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Purpose: The 32Q (rs641153; A) and 32W (rs12614; T) variants of complement factor B (CFB) cause less efficient
complement activation in vitro than the common 32R variant. This is thought to be the reason that the 32Q variant is
associated with decreased risk of age-related macular degeneration (AMD). We investigated whether the 32W variant
was also associated with decreased risk of AMD.
Methods: We genotyped 367 cases with neovascular AMD and 251 disease-free controls. Association with the disease
phenotype was assessed by logistic regression for polymorphisms of CFB alone and in combination with smoking status
and genetic risk markers of complement factor H (CFH) and HtrA serine peptidase 1 (HTRA1). We performed meta-
analysis of all previously published reports of 32W allele frequency in AMD cases and controls.
Results: The CFB variant 32W was associated with protection against neovascular AMD, compared to the common 32R
variant (odds ratio 0.64, p<0.05, in logistic regression with CFB variants; odds ratio 0.53, p<0.05, in logistic regression
with CFB variants, CFH haplotypes, HTRA1 rs10490924 genotype, and smoking status). Meta-analysis (n=1,795)
including this study and two others of neovascular AMD showed a combined odds ratio of 0.75 (p<0.05) for 32W,
compared to 32R. Meta-analysis (n=2,600) of all reported studies of all types of AMD showed a combined odds ratio of
0.79 (p<0.01).
Conclusions: Our study shows that the 32W variant of CFB is associated with protection against AMD, in keeping with
evidence of its functional effect on the complement system. The protective effect is less strong than that associated with
32Q.

Age-related macular degeneration (AMD) is a major
cause of visual impairment and blindness among older people
[1]. The alternative pathway of the complement system, an
ancient defense against infectious microbes [2,3], is
implicated in the etiology and pathogenesis of the disease.
Local and systemic complement activation occurs in
individuals with AMD [4,5]. The proteins of the complement
system and products of their activation are found to be raised
in the circulation and in local deposits (drusen) in the retina
[4]. Genome-wide association studies first revealed the
association between polymorphisms in the complement factor
H (CFH) gene and susceptibility to the disease [6-8]. Since
then, risk-associated polymorphisms in complement factor I
(CFI) [9], complement factor B (CFB) [10], complement
component 3 (C3) [11], complement factor H-related 3
(CFHR3), and complement factor H-related 1 (CFHR1) [12]
genes have been discovered and replicated. Progress has been
made toward understanding the functional effects of the I62V
and Y402H [13-15] polymorphisms in CFH, the deletion of
CFHR3 and CFHR1 [16], and the R32Q polymorphism in
CFB [17].
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The central step of all three complement pathways is
activation of the C3 molecule to C3b by a C3 convertase
enzyme [3]. In the alternative pathway, the C3 convertase is
made by the binding of C3b to CFB, forming the proenyzme
C3bB. An enzyme, complement factor D (CFD), cleaves the
CFB part of the proenzyme, separating the Ba fragment of the
molecule from the active C3bBb complex. Montes et al. [17]
studied the effect of two adjacent genetic polymorphisms on
the function of human and recombinant CFB in vitro. These
single nucleotide polymorphisms, rs641153 (R32Q) and
rs12614 (R32W), affect the same codon and amino acid
residue. Of the four possible combinations of bases, three are
found to exist, with the combination of both major alleles
resulting in an arginine (R), the minor allele of rs641153 with
the major allele of rs12614 resulting in a glutamine (Q), and
the minor allele of rs12614 with the major allele of
rs641153 resulting in a tryptophan (W) at residue 32 (Table
1). This residue is in the Ba fragment of CFB, and is part of
the binding site for C3b [17]. Compared to 32R, the 32Q
variant of CFB binds with fourfold reduced affinity to C3b,
reducing formation of the C3bB proenzyme and reducing lytic
activity [17]. The 32W variant of CFB also exhibits reduced
binding, proenzyme formation and lytic activity relative to
32R, but the reduction is less marked than that found with 32Q
[17]. The 32Q variant is associated with a reduced risk of
developing AMD [10]. The 32W variant has been studied by
several groups [5,10,18,19], but has not been found to be
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associated with AMD risk. In this study, we investigate the
risk of AMD associated with the 32R, 32W, and 32Q variants
of CFB. Statistical analysis is presented for these variants
alone, and in a logistic regression incorporating the other
major genetic risk factors, CFH and HTRA1, and smoking
status. We also perform a meta-analysis of data from all
identified studies that have previously investigated rs12614
(R32W) in AMD.

