reported chloroplast genome of *C. trichotoma*

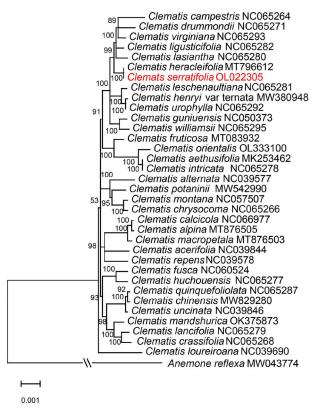


Figure 3. ML phylogenetic tree of the 35 species reconstructed on the basis of the chloroplast genome. Bootstrap support values are shown at the nodes. The following sequence were used: Clematis serratifolia (OL022305) (this study), Clematis campestris (NC065264), Clematis drummondii (NC065271), Clematis virginiana (NC065293), Clematis ligusticifolia (NC065282), Clematis lasiantha Clematis leschenaultiana (NC065281), (NC065280). Clematis urophylla (NC065292), Clematis williamsii (NC065295), Clematis intricate (NC065278), Clematis calcicole (NC066977), Clematis chrysocoma (NC065266), Clematis alpina (MT876505), Clematis macropetala (MT876503), Clematis acerifolia (NC039844), Clematis fusca (NC060524), Clematis huchouensis (NC065277), Clematis quinquefoliolate (NC065287), Clematis chinensis (MW829280), Clematis uncinate (NC039846), Clematis lancifolia (NC065279), Clematis crassifolia (NC065268), Clematis loureiroana (NC039690) (unpublished), Clematis heracleifoliab (MT796612) (Lyu et al. 2021), Clematis henryi var ternate (MW380948) (Chen et al. 2021), Clematis guniuensis (NC050373) (Jiang et al. 2020), Clematis fruticose (MT083932) (Yang et al. 2020), Clematis orientalis (OL333100) (Cui et al. 2022), Clematis aethusifolia (MK253462) (He et al. 2019), Clematis alternata (NC039577), Clematis repens (NC039578) (Liu et al. 2018), Clematis potaninii (MW542990) (Zhang et al. 2022), Clematis Montana (NC057507) (Mao et al. 2020), Clematis mandshurica (OK375873) (Cui et al. 2022), Anemone reflexa (MW043774) (Zhang et al. 2021).

(MG952896) as a reference. Annotation was performed using CPGAVAS2 (Shi et al. 2019), followed by manual correction. The complete annotated chloroplast (cp) genome sequence was submitted to GenBank under accession number OL022305. The gene maps of the complete chloroplast genome and the structure of the genes that were difficult to annotate were generated using ogdraw and CPGVIEW (Greiner et al. 2019; Liu et al. 2023).

To identify the phylogenetic position of C. serratifolia within the Ranunculaceae family, 35 cp genome sequences (34 species from *Clematis*, along with 1 species from Anemone as an outgroup) were downloaded from GenBank to construct the maximum-likelihood (ML) phylogenetic tree. IQ-tree was used to infer the maximum likelihood (ML) tree with 1000 bootstraps under the GTR+I+G model. The IQtree was edited in iTOL (Letunic and Bork 2021).

Results

The Cp genome of C. serratifolia assembly data is showed in Table S1. The cp genome of C. serratifolia is circular, with a length of 159,648bp, a $75 \times \sim 890 \times$ depth of coverage (Figure S1), and a typical quadripartite structure, containing a pair of inverted repeat regions (IRs) of 31,071 bp each, which is separated by a large single-copy region (LSC) of 79,394 bp and a small single-copy region (SSC) of 18,112 bp. The overall G + Ccontent of the genome is 38% (36.3% in the LSC region, 31.3% in the SSC region, and 42.1% in the IR regions; Figure 2). A total of 133 genes were predicted in the whole chloroplast genome, consisting of 36 tRNAs, 8 rRNAs, and 89 protein-coding genes. In the genome, 12 protein-coding genes (atpF, ndhA, two ndhB, petB, petD, two rpl16, two rpl2, rpoC1, and rps16) contain an intron. Only, clpP and ycf3 contain two introns (Figure S2). A trans-splicing rps12 gene was identified (Figure S3). The GTG+I+G model was determined to be the best-fit model based on the Bayesian information criterion (BIC) (Table S2). The phylogenetic trees generated using the ML methods showed a closer relationship between C. serratifolia and C. heracleifolia (Figure 3). In addition, the nucleotide diversity (Pi) of chloroplast genomes of C. serratifolia and C. heracleifolia was calculated. Moreover, identifying three genes (trnG-UCC, atpB and ycf1) that could be used as a potential barcoding area would assist further research (Figure S4).

