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The BXD21/TyJ recombinant 
inbred strain as a model for innate 
inflammatory response in distinct 
brain regions
Caridad López‑Granero1,2,3*, Beatriz Ferrer1,3, Alessandra Antunes dos Santos1, 
Angel Barrasa2 & Michael Aschner1*

Oxidative stress and inflammatory cytokines affect the human brain, increasing the risk for mood 
and cognitive disorders. Such risk might be selective to brain-specific regions. Here, we determined 
whether BXD recombinant inbred (RI) mice strains are more suitable than C57BL/6J mice for the 
understanding of the relationship between antioxidant response and inflammatory responses. 
We hypothesized that inflammatory responses could be independent of antioxidant response and 
be inherent to brain-specific regions. This hypothesis will be addressed by the analyses of mRNA 
expression. We explored, at 7-months-of-age, the innate activation of proinflammatory cytokines 
(tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), as well as Kelch-like ECH-associating 
protein 1 (Keap1), nuclear factor erythroid 2 related factor 2 (Nrf2) and glutathione peroxidase 1 
(Gpx1) mRNA in both male and female BXD84/RwwJ RI, BXD21/TyJ RI and control strain (C57BL/6J 
mice). We report that: (1) The cerebellum is more sensitive to antioxidant response in the BXD21/TyJ 
RI strain; (2) The cerebellum, hippocampus and striatum show increased levels of cytokines in the 
BXD21/TyJ RI strain; (3) The BXD RI strain has lower brain weight relative to control strain (C57BL/6 
mice). In conclusion, our novel data show the utility of the BXD21/TyJ RI strain mice in offering 
mechanistic insight into Nrf2’s role in the inflammatory system.

Central nervous system (CNS) dysfunction is frequently accompanied by oxidative stress and inflammatory 
responses1. Oxidative damage and inflammatory cytokines influence brain function and result in increased risk 
for mood, behavioral and cognitive disorders2–4. Thus, the general hypothesis is that antioxidant defenses and 
inflammatory cytokines are key elements in CNS pathologies5 and psychiatric disorders3,4,6,7.

Several studies have revealed the mechanism by which continued oxidative stress can lead to chronic inflam-
mation, which, in turn, could mediate most chronic diseases8. The disruption of the inflammatory and oxidative 
stress pathways is associated with multiple neurotoxic exposures9–11. Oxidative stress acts activating a variety 
of transcription factors, including Nrf2. Upon oxidative stress generation, Nrf2 dissociates from Kelch-like 
ECH-associating protein 1 (Keap1), and translocates into the nucleus where it binds to the antioxidant response 
element (ARE), and initiates antioxidant gene transcription thus restoring cellular redox homeostasis12–15. Activa-
tion of these transcription factors can lead to the expression of different genes, including those for inflammatory 
cytokines and anti-inflammatory molecules8. Indeed, Nrf2 is essential for protection against oxidative stress and 
it has also been shown to attenuate inflammation16.

Consistent with these observations, published data have corroborated dysregulation of inflammatory 
and oxidative systems both in behavioral and psychiatric disorders as a consequence of altered Nrf2 pathway 
functioning7,15. Neuroinflammatory processes are established sequalae of Redox imbalances17. Hence, the impor-
tance of investigations into the relationship between nrf2 and cytokines. In contrast to the widely held view 
that Nrf2 suppresses inflammation through redox control, Kobayashi and collaborators16 have suggested that 
Nrf2 inhibits proinflammatory cytokine gene expression. Whatever the cause of the inflammatory response, an 
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adaptive change in the inflammatory system may provide short-term benefits or it can become maladaptive if 
the stressor persists chronically18. According to Reuter and collaborators8, two stages of inflammation take place, 
acute and chronic. The former is of short duration. If the inflammation persists for a longer time, the second 
stage of inflammation, or chronic inflammation, sets in predisposing the host to various chronic illnesses8,19.

Previously, we have demonstrated that certain inflammatory responses could be desirable in mitigating psy-
chiatric disorders, such as depressive behavior. We have observed that the BXD21/TyJ strain exhibited lessened 
immobility time in the forced swim test, congruent with lessened depression-like behavior20. Concomitantly, we 
noted overexpression of cerebral cortex proinflammatory cytokines, (tumor necrosis factor alpha (TNFα) and 
interleukin 6 (IL-6)) in the absence of oxidative stress20.

