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Annotation using Gene Ontology (GO) terms is one of the most important ways in which biological information about

specific gene products can be expressed in a searchable, computable form that may be compared across genomes and

organisms. Because literature-based GO annotations are often used to propagate functional predictions between related

proteins, their accuracy is critically important. We present a strategy that employs a comparison of literature-based anno-

tations with computational predictions to identify and prioritize genes whose annotations need review. Using this method,

we show that comparison of manually assigned ‘unknown’ annotations in the Saccharomyces Genome Database (SGD) with

InterPro-based predictions can identify annotations that need to be updated. A survey of literature-based annotations and

computational predictions made by the Gene Ontology Annotation (GOA) project at the European Bioinformatics Institute

(EBI) across several other databases shows that this comparison strategy could be used to maintain and improve the quality

of GO annotations for other organisms besides yeast. The survey also shows that although GOA-assigned predictions are

the most comprehensive source of functional information for many genomes, a large proportion of genes in a variety of

different organisms entirely lack these predictions but do have manual annotations. This underscores the critical need for

manually performed, literature-based curation to provide functional information about genes that are outside the scope of

widely used computational methods. Thus, the combination of manual and computational methods is essential to provide

the most accurate and complete functional annotation of a genome.

Database URL: http://www.yeastgenome.org

.............................................................................................................................................................................................................................................................................................

Introduction

Generating gene ontology annotations

Since its inception in 1999, Gene Ontology (GO) has become

the standard for functional annotation, and is used by all

model organism databases as well as by genome projects

for less-characterized organisms (1, 2). The GO is a con-

trolled, structured vocabulary for annotating gene prod-

ucts according to the molecular functions that they

perform, the biological processes in which they participate,

and the cellular components in which they reside (3, 4). The

core of a GO annotation is comprised of a GO term repre-

senting a function, process or location, and an evidence

code indicating the basis for the assignment, linked to a

gene product and the reference for the observation. The

GO annotations that are present in model organism data-

bases can be broadly divided into two categories:

literature-based annotations, based on scientific publica-

tions, and computational predictions, generated by auto-

mated methods.

Literature-based annotations are derived from published

information by trained, PhD-level scientific curators. The

process begins with the identification and prioritization

of the relevant literature for curation. This presents particu-

lar challenges for each database, depending on the size of

the research community and rate of publication for that
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organism. Even the first step, identifying the species and

genes studied, may require a significant effort (5, 6). Once

a body of literature relevant to specific genes or proteins of

an organism has been identified, it is a further challenge to

select and prioritize papers containing information that can

be captured as GO annotations. Studies are underway to

apply automated methods to this process (7–11), but it is

still largely a judgment call by a curator who has skimmed

the abstracts or full text of the papers. After papers are

selected for GO curation, creating the annotations requires

the scientific expertise of the trained curator, who has

broad knowledge of the biology of the organism in ques-

tion, is familiar with the GO content and structure, and is

experienced in the standard curation procedures for GO

annotation such as the use of evidence codes, qualifiers

and other details. The aim is not simply to apply every pos-

sible GO term to a gene product, but rather to annotate

with the most current and direct information, in the

context of all available knowledge. For example, at the

Saccharomyces Genome Database (SGD), if the only experi-

mental result for a gene were the mutant phenotype of

abnormal bud site selection, we would annotate using a

Biological Process term for ‘cellular bud site selection’

(GO:0000282). However, if a different gene had the same

phenotype but was also known to be involved in a more

specific process, such as ‘mRNA export from nucleus’

(GO:0006406), it would not receive the GO annotation to

‘cellular bud site selection’, since the phenotype represents

an indirect effect of the defect in the primary process. The

mutant phenotype would, however, be captured for all

relevant genes using SGD’s mutant phenotype curation

system (12). Thus, the GO annotations reflect the processes

in which the current state of the literature indicates that

each gene product is directly and specifically involved,

while the mutant phenotype annotations reflect the com-

prehensive set of phenotypes observed, whether directly or

indirectly related to the role of the gene product (12).