Discussion and conclusion

The cp genome of C. serratifolia was sequenced and assembled; this structure is identical to the plastids of the previously reported Clematis species (Choi et al. 2021). The phylogenetic relationship of C. serratifolia was determined based on the chloroplast genome. Despite showing the close relationship between C. serratifolia and C. heracleifolia, the matrilineal inheritance of the chloroplast genome could limit evolutionary tree analysis. The nuclear genome and chloroplast genome need to be analyzed together to construct a more accurate evolutionary tree. Therefore, the genomes of more Clematis species need to be sequenced in order to determine the complex evolutionary relationships of C. serratifolia. In conclusion, this study's results and findings not only provide a potential barcoding area between C. serratifolia and C. heracleifolia, but are also useful for future phylogenetic studies in the Ranunculaceae family.

Ethics statement

This article does not contain any studies with human participants or animals performed by any of the authors. The study has been performed in accordance with guidelines provided by our institutions and national regulations. We strictly comply with the regulations of the People's Republic of China on the Protection of Wild Plants, the International Union for Conservation of Nature, the Convention on Biological Diversity and the Convention on International Trade in Endangered Species of Wild Fauna and Flora. The sampling site is not located in any protected area. The specie used in this paper is not endangered, protected, or personally owned.

Authors' contribution

Zhongming Han and Yunhe Wang conceptualized and designed research; Lihua Yang and Yi Cui analyzed data and wrote original draft of the manuscript; Zeliang Lü and Qian Wang contributed to research materials and to the draft manuscript. All authors read and approved the final manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This project is funded by Project of National Modern Industrial Technology System, grant number CARS-21 and Major Agricultural Technology Collaborative Promotion Pilot Project of Jilin Province, grant number 2024XT0504.

ORCID

Zhongming Han (http://orcid.org/0000-0002-2971-3923)

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI (https://www.ncbi.nlm.nih.gov/) under the accession numbers OL022305. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA764578, SRR16609053, and SAMN22567489, respectively.

References

- Chen X, Chang O, Xia P, Liang Z, Yan K, 2021. The complete chloroplast genome of Clematis henryi var. ternata (Ranunculaceae). Mitochondrial DNA B Resour. 6(4):1319-1320. doi:10.1080/23802359.2021.1907807.
- Choi KS, Ha YH, Gil HY, Choi K, Kim DK, Oh SH. 2021. Two Korean endemic Clematis chloroplast genomes: inversion, reposition, expansion of the inverted repeat region, phylogenetic analysis, and nucleotide substitution rates. Plants (Basel). 10(2):397. doi:10.3390/plants10020397.
- Clegg MT, Gaut BS, Learn GH, Morton BR. 1994. Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A. 91(15):6795-6801. doi:10.1073/pnas.91.15.6795.
- Cui Y, Yang L, Ding Y, Sun Y, Wang J, Xi Y, Han M, Yang L, Han Z, Wang Y. 2022. Complete chloroplast genome characterization and phylogenetic analysis of Clematis mandshurica (Ranunculaceae). Mitochondrial DNA B Resour. 7(5):822-824. doi:10.1080/23802359.2022.2073839.
- Cui Y, Yang L, Ma B, Ling S, Wang J, Han Z, Wang Y. 2022. Characterization of the complete chloroplast genome of Clematis orientalis (Ranunculaceae). Mitochondrial DNA B Resour. 7(10):1773-1775. doi:10.1080/23802359.2022.2127339.
- Greiner S, Lehwark P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47(W1):W59-W64. doi:10.1093/nar/gkz238.
- He J, Yao M, Lyu RD, Lin LL, Liu HJ, Pei LY, Yan SX, Xie L, Cheng J. 2019. Structural variation of the complete chloroplast genome and plastid