Oxidative stress, as well as inflammatory responses, have been linked to numerous neuropathologies associ-
ated to specific brain areas21,22. Several studies have indicated that metal homeostasis and oxidative damage is 
brain region-dependent23. Others have evaluated regional preferences for cytokine-mediated brain reactions to 
endotoxemia (elevated inflammatory response), noting that the olfactory system, hippocampus and diencephalon 
were the most responsive21. However the results between studies have been inconsistent and the relationship 
between oxidative stress and inflammation in brain-specific regions has yet to be addressed. The aim of the pre-
sent study was to evaluate whether antioxidant response and inflammatory processes are region-dependent in 
BXD RI line and C57BL/6J mice. The cerebellum, hippocampus and striatum were selected, given their involve-
ment in major human neuropathologies23.

The genetic reference murine populations have been generated from a cross between wild-type (C57BL/6J) 
(B6) and DBA/2J mice (D2), and is referred to as the BXD RI lines. The lines were generated following a strat-
egy of progressive intercrosses greater than 20 generations24. BXD RI strains have been proven invaluable in 
understanding the genetics of behavioral phenotypes, such as drug and alcohol addiction, stress, impulsivity, 
nociception and pain sensitivity, to name a few24. Here, we chose the BXD84/RwwJ RI and BXD21/TyJ strains 
given their diverse expression lof Nrf2 mRNA. In an earlier report, we have demonstrated low expression of Nrf2 
mRNA in the BXD84/RwwJRI strain and its high expression in BXD21/TyJ RI strain at postnatal day 2120. Since 
the BXD RI mouse strains and Nrf2 might offer an optimal platform for relating genetic influences with environ-
mental exposure outcomes, the understanding of the relationship between BXD RI mice and Nrf2 is essential.

Here, we tested the hypothesis that inflammatory responses might appear independent of antioxidant response 
in a region-specific manner. To address our hypothesis, we explored proinflammatory cytokine (TNFα and IL-6 
mRNA), Keap1, Nrf2 and glutathione peroxidase 1 (Gpx1) innate mRNA levels in the two selected BXD RI 
strains. To our knowledge, there have been no studies addressing the relationship between innate inflammatory 
mediators and nrf2 levels in the BXD RI lines (high and low Nrf2 expressors) with emphasis on various brain 
regions, which might be susceptible to neurotoxicity.

Experimental procedures
Animals.  Six-week-old mice from the BXD RI strains and control (C57BL/6) were purchased from the Jack-
son Laboratory (Bar Harbor, ME). Groups of three to five mice per cage were accommodated with a 12 h light/
dark cycle and water and food were continuously available ad libitum. For the first 15 days the animals were 
habituated to conditions in the animal facility. Control mice (C57BL/6) and two BXD RI mouse strains BXD84/
RwwJ RI and BXD21/TyJ RI were studied as noted above (N = 12 per strain and n = 6 per sex). Animals used in 
the study were not exposed to any treatment or experimental condition, allowing for the evaluation of innate 
mediators of inflammation and redox homeostasis.

All experiments were approved and carried out in accordance with the Institutional Animal Care and Use 
Committee (IACUC) at Albert Einstein College of Medicine (Bronx, NY).

Tissue collection and structure extractions.  Mice were sacrificed with the use of isoflourane as anes-
thesia at age of 7 months old20. The brain was extracted, dissected out, and the cerebellum, hippocampus and 
striatum were rapidly flash-frozen in liquid nitrogen. All the samples were stored at − 80 °C.

Gene expression assay.  Proinflammatory genes (TNFα and IL-6), as well as antioxidant genes (Keap1, 
Nrf2 and Gpx1) were analyzed by quantitative reverse transcription PCR (qRT-PCR).