It is obvious that manual curation by experienced

curators is very valuable, and it is generally considered

the ‘gold standard’ for annotation. The annotations are

chosen carefully within the biological context of all avail-

able knowledge about a gene product, and represent the

best possible summary of the most relevant information

about it (13, 14). On the other hand, literature-based cur-

ation is very time- and resource-intensive. In order to

ensure that it is of the best possible quality, a comprehen-

sive set of annotations must be generated by curating all of

the literature specific to the gene products of an organism,

and new literature must be curated as it is published (15). In

addition to continually generating new annotations, exist-

ing annotations must also be reviewed and updated regu-

larly. Annotations that are accurate at the time of their

creation may become ‘stale’ for various reasons: if the GO

structure changes, for example if a new, more granular

term is added that is appropriate to the gene product; or

if new characterization of a gene product means that a

previously annotated role is seen to be indirect or is

proven to be untrue. Finally, since human variability and

error cannot be avoided, there is always the possibility

that literature-based annotations are incomplete or incon-

sistently assigned.

In contrast, computational predictions do not require

experimental work on the organism to which they are

applied, other than a genome sequence. They can be as-

signed very rapidly, with minimal human effort, and the

annotation parameters are uniform across all gene prod-

ucts. It is also straightforward to re-run the computation

on a regular basis, in order to keep up with improvements

to the computational methods, changes to the genome se-

quence annotation or changes to GO. However, there are

limitations to computational predictions, in that their scope

may not be as broad as that of literature-based annota-

tions; they often use very general GO terms; and different

methods may have different inherent biases.

GO annotations at SGD

With its complete genomic sequence available since 1996,

curation of functional data by SGD since 1994, and experi-

mental characterization for 84% of protein coding genes

currently available, S. cerevisiae is a rich source of func-

tional annotation for comparative studies (16–18). SGD cur-

ates and integrates a myriad of datatypes for the yeast

community, including the genomic sequence; gene names,

synonyms and descriptions; mutant phenotypes; genetic

and physical interactions; and expression data. Although

GO annotations are just one aspect of curation, they cap-

ture a very large proportion of the functional informa-

tion that is available. Including both literature-based

annotations and computational predictions, the SGD gene

association file (GAF, http://downloads.yeastgenome.org/

literature_curation/) from November 2010 contains ap-

proximately 64 000 GO annotations (counted as unique

pairs of a gene and GO term) for more than 6300 gene

products. On average, 70 new research papers are loaded

each week, and SGD curators add an average of 80 GO

annotations for 24 gene products. An additional body of

about 1200 papers has been marked by curators as possibly

containing GO-curatable information, and awaits further

curation. Because of the magnitude of the existing and on-

going GO curation, combined with finite resources, it is im-

perative to develop efficient ways of identifying and

prioritizing annotations for review and updating in order to

maintain the high quality upon which many projects depend.

In addition to literature-based GO annotations, SGD

contains a large set of predictions based on computational

analyses performed outside of SGD. The majority of com-

putational predictions available at SGD are performed by

the Gene Ontology Annotation (GOA) project, which is part
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of the UniProt group at the European Bioinformatics

Institute. Since the methods used by the GOA project are

applied consistently to all proteins in all species, the GOA

predictions provide a dataset that is comparable across

multiple genomes. SGD’s GAF includes all computational

predictions made by the GOA project for S. cerevisiae, com-

prised of results from four methods that map several dif-

ferent types of information to GO terms (19). InterPro

entries, which represent conserved protein sequence pat-

terns such as domains, motifs, active sites or protein

family signatures (20, 21) are mapped to GO terms that

represent the role of proteins bearing that particular pat-

tern. Swiss-Prot Keyword (SPKW) analysis assigns GO anno-

tations based on mappings to keywords that are found in

UniProtKB/Swiss-Prot entries (http://www.geneontology

.org/external2go/spkw2go): for example, a protein whose

entry contains ‘antiport’ would be assigned the GO

Molecular Function term ‘antiporter activity’. E.C. to GO

mappings (http://www.geneontology.org/external2go/

ec2go) indicate the GO terms that correspond to the

Enzyme Commission numbers used to classify enzymatic

activities. The subcellular location terms found in

UniProtKB/Swiss-Prot entries (SPSL) are also mapped to

GO Cellular Component terms (http://www.geneontology

.org/external2go/spsl2go). In addition to these predictions

from the GOA project, SGD also contains computational

predictions generated by two sophisticated algorithms.