METHODS
Study participants: The characteristics of the study group are
shown in Table 2. Individuals with neovascular AMD in at
least one eye were recruited between June 2002 and
September 2006 from ophthalmology clinics in the Royal
Victoria Hospital, Belfast, UK, the regional referral center for
Northern Ireland. Diagnosis was made by clinical
examination and fluorescein angiography. Stereoscopic
digital fundus photographs were graded according to the
Wisconsin age-related maculopathy grading system [20].
Cases had grade 4 neovascular AMD with or without
geographic atrophy. Control participants were recruited from
the local population, and they underwent retinal photography.
Those included had grade 1a retinas (free of drusen or fewer
than five hard drusen with a diameter of <63 µm). All
participants self-reported European ancestry.

The study conformed to the tenets of the declaration of
Helsinki, and it was approved by the Office for Research
Ethics Committees, Northern Ireland. All participants gave
informed consent.
Genotyping of rs641153 and rs12614: DNA was extracted
from peripheral blood leucocytes or frozen buffy coat
samples. We performed SNP genotyping of rs12614 and

rs641153 by PCR (forward primer: 5′-ACA CAC CAT CCT
GCC CCA G-3′; reverse primer: 5′-TAC CCC CTC CAG
AGA GCA GG-3′) followed by DNA sequencing using the
forward primer. All samples showing the minor allele of
rs12614 were confirmed using SNaPshot (Applied
Biosystems, Warrington, UK). Briefly, primer (5′-CAG GTG
TGA CCA CCA CTC CAT GGT CTT TGG CC-3′) extension
was performed on the PCR product using a fluorescent
detection system. Data for the smoking status and CFH and
HTRA1 haplotypes of these participants were available from
our previous studies [12,21].
Statistical analysis: Deviation from the Hardy–Weinberg
equilibrium was investigated by use of the exact method of
Wigginton et al. [22] as used in PLINK v1.07 [23]. Logistic
regression was performed using PASW v18. The numbers of
copies (0, 1, or 2) of each CFH haplotype and CFB codon 32
variant carried by an individual were included as variables,
omitting a reference haplotype from each gene. CFH
haplotypes were tagged by rs6677604, rs3753396, rs419137,
and rs2284664 (1: GACG; 2: GAAG; 3: GGAG; 4: GAAA;
5: AAAG), with haplotype 3 omitted as the reference. The
heterozygous or homozygous state for the HTRA1 risk allele
(rs10490924; T) was included, with homozygosity for the
major allele (rs10490924; G) omitted as the reference. Current
smoking and past smoking were included in the model as
binary variables, with having never smoked omitted as the
reference. Associations between disease status and allele
frequency in the studies performed by ourselves and other
groups were investigated using Pearson’s χ2 test in Epi-Info
v6. To enable comparison of data sets from other groups, we
used their published data, multiplying allele frequencies by
the number of cases or controls to give the allele count if these
were not published. For the meta-analysis, we compared the

TABLE 1. COMPLEMENT FACTOR B (CFB) CODON 32 SEQUENCES AND AMINO ACIDS

Codon 32 sequence Amino acid Symbol
CGG Arginine R
TGG Tryptophan W
CAG Glutamine Q

        Three sequence variants are found in codon 32 due to variations at the first base (rs12614: C/T) and second base (rs641153: A/
        G) of the codon. Three different amino acids are therefore found at residue 32 of the CFB protein. The genotype at both SNPs
        must be known to predict the presence of the 32R protein variant.

TABLE 2. STUDY CHARACTERISTICS.

Characteristics Grade 4 AMD cases Grade 1a controls
Participants (n) 369 251
Male 42% 48%
Female 58% 52%
Median age (range; years) 76 (54–93) 75 (68–92)

            Age refers to the age at recruitment into the study.
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counts of 32W and 32Q alleles to the reference variant, 32R.
Statistical significance was accepted at p<0.05 for all tests.

RESULTS
Both rs641153 and rs12614 were in Hardy–Weinberg
equilibrium in cases and controls. The genotyping rate was
99.7%. CFB genotype data were available for 618
participants.

Logistic regression of complement factor B 32R, 32W,
and 32Q: The 32Q and 32W variants of CFB were found to
be protective against the disease when compared to the 32R
variant (Table 3). The 32Q variant was associated with an odds
ratio of 0.43 (p=8.1×10−5), and the 32W variant was associated
with an odds ratio of 0.64 (p=0.04).

Logistic regression incorporating smoking status and
genotypes in complement factor B, complement factor H, and
HTRA1: The 32Q and 32W variants of CFB were found to be
protective against AMD when smoking status and other
known genetic risk loci were integrated into a logistic
regression (Table 4). The gradation of effect was the same as
in the individual regression, with 32Q being more protective
than 32W (odds ratios 0.33 and 0.53, respectively). CFH
haplotypes 1 and 2, which carry the Y402H risk allele [12],
were associated with increased risk relative to haplotype 3
(odds ratios 1.91 and 2.41, respectively). CFH haplotype 5,
which carries the deletion of CFHR3 and CFHR1 [12], was
protective against AMD (odds ratio 0.47). The HTRA1 risk
allele was associated with increased risk, particularly in

TABLE 3. LOGISTIC REGRESSION OF COMPLEMENT FACTOR B (CFB) VARIANTS.