Gene expression assay by TaqMan method.  Total RNA from the cerebellum, hippocampus and stria-
tum was extracted with Trizol (Life Technologies) as previously described20. Briefly, chloroform was added to 
each sample. Next, samples were spun at 4 °C for 15 min at 15,000 revolutions/min. This was followed by precipi-
tation with glycogen (Ambion) and isopropanol. Next, the upper phase was transferred to a new tube. Samples 
were maintained overnight at − 20 °C. The next day, the pellet was washed with ethanol (75%). The RNA isolated 
was mix with nuclease-free water (Ambion) and heated at 55 °C (for 10 min). RNA purity and concentration 
were analyzed with a spectrophotometer NANODROP 2000 (Thermo Scientific). cDNA synthesis was carried 
out with RNA and High Capacity cDNA Reverse Transcription Kit (Life Technologies). qRT-PCR (BioRad 
CFX96) was carried out with TaqMan Gene Expression Assay probes (LifeTechnologies). The housekeeping 
gene GADPH was used as a control using the comparative 2–ΔΔCt method25. The following probes were used: 
Keap1 (assay ID Mm00497268_m1), Nrf2 (assay ID: Mm00477784m1); Gpx1 (assay ID: Mm00656767_g1), 
TNFα (assay ID: Mm00443259_g1) and IL-6 (assay ID: Mm00446190_m1).

Statistics.  SPSS software package was used for all statistical analyses and GraphPad PRISM 6.0 for complet-
ing the graphics. The accepted level of significance for all tests was set at p ≤ 0.05. Two-way analysis of variance 
(ANOVA) was used for the following dependent variables: Keap1, Nrf2, Gpx1, TNFα and IL-6 mRNA levels. As 
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independent variables STRAIN (BXD84/RwwJ RI, BXD21/TyJ RI and control mice (C57BL/6) and SEX (female 
and male) were used. Post hoc analysis was performed with Bonferroni test.

Results
Body and brain weight results.  Brain weights are reduced in the BXD84/WRwwJ and RI BXD21/TyJ 
strains at 7‑months‑of age compared to control (C57BL/6) mice in the absence of any treatment or experimen‑
tal condition.  ANOVA revealed no statistically significant differences in body weights between BXD84/RwwJ 
RI mice and BXD21/TyJ RI compared to controls mice at 7-months-of-age (Fig. 1A). However, brain weights 
showed statistically significant effects (Fig. 1B). The brain weights in BXD84/RwwJ (p = 0.000) and RI BXD21/
TyJ RI (p = 0.000) mice were lower compared to controls mice (F(2, 30) = 30.054; p = 0.000). Females and males 
from the three examined strains showed statistically indistinguishable body or brain weights.

Gene expression in the cerebellum, hippocampus and striatum.  At 7-months-of-age, we per-
formed qRT-PCR to examine inflammatory and antioxidant responses in 2 BXD RI strains (BXD84/RwwJ RI 
and BXD21/TyJ RI mice) in the cerebellum, hippocampus and striatum.

BXD21/TyJ RI mice display decreased levels of Nrf2 mRNA and overexpression of Gpx1 and 
IL‑6 mRNA levels in the cerebellum.  Statistical analysis revealed a significant effect on Nrf2 mRNA 
levels on STRAIN (F(2, 30) = 6.106; p = 0.006). The BXD21/TyJ RI strain displayed lower level of Nrf2 mRNA com-
pared to control (p = 0.055) mice and BXD84/RwwJ RI mice (p = 0.006) (Fig. 2A). The analyses showed a main 
effect on STRAIN by SEX interaction (F(2, 30) = 5.178; p = 0.012) in relation to Nrf2 in cerebellum. However, this 
main effect was lost in the post hoc analyses.

As for Keap1 mRNA levels, at 7-months-of-age, no statistically significant differences were noted between 
the experimental groups, neither in STRAIN by SEX interaction (F(2, 30) = 0,938; p = 0.403).

In addition, analyses on Gpx1 mRNA levels revealed a significant effect on STRAIN (F(2, 30) = 4.931; p = 0.014) 
but not on STRAIN by SEX interaction (F(2, 30) = 1,559; p = 0.227). Increased Gpx1 mRNA levels were seen in 
BXD21/TyJ RI mice compared to controls and BXD84/RwwJ RI mice (p = 0.044 and p = 0.025 respectively) 
(Fig. 2B).

With respect to the neuroinflammatory response, statistical analyses showed an effect on STRAIN 
(F(2, 30) = 47.836; p = 0.000). BXD21/TyJ RI mice displayed increased levels of IL-6 mRNA compared to controls 
(p = 0.000) and BXD84/RwwJ RI mice (p = 0.000) (Fig. 2C). TNFα mRNA levels were indistinguishable between 
the 3 strains (Fig. 2D). Analyses from proinflammatory genes did not showed any STRAIN by SEX interaction 
(F(2, 30) = 0.592; p = 0.559; F(2, 30) = 1.085; p = 0.351) in IL-6 and TNFα mRNA levels.