The bioPIXIE method, developed by the Troyanskaya

group, integrates more than 700 diverse datasets (for ex-

ample, genomic expression, protein–protein interaction,

protein localization) to predict the biological processes in

which gene products participate (22–24). The YeastFunc

method, from the Roth group, also incorporates biological

relationships inferred from various large-scale datasets, as

well as sequence-based predictions, to generate GO anno-

tations in all three aspects (25). The GO annotations in SGD

that are assigned via all of these computational methods

carry the IEA (Inferred from Electronic Annotation) or RCA

(Reviewed Computational Analysis) evidence codes.

Here, we present a strategy for comparing GO annota-

tions generated by literature-based and computational

approaches. We apply this strategy to one subset of anno-

tations in SGD, and explore the feasibility of extending the

strategy to additional sets of annotations and expanding it

to organisms beyond yeast.

Results and discussion

Leveraging InterPro predictions to update ‘unknown’
annotations

The GO annotations generated by SGD are used for many

purposes: for basic research on yeast; for comparative

genomics, as a source of functional predictions for other

organisms; and as a training set for the development of

computational prediction algorithms (18). Because of their

importance to so many different endeavors and their

propagation beyond SGD, it is critical that they are as ac-

curate and as comprehensive as possible. We decided to

explore whether our large set of computational predictions

could be leveraged to find inaccuracies or omissions in

literature-based GO annotations, allowing us to identify

and prioritize genes for review and updating. For an initial

feasibility study, we chose to analyze the InterPro

signature-based predictions, reasoning that since this

method is very widely used for a variety of organisms, our

conclusions might be applicable to other databases in add-

ition to SGD.

To identify annotations that needed to be reviewed and

updated, all literature-based annotations were compared

with all InterPro-based computational predictions to gen-

erate pairs of literature-based and computational annota-

tions when both types of annotation existed for a given

gene and GO aspect (Function, Process or Component).

These annotation pairs could be classified into different

groups according to the relationship between the two GO

terms. For example, a pair containing a literature-based

annotation and a computational prediction may have the

same GO term, may have two terms that are in the same

lineage of the GO structure or may have terms in different

GO lineages. Some of these relationships might highlight

areas where literature-based annotations were incomplete,

incorrect or not as granular as possible.

As a first step in assessing the utility of such a compari-

son, we focused on a specific subset of literature-based an-

notation and computational prediction pairs. Specifically,

we asked whether computational predictions could help

in updating genes to which curators were previously

unable to assign a literature-based GO annotation. When

the gene product-specific literature for a species has been

curated or searched comprehensively, and a curator has

found no published information that would allow assign-

ment of a GO annotation for a particular gene product and

GO aspect, this fact is captured by assignment of an ‘un-

known’ annotation. In practice, these annotations are cre-

ated by assigning the root terms in each aspect, which are

the broadest terms that exist: ‘molecular_function’

(GO:0003674), ‘biological_process’ (GO:0008150) and ‘cellu-

lar_component’ (GO:0005557). For convenience, we will

refer to these annotations as ‘unknown’. Annotating with

these terms allows the distinction to be made between the

absence of published results and the absence of an anno-

tation. The presence of an ‘unknown’ annotation indicates

a curator has determined that there was no published

information useful in assigning a GO annotation on the

date of review. The complete absence of an annotation

means that a curator has not yet performed a review of

the literature (2, 18).
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We were interested to determine whether comparison

with computational predictions would identify ‘unknown’

annotations that could now be updated to more inform-

ative annotations—either because new experimental infor-

mation had been published, or because such information

existed previously but had been overlooked. SGD curation

and loading of InterPro predictions from the GOA project

are both constantly ongoing, so in order to work with a

static dataset, we analyzed the complete sets of

literature-based and computational GO annotations from

SGD, as well as the GO ontology file, dating from October

2009.