Variant Odds ratio 95% Confidence  interval p value
  Lower Upper  

32R 1 (reference)    
32W 0.64 0.42 0.98 0.04
32Q 0.43 0.28 0.65 8.1×10−5

Constant 1.81   2.0×10−9

        A logistic regression of the three amino acid variants at residue 32 of the CFB protein. The genotypes were coded as 0, 1 or 2
        copies of each variant.

TABLE 4. LOGISTIC REGRESSION OF COMPLEMENT FACTOR B (CFB) CODON 32 TYPE, COMPLEMENT FACTOR H (CFH)
HAPLOTYPES, HTRA1 RS10490924 GENOTYPE AND SMOKING STATUS.

Covariates Odds ratio 95% Confidence interval P value
  Lower Upper  
CFH haplotype 1 1.91 1.20 3.04 6.7×10−3

CFH haplotype 2 2.41 1.64 3.52 6.5×10−6

CFH haplotype 4 1.12 0.71 1.75 0.63
CFH haplotype 5 0.47 0.28 0.78 4.0×10−3

CFB 32W 0.53 0.31 0.91 0.02
CFB 32Q 0.33 0.19 0.56 5.1×10−5

HTRA1 risk heterozygote (AT) 3.40 2.20 5.26 3.9×10−8

HTRA1 risk homozygote (TT) 25.04 11.24 55.78 3.3×10−15

Ex-smoker 1.73 1.10 2.71 0.02
Current smoker 3.61 2.00 6.49 1.9×10−5

Regression constant 0.29   5.9×10−5

        A logistic regression of genetic variants and smoking status. CFB and CFH data were coded as 0, 1 or 2 copies of each allele.
        Complete data were available for 351 cases and 222 controls to allow inclusion in the logistic regression model. CFH haplotypes
        are defined in Methods.
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homozygosity (odds ratio 25.04). Past and current smoking
were associated with increased risk (odds ratios 1.73 and 3.61,
respectively) compared to having never smoked.

Meta-analysis of published studies of complement factor
B 32R, 32W, and 32Q: The 32Q variant of CFB was
significantly associated with protection from AMD in all of
the studies that also reported data for 32W (Table 5). The 32W
variant was associated with moderate protection from
neovascular AMD in the current study and the Gold [10] and
Spencer [18] studies, though the finding was not statistically
significant in the latter two studies. Meta-analysis of these
three neovascular AMD studies showed an odds ratio of 0.75
(p=0.02) for the 32W variant, compared to the 32R variant.
Gold et al. [10] reported data for other AMD phenotypes,
while Kaur [19] and Scholl [5] reported studies of mixed
phenotypes. The trend in these studies was less consistent,
with Gold reporting no association for geographic atrophy
(though with wide confidence intervals) [10] and Scholl
reporting a nonsignificant increase in risk (in a small study of
mixed phenotype, with wide confidence intervals) [5]. Meta-
analysis of all the studies that included all phenotypes showed
that the 32W variant of CFB was associated with a significant
reduction in risk of AMD (odds ratio 0.79, p=0.01).

DISCUSSION
Significant association between the minor allele at rs12614 in
CFB (32W) and decreased risk of neovascular AMD has not
been reported previously. The study by Montes et al. [17]
provided evidence that this polymorphism was associated
with less efficient alternative complement pathway activation
due to weakened binding between CFB and C3b. Their study
also showed that the established protective 32Q variant (as-
sociated with the minor allele with rs641153) was associated
with  a  more  extreme  reduction  in complement activation
relative to 32R. We investigated the hypothesis that the
genetic variant causing 32W was associated with protection
from AMD, and found this to be the case when compared to
32R by Pearson’s χ2, by logistic regression for rs641153 and
by logistic regression that included other known risk factors
for AMD. The two other studies of neovascular AMD (Gold
[10] and Spencer [18]) showed nonsignificant protective
effects (odds ratios 0.87 and 0.77, respectively). When all
neovascular cases were examined in a meta-analysis, a
statistically significant, moderately protective odds ratio
(0.75; p=0.02) was revealed. A more significant, less strong
odds ratio (0.79; p=0.01) was revealed when meta-analysis of
all AMD cases was undertaken.

This association has not been detected previously. This
discord may reflect chance findings of either our study or the
studies of others. However, combined analysis of all available
data supports the conclusion that CFB 32W is associated with
moderate protection against neovascular AMD, a finding that
is in keeping with the study by Montes et al., which showed
decreased complement activation relative to CFB 32R [17].

Our study provides further evidence that an individual’s
risk of AMD is affected by gene polymorphisms that affect
the function and interaction of the alternative complement
pathway proteins.
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