BXD21/TyJ RI mice overexpress TNFα and IL‑6 mRNA levels in the hippocampus.  Data showed 
no differences in Keap1, Nrf2, and Gpx1 mRNA levels between, BXD84/RwwJ RI, BXD21/TyJ RI and controls 
mice. At 7-months-of-age, the tested strains showed similar levels of hippocampal Keap1, Nrf2 (Fig. 3A) and 
Gpx1 (Fig. 3B) mRNA levels. No statistical differences were noted for STRAIN by SEX interaction.

A significant statistical STRAIN effect was observed on TNFα (F(2, 29) = 3.965; p = 0.030) and IL-6 mRNA 
levels (F(2, 30) = 25.238; p = 0.000). Post hoc analyses shown augmented proinflammatory response in BXD21/
TyJ RI compared to BXD84/RwwJ RI (p = 0.000) and controls (p = 0.000) for levels of IL-6 mRNA (Fig. 3C) and 
control for levels of TNFα mRNA (p = 0.026) (Fig. 3D). Females and males from the three strains displayed same 
levels of hippocampal antioxidant and proinflammatory genes (STRAIN by SEX interaction for IL-6 mRNA 
(F(2, 30) = 2.268; p = 0.121) and for TNFα mRNA levels (F(2, 30) = 0.894; p = 0.420).
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Figure 1.   Mean (± SEM). Two-way analysis of variance (ANOVA) and Bonferroni post hoc test was used. (A) 
Body weight and (B) Brain weight in three selected strains: BXD84/RwwJ RI, BXD21/TyJ RI mice and C57BL/6 
wild type as control group at 7-months-of-age (n = 12). (*) Statistical analyses indicate significant brain weight 
differences between BXD21/TyJ RI and BXD84/RwwJ RI strains and the control group (p ≤ 0.001).
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BXD21/TyJ RI mice overexpress IL‑6 mRNA levels in the striatum.  In striatum, ANOVA analyses 
exhibited no differences in Keap1, Nrf2, Gpx1 and TNFα mRNA levels between, BXD84/RwwJ RI, BXD21/TyJ 
RI and controls mice. At 7-months-of-age, all the strains showed similar levels of striatum Keap1, Nrf2 (Fig. 3A), 
Gpx1 (Fig. 3B) and TNFα (Fig. 3D) mRNA levels. Females and males from the three strains displayed the same 
levels of striatal antioxidant mRNA levels. However, there was no significant effect for STRAIN on TNFα mRNA 
levels, with the STRAIN by SEX interaction displaying a main effect (F(2, 30) = 6.263; p = 0.005). However, post hoc 
analyses showed increased TNFα mRNA levels in females than in males in the three strains absent statistically 
significant differences.

Statistical analyses on neuroinflammatory levels revealed a significant effect on STRAIN (F(2, 29) = 8.591; 
p = 0.001) with respect to IL-6 mRNA levels. BXD21/TyJ RI mice showed increased levels of IL-6 mRNA rela-
tive to BXD84/RwwJ RI and control (p = 0.006 and p = 0.002) (Fig. 3C). The STRAIN by SEX interaction in IL-6 
mRNA did not reach statistical difference for the three strains and both sexes (F(2, 30) = 0.261; p = 0.772).