Considering all three GO aspects together, 4129 of the

31 977 literature-based annotations in this October 2009 set

were ‘unknowns’. A corresponding InterPro-based predic-

tion existed for 608 of the ‘unknown’ annotations. We re-

viewed 67 of these (including a representative set from

each aspect, comprising 10% of the annotations in that

aspect), to assess whether we could update the

literature-based annotations based on the computational

predictions. The results of this analysis are presented in

Table 1.

For the majority of ‘unknown’ annotations reviewed (51

annotations, 76%), the literature review uncovered no add-

itional evidence that allowed us to update them; for the

remaining 24% (16 annotations), we were able to make

updates. In most of the cases where an update was pos-

sible, we were able to replace the ‘unknown’ with a

literature-based annotation to the same GO term that

was used for the prediction, or with a term in the same

branch of the ontology. In a few cases, we could not

apply the particular GO term suggested by the InterPro

prediction, but during the course of reviewing the litera-

ture we found evidence that allowed us to add or update

GO annotations for that gene. In both of these instances,

we consider that the InterPro prediction was helpful be-

cause if those annotations had not been flagged for

review by the presence of a prediction, we would not

have prioritized those genes for review.

In order to assess whether the InterPro predictions were

significantly helpful in identifying manual annotations that

could be updated, we compared these results to those ob-

tained by analysis of a comparable, ‘control’ set. This con-

trol set was randomly chosen from the full set of ‘unknown’

annotations with no corresponding InterPro predictions.

The same number of annotations in each GO aspect was

reviewed in the control set as the experimental set. In

each case, we reviewed the literature to see whether

there was any available evidence that would allow us to

replace the ‘unknown’ with a literature-based annotation.

We found published evidence that would allow us to

update 7 out of the 67 annotations (10.4%). This is a

significant difference from the previously reviewed set

(16 updates out of 67 annotations reviewed; P< 0.001,

chi-squared test), indicating that the presence of an

InterPro prediction corresponding to a manual ‘unknown’

annotation identifies a set of annotations whose review

may be productive.

Despite the fact that the set of manual ‘unknown’ anno-

tations with corresponding InterPro predictions was

enriched for annotations that could be updated, the enrich-

ment was relatively small relative to the effort required to

make the updates. To update the 16 ‘unknown’ annota-

tions with InterPro predictions, we reviewed the literature

for all 57 genes in the sample set (634 publications in total)

in order to determine whether there was any experimental

evidence to support the predictions. On average, 40 papers

were reviewed in order to make each annotation change.

Extrapolating from the sample set, we would estimate that

application of this review process to our total set of 608

manual ‘unknown’ annotations that have corresponding

InterPro predictions would allow us to update 145 of the

annotations. These updates would require reviewing the

total of 2987 papers that are associated with the 477

genes in this set. While these updates are certainly valuable

for the particular genes that they affect, they are relatively

insignificant when considered in the context of all SGD an-

notations (Figure 1). Thus, although the method was effect-

ive for the ‘unknown’ annotations that were updated, it

was not very efficient in terms of curation effort.

However, we explore below the possibility that comparison

of the much larger set of non-‘unknown’ literature-based

annotations to computational predictions might be more

productive.

Assessing the scope of computational predictions

As a further step in assessing the feasibility of this method,

we investigated the scope of computational predictions,

since any strategy comparing literature-based annotations

with computational predictions can only be effective if

both are available for the comparison. We determined

the percentage of the genome covered by both kinds of

annotation, starting with S. cerevisiae and then extending

Table 1. Review of curator-assigned ‘unknown’ annotations
(to the root terms) for which a corresponding InterPro predic-
tion was available

Annotations Genes

Total number of ‘unknowns’ 4129 2318

‘Unknowns’ with predictions 608 477

‘Unknowns’ with predictions reviewed 67 57

‘Unknowns’ with predictions updated 16 16

All data are from October 2009.
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the analysis to several different organisms. All data for this

analysis were downloaded from the respective databases

(see below) in November 2010.