- phylogenomics of the genus Asteropyrum (Ranunculaceae). Sci Rep. 9(1):15285. doi:10.1038/s41598-019-51601-2.
- Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, et al. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A. 104(49):19369-19374. doi:10.1073/pnas.0709121104.
- Jiang M, Wang J, Zhang H. 2020. The complete plastome sequence of Clematis quniuensis (Ranunculaceae), a new plant species endemic to China. Mitochondrial DNA B Resour. 5(1):408-409. doi:10.1080/23802359. 2019.1704662.
- Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1): W256-W259. doi:10.1093/nar/gkab301.
- Liu H, He J, Ding C, Lyu R, Pei L, Cheng J, Xie L. 2018. Comparative analysis of complete chloroplast genomes of Anemoclema, Anemone, Pulsatilla, and Hepatica revealing structural variations among genera in Tribe Anemoneae (Ranunculaceae). Front Plant Sci. 9:1097. doi:10. 3389/fpls.2018.01097.
- Liu S, Ni Y, Li J, Zhang X, Yang H, Chen H, Liu C. 2023. CPGView: a package for visualizing detailed chloroplast genome structures. Mol Ecol Resour. 23(3):694-704. doi:10.1111/1755-0998.13729.
- Lyu R, He J, Luo Y, Lin L, Yao M, Cheng J, Xie L, Pei L, Yan S, Li L. 2021. Natural hybrid origin of the controversial "species" Clematis pinnata (Ranunculaceae) based on multidisciplinary evidence. Front Plant Sci. 12:745988. doi:10.3389/fpls.2021.745988.
- Mao C, Zhang X, Shi J, Chen S. 2020. The complete chloroplast genome sequence of Clematis Montana Buch.-Ham. (Ranunculaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour. 5(3):2246-2247. doi:10.1080/23802359.2020.1771225.
- Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci U S A. 107(10):4623-4628. doi:10.1073/pnas. 0907801107.
- Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27(5):824-834. doi:10. 1101/ar.213959.116.
- Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 47(W1):W65-W73. doi:10.1093/nar/gkz345.
- Wang W, Chang M, Fang M, Ling P, Ting C, Wang S, Liou L. 1980. Clematis serratifolia. In: Wang WT, editor. Flora Reipublicae Popularis Sinicae 28. Beijing: Science Press. p. 143.
- Yang Y, Sun J, Guo X, Wang K, Liu Q, Liu Q. 2020. Anther and ovule development of Clematis serratifolia (Ranunculaceae)-with new formation types in megaspore and nucellus. PLoS One. 15(10):e0240432. doi:10. 1371/journal.pone.0240432.
- Yang Y, Wang N, Zhang W, Zhou T. 2020. The complete chloroplast genome of Clematis fruticosa Turcz (Ranunculaceae). Mitochondrial DNA B. 5(2): 1908-1909. doi:10.1080/23802359.2020.1754951.
- Zhang N, Lu Y, Zhang Z. 2021. The complete chloroplast genome sequence of Anemone reflexa (Ranunculaceae). Mitochondrial DNA B Resour. 6(2): 304-305. doi:10.1080/23802359.2020.1860710.
- Zhang R, Wang Q, Yang S, Huang Z, Wang P, Liao Y, Zhao X. 2022. Characterization of the complete chloroplast genome of Clematis potaninii (Ranunculaceae), a medicinal and ornamental plant. Mitochondrial DNA B Resour. 7(7):1273-1274. doi:10.1080/23802359.2022.2097023.