Discussion
Both, oxidative stress and inflammatory responses affect brain function and mediate the risk for behavioral 
alterations in psychiatric and neurologic pathologies3–6. To our knowledge, this is the first study to report the 
relationship between innate inflammatory and innate antioxidant responses in BXD RI strains in the cerebel-
lum, hippocampus and striatum based on mRNA expression levels. We noted congruence between innate ele-
vated levels of antioxidant response and increased levels of cytokines in the cerebellum in BXD21/TyJ RI strain 
(Fig. 2). Furthermore, all studied brain regions, cerebellum, hippocampus and striatum, showed an inflamma-
tory profile (Figs. 2, 3 and 4), suggesting an innate inflammatory susceptibility in BXD21/TyJ RI mice. In the 
hippocampus and striatum we failed to note congruence between enhanced antioxidant and cytokine profiles. 
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Figure 2.   Mean (± SEM). Two-way analysis of variance (ANOVA) and Bonferroni post hoc test was used. 
Levels of Nrf2, Gpx1, IL-6 and TNFα mRNA in cerebellum brain region in three selected strains: BXD84/RwwJ 
RI, BXD21/TyJ RI mice and C57BL/6 wild type as control group at 7-months-of-age (n = 6–12). (A) Levels of 
Nrf2 mRNA grouping by strains. (B) Levels of Gpx1 mRNA grouping by strains. (C) Levels of IL-6 mRNA 
grouping by strains. (D) Levels of TNFα mRNA grouping by strains (*) and (***) Statistical analyses indicate 
significant differences between the BXD21/TyJ RI strain and the control group and BXD84/RwwJ RI strain 
(p ≤ 0.05) or (p ≤ 0.001).
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Thus inflammatory and antioxidant profiles within a single murine mouse strain are brain region-dependent. 
We highlight the great utility of the BXD21/TyJ RI mice as a model for studying innate inflammatory and anti-
oxidant responses.

BXD84/RwwJ RI and control mice do not show an innate change in the profile of inflammation 
and antioxidant response.  Firstly, female and male BXD84/RwwJ RI and controls mice did not show any 
change in antioxidant level or proinflammatory cytokines profiles in any of the studied brain regions (Figs. 2, 
3 and 4). Several authors have addressed Nrf2 expression levels under normal conditions absent experimental 
procedures26. Under such circumstances, Nrf2 has a short half-life of 10–30 min, with high turnover of Keap1, 
assuring Nrf2 basal levels remain low27,28. Considering that animals herein were not manipulated experimen-
tally, the levels of Nrf2 and antioxidant should be at low basal levels. Consistent with this assertion, BXD84/
RwwJ RI and controls failed to show increased innate antioxidant and inflammatory responses, in contrast to 
the BXD21/TyJ RI strain.

Nrf2 mRNA levels in BXD21/TyJ RI mice.  BXD21/TyJ RI mice showed lower cerebellar Nfr2 mRNA 
levels concomitant with increased levels of Gpx1 mRNA relative to BXD84/RwwJ RI and controls mice (both 
females and males showed the same pattern) (Fig. 2). At 7-months-of-age, we expected to see higher nrf2 mRNA 
levels in the BXD21/TyJ RI strain (based on previous pilot studies in our lab at PND 21). This discrepancy 
reinforces the idea of adaptive regulation or compensatory mechanisms in the Nrf2 system29,30 from PND 21 to 
7 months-of-age. Indeed, Nrf2 levels can quickly vary in response to environmental alterations15 and tried to 
reach normal balance in Nrf2 levels (that is low levels) as an innate phenomenon.
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Figure 3.   Mean (± SEM). Two-way analysis of variance (ANOVA) and Bonferroni post hoc test was used. 
Levels of Nrf2, Gpx1, IL-6 and TNFα mRNA in hippocampus brain region in three selected strains: BXD84/
RwwJ RI, BXD21/TyJ RI mice and C57BL/6 wild type as control group at 7-months-of-age (n = 6–12). (A) Levels 
of Nrf2 mRNA grouping by strains. (B) Levels of Gpx1 mRNA grouping by strains. (C) Levels of IL-6 mRNA 
grouping by strains. (D) Levels of TNFα mRNA grouping by strains (*) and (***) Statistical analyses indicate 
significant differences between the BXD21/TyJ RI strain and the control group and BXD84/RwwJ RI strain 
(p ≤ 0.001) in (C) and statistical analyses showed significant differences between the BXD21/TyJ RI strain and 
the control group in (D) (p ≤ 0.05).
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Is there correspondence between inflammatory and antioxidant responses in BXD21/TyJ RI 
mice?.  Several studies have reported that continued oxidative stress leads to inflammation8. However, our 
results indicated correspondence only between inflammatory cytokines and antioxidant response by increas-
ing the levels of Gpx1 mRNA in the cerebellum of BXD21/TyJ RI mice (Fig. 2). Some authors have highlighted 
the crucial role of antioxidant expression in preventing toxic effects31,32. In this sense, Gpx1 is one of the most 
relevant antioxidant capable of reacting against oxidative stress as a therapeutic factor33. The role of Gpx1 is to 
modulate cellular oxidant stress responses31. Gpx1 may be post- and transcriptionally upregulated as part of the 
cellular response to oxidative stress31 . The regulation of expression of GPx-1 has been shown to play a role in the 
development of many diseases such as cancer and cardiovascular disease, indicating the potential use of Gpx1 
as a therapeutic31.