SGD’s gene association file (GAF) contains GO annota-

tions for 6357 genes, including RNA-coding as well as

protein-coding genes. We first considered InterPro

signature-based computational predictions, and deter-

mined that there are 2803 genes in SGD (44%) that are

not covered by these predictions; that is, they have

literature-based annotations only (Figure 2). The set of

genes that lack predictions not only includes the RNA-

coding genes, as expected for a protein sequence-based

method, but also a substantial fraction of protein-coding

genes. To see whether the additional predictions from

the GOA project would add to the coverage, we expanded

the analysis to include predictions derived from E.C. num-

bers, Swiss-Prot keywords and Swiss-Prot Subcellular

Locations. When these methods are included, there

are still 1025 S. cerevisiae genes lacking computational

predictions.

To determine whether this trend is unique to SGD, we

examined the coverage of literature-based annotations and

computational predictions available for genes in the model

organisms Caenorhabditis elegans (WormBase, http://www

.wormbase.org/), Danio rerio (ZFIN, http://zfin.org/) and

Mus musculus (MGI, http://www.informatics.jax.org/), and

for the pathogen Mycobacterium tuberculosis (TBDB,

http://www.tbdb.org/; MTBbase, http://www.ark.in-berlin

.de/Site/MTBbase.html). These database groups were se-

lected because they include computational predictions

from the GOA project in their entirety in their GAF. For

each organism, we obtained the GAF from the respective

database, determined the total number of genes repre-

sented in it, and determined the number of genes for

which there are literature-based GO annotations but no

computational predictions made by the GOA project (as

identified by an IEA evidence code and appropriate refer-

ence in the GAF). We performed the comparison of genes

with literature-based annotations to genes with computa-

tional predictions, as described above for S. cerevisiae,

considering either InterPro-based predictions alone or ex-

panding the analysis to include InterPro and any additional

prediction methods applied to that organism by the GOA

project.

The data for all organisms, presented in Figure 2,

show the proportion of genes having literature-based

Figure 1. Estimated number of ‘unknown’ annotations that could be updated by comparison to InterPro-based computational
predictions. Out of 31 977 literature-based GO annotations, 4129 annotations, representing 13% of all annotations, are to the
root terms ‘molecular_function’, ‘biological_process’, ‘cellular_component’ (referred to as ‘unknown’). Based on a review of a
representative set, only 145 ‘unknown’ annotations are projected to need review. This represents 0.5% of the entire set of
annotations. All data are from October 2009.
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annotations only, and lacking computational predictions. It

is evident that S. cerevisiae is not unique. In the model or-

ganism databases, SGD and WormBase contain roughly the

same proportion of genes with literature-based annota-

tions but lacking computational predictions (�16%), while

the proportion is higher in ZFIN (24%), and in MGI, over

50% of mouse genes with literature-based annotations lack

computational predictions. As an example of a less anno-

tated organism for which computational predictions may

be particularly important, M. tuberculosis has a relatively

recent genome sequence and a small, privately funded

literature-based GO annotation effort that has not yet

reached comprehensive coverage of the literature

(MTBbase, http://www.ark.in-berlin.de/Site/MTBbase.html).

Still, �13% of M. tuberculosis genes have literature-based

annotations but no computational predictions made by the

GOA project. It is apparent that for all these organisms,

there is a subset of genes that is not covered by any of

the GOA prediction methods. This is consistent with the

statistic that the GOA database (including both computa-

tional predictions and literature-based annotations) did not

include any annotations for �31% of the entries in

UniProtKB in 2005 (7).

We draw two conclusions from this feasibility study. First,

a substantial proportion of genes in each genome do have

literature-based annotations as well as computational pre-

dictions. Therefore, these genes would be able to benefit

from a quality control method that requires the existence

of a computational prediction with which to compare a

literature-based annotation. In the future, we will focus

on whether computational predictions made by the GOA

project can be helpful in identifying and prioritizing S. cer-

evisiae annotations that need to be reviewed and updated.