The congruence between antioxidant response and inflammatory cytokines was not seen in the hippocampus 
and striatum where the BXD21/TyJ RI mice showed elevated proinflammatory response absent altered antioxi-
dant profiles (Figs. 2, 3 and 4). Supporting our results, other authors have noted that Nrf2-mediated inhibition 
of proinflammatory cytokine gene is independent of redox control16. However, these authors observed that Nfr2 
inhibited expression of proinflammatory cytokine genes, suggesting that it was due to alternative mechanism to 
redox control16. Our result suggest that cytokine regulation might be dependent of Nrf2 function in BXD21/TyJ 
RI mice via Gpx1 mRNA as to maintain redox-balance in cerebellum, but not in the hippocampus and striatum. 
In these two-brain regions, the Nrf2 is likely mediated by alternative mechanisms, given the absence of overex-
pression of antioxidant genes, such as Gpx1, despite the presence of high cytokine levels.

Relative to previous results in our research group.  Here, we propose that the key to understand Nrf2’s 
role in the innate inflammatory system response might reside in the adaptive role of such response. In support 
of this notion, we have previously observed similar pattern of inflammatory cytokines response in cortex region 
with a protection against depression in the BXD21/TyJ RI strain without oxidative stress response20. In order to 
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Figure 4.   Mean (± SEM). Two-way analysis of variance (ANOVA) and Bonferroni post hoc test was used. 
Levels of Nrf2, Gpx1, IL-6 and TNFα mRNA in striatum brain region in three selected strains: BXD84/RwwJ RI, 
BXD21/TyJ RI mice and C57BL/6 wild type as control group at 7-months-of-age (n = 6–12). (A) Levels of Nrf2 
mRNA grouping by strains. (B) Levels of Gpx1 mRNA grouping by strains. (C) Levels of IL-6 mRNA grouping 
by strains. (D) Levels of TNFα mRNA grouping by strains (*) Statistical analyses indicate significant differences 
between the BXD21/TyJ RI strain and the control group and BXD84/RwwJ RI strain (p ≤ 0.05).
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maintain normal homeostasis complex interactions occur between cytokines, inflammation, and the adaptive 
and innate responses34. In the BXD21/TyJ RI strain, the innate activation of cytokines observed herein concomi-
tant with the short immobility time and thus reduced depression-like behavior20 provides additional impetus for 
studying novel antidepressants in a BXD RI animal model of innate inflammation.

Are proinflammatory cytokines and antioxidant response region‑dependent in BXD21/TyJ 
RI?.  Our results suggest that the cerebellum (Fig. 2) is more sensitive to antioxidant response compared to 
other brain regions (hippocampus and striatum (Figs.  3 and 4 respectively). In contrast, other authors have 
noted that in the striatum oxidative damage was more pronounced than in the cerebellum, hippocampus, and 
hypothalamus23. However, this susceptibility to oxidative stress was noted in a tributyltin exposure model, a 
neurotoxin that induces oxidative injury35. Consistent with our results, Rammal and collaborators17 indicated 
discrepancy in redox homeostasis upon stress conditions in neuronal and glial cells in cerebellum. It is notewor-
thy that this study also found oxidative stress in the hippocampal region, where we failed to note antioxidant 
response. The discrepant may reside in the fact that they17 analyzed oxidative damage in neurons and glial cells, 
contrary to our study, where antioxidant levels were analyzed in homogenized tissue. Given that glial cells pos-
sess an antioxidative system defense36,37 further evaluation of glial-specific responses in BXD21/TyJ RI seems 
meritorious.

In addition the cerebellum, hippocampus and striatum are susceptible to cytokines (Figs. 2, 3 and 4), Elevated 
proinflammatory cytokines in these brain regions21 have been noted, establishing that the cortex, hippocampus, 
olfactory system, striatum, brain stem, diencephalon and cerebellum responded to lipopolysaccharide-induced 
systemic inflammation with altered cytokine profiles. The widespread nature of brain cytokine production 
appears also congruent with the characteristics of sepsis-associated encephalopathy21.