Second, it is apparent that a proportion of genes in each

genome is outside the scope of computational predictions

made by the GOA project, and has only literature-based GO

annotations. Computational predictions made by the GOA

project represent the most comprehensive effort to provide

functional information for all proteins from all species.

Millions of proteins in UniProtKB that are experimentally

uncharacterized would have no GO annotations if it were

not for GOA computational predictions (19). However,

Figure 2. Percentage of genes with literature-based annotations and no computational predictions. Genes from each data source
were determined to have a literature-based annotation, a computational prediction from an InterPro signature, or a computa-
tional prediction from any of the methods used by the GOA project. All of the computational predictions were performed by the
GOA project, using consistent methods and parameters, and are incorporated in their entirety by the various model organism
databases. The graph displays the proportion of genes in each organism that have only literature-based annotations when
compared to InterPro-based predictions only, or when compared with all predictions made by the GOA project (including
those based on InterPro signatures). All data, including the total number of genes and loci listed for each data source, are
based on computational annotations (identified as a GO annotation with an IEA evidence code) found in gene association files
downloaded in November 2010.
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manual literature-based curation efforts are still needed to

provide a complete functional description of a genome.

Summary and conclusions

In this era of increased data generation coupled with

decreased funding for curation efforts (5, 26), it is critical

to develop innovative and efficient strategies for prioritiz-

ing annotations for review, in order to maintain the ex-

tremely high quality of literature-based annotation sets.

We report here the first steps in establishing a procedure

for leveraging computational predictions in order to

improve literature-based GO annotation consistency and

quality.

Other groups have previously investigated quality issues

for GO annotations, using different strategies. For example,

in his PhD dissertation, John MacMullen investigated vari-

ation between annotations from different curators and the

factors that contributed to that variation, in a study of mul-

tiple model organism databases (27). Dolan et al. (28)

developed a method for assessing GO curation consistency

by comparing GO-slimmed literature-based annotations of

orthologous gene pairs from mouse and human. Our

method is novel in that it leverages two types of annota-

tions: manually assigned annotations from the literature,

and computational predictions. Annotations and predic-

tions are sorted into pairs for a given gene and aspect,

and the pairs may be categorized by the relationship be-

tween the GO terms used for each member of the pair.

Here, we have presented the results of analysis of one

such category: manual ‘unknown’ annotations paired with

an InterPro signature-derived prediction. In the future, we

will expand the analysis to include non-‘unknown’

literature-based annotations in SGD, and other sources of

computational predictions in addition to InterPro, with the

goal of developing a robust automated method for iden-

tifying and prioritizing literature-based GO annotations to

review and update.

This type of analysis could also contribute to the quality

of computational prediction methods, for example, by re-

vealing areas of biology in which the prediction methods

are less accurate and need to be adjusted. Discrepancies

between literature-based annotations and computational

predictions could also identify errors in mappings of

InterPro signatures or E.C. numbers to GO, or errors and

inconsistencies within the GO structure. Furthermore, the

method should be applicable to GO annotations for any

organism for which both literature-based and computa-

tional annotation is performed.

Since this method requires that both literature-based

and computational annotations exist, we have here also

addressed its limitations, by looking at the extent to

which computational methods, specifically those developed

by the GOA project, cover the entire genome. We found

that computational predictions made by the GOA project

cannot provide comprehensive annotation coverage for

any of several disparate genomes that we surveyed. Even

for the M. tuberculosis genome, where literature-based GO

annotation is a small-scale effort, 13% of the genes that are

currently represented in the GAF would lack annotation

completely if no manual annotation were done. These

results underscore the critical and ongoing need for

literature-based curation to fill in these gaps, as well as to

serve as the basis for comparison and improvement of pre-

diction methods. For maximal quality of the biological in-

formation captured in genome databases, both manual

and automated curation must co-exist. The method and

results presented here demonstrate that rather than

being alternative approaches to curation, manual annota-

tion and computational prediction are complementary,

and comparison of the two can result in the synergistic

improvement of both.
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