Lower brain weight in the BXD RI strain.  Unexpectedly, we found lower brain weight in the BXD RI 
strain (both 21/TyJ and 84/RwwJ) relative to controls mice (Fig. 1). The BXD RI lines have been generated by 
crosses among DBA/2J mice (D2) and C57BL/6J mice (B6)24. Adult C57BL/6J (B6) and DBA/2J (D2) mice body 
weights are similar, but the former have 37% heavier brains38. The same authors evaluated 20 different BXD 
RI strains derived from D2 and B6 inbred strain crossings to determine whether significant associations exist 
between brain and brain to body weight ratio, concluding that BXD RI mice have lower brain weight, consistent 
with our findings.

Brain size is a historical subject of interest where the small size has been associated with some kind of 
alteration39,40. Some studies have indicated a close relationship between proinflammatory cytokines and obe-
sity related to overproduction of white adipose tissue41. Obesity might be associated with low-inflammation, 
which eventually is spread from tissue to the brain with an ensuing cognitive decline42. However, here we have 
demonstrated overproduction of inflammatory cytokines accompanied by lower brain weight in BXD RI strain. 
Previously, we have indicated that the inflammation might be a double-edged sword in the BXD RI strain20, the 
contribution to behavioral alterations and as effective therapeutic target via astrogliosis function43. The lesser 
brain weight observed could be indicating an attempt to regulate the inflammatory response in the BXD21/TyJ 
RI strain as a protective mechanism. This fact reinforces the idea of further investigations into the relationship 
between inflammatory mechanisms and microglia in the onset of brain disorders.

Future directions.  Determine the nature of microglial diversity and its relationship to cytokine responses in 
BXD21/TyJ RI mice brain regions.  It is a well-known fact that microglia have important functions in the cen-
tral nervous system (CNS)44,45. Microglia may participate in synaptic transmissions during development and 
can phagocytize during brain injury45. The role microglia adopts in each scenario can be context-45 and brain-
region-dependent46. In addition, it has been established that microglia respond to IL-6 among other kind of cy-
tokines. Microglia are capable of producing and reacting to the immune system via responsiveness to cytokines 
and their autoregulation47. Here, we have seen that the cerebellum, hippocampus and striatum are susceptible 
to cytokines in BXD21/TyJ RI. Thus, it would be relevant to address in future studies whether the relationship 
between microglia and cytokines is inherent to different mice strains, and whether BXD21/TyJ RI mice might 
offer an optimally suited model to understand this relationship.

Examine the intra‑ and cellular pathways involved in the relationship between inflammatory and antioxidant 
responses.  It would be necessary to perform new studies in order to analyze the interaction of the innate 
immune response and other intracellular pathways, such as NFKB (nuclear factor KB). Indeed, it has been 
established that NFKB has the ability to modify mtDNA, resulting in heightened sensing by innate immune 
receptors48.

In the other hand, even when there are proteins involved in the Nrf2 signaling pathway preventing the forma-
tion of lipid peroxides, also other protein are direct targets of lipoxidation49. A number of reactive lipid species, 
including 4-HNE have been shown to activate nrf2 target gene expression though Keap1 function50.

New pathways studies are necessary in order to shed light on inflammatory and antioxidant responses associ-
ated with the effects inherent to our results.

Conclusions
Our results suggest Nrf2 plays an important role in the inflammatory system. Our novel findings favor anti-
oxidant profiles, via mRNA expression evaluation, is region- and strain-dependent manner. Furthermore, we 
suggest that inflammation may occur with independent of innate antioxidant response profiles, contrary to the 
widely accepted view that Nrf2 suppresses inflammation. Our findings suggest that (1) the cerebellum is more 
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sensitive to antioxidant response in the BXD21/TyJ RI strain, (2) the cerebellum, hippocampus and striatum 
showed innate inflammation along with increased levels of cytokines in the BXD21/TyJ RI strain, (3) in the 
BXD21/TyJ RI strain Nrf2 plays an important role in mediating inflammation via alternative mechanism/s to 
antioxidant gene activation, and (4) in the BXD21/TyJ RI strain, this alternative innate mechanism might be 
related with adaptive brain function. Altogether, our results shed novel information on the potential for the 
BXD21/TyJ RI mouse strain as model to advance mechanistic understanding on the cross-talk between Nrf2 
and innate inflammatory and redox regulation.
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