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Background: Genetic improvement of fillet quality attributes is a priority of the aquaculture industry. Muscle
composition impacts quality attributes such as flavor, appearance, texture, and juiciness. Fat and moisture make up
about ~ 80% of the tissue weight. The genetic architecture underlying the fat and moisture content of the muscle
is still to be fully explored in fish. A 50K gene transcribed SNP chip was used for genotyping 789 fish with available
phenotypic data for fat and moisture content. Genotyped fish were obtained from two consecutive generations
produced in the National Center for Cool and Cold Water Aquaculture (NCCCWA) growth-selective breeding
program. Estimates of SNP effects from weighted single-step GBLUP (WssGBLUP) were used to perform genome-
wide association (GWA) analysis to identify quantitative trait loci (QTL) associated with the studied traits.

Results: Using genomic sliding windows of 50 adjacent SNPs, 137 and 178 SNPs were identified as associated with
fat and moisture content, respectively. Chromosomes 19 and 29 harbored the highest number of SNPs explaining
at least 2% of the genetic variation in fat and moisture content. A total of 61 common SNPs on chromosomes 19
and 29 affected the aforementioned traits; this association suggests common mechanisms underlying intramuscular
fat and moisture content. Additionally, based on single-marker GWA analyses, 8 and 24 SNPs were identified in

Conclusion: SNP-harboring genes were primarily involved in lipid metabolism, cytoskeleton remodeling, and
protein turnover. This work provides putative SNP markers that could be prioritized and used for genomic selection

Background

Fish are excellent source of protein with lower content
of total fat, saturated fat, and cholesterol and higher
omega-3 fatty acids compared to other animals. These
characteristics make fish fillets an ideal source of nutri-
tion according to a consensus dietary studies and recom-
mendation [1]. Thus, fillet quality traits have economic
importance to the aquaculture industry [2], and
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consumer attitude towards fish is influenced by fillet
quality attributes [3]. For profitable aquaculture produc-
tion, there is a need for fish fillets with optimum nutri-
tional values and consistent organoleptic qualities.
Rainbow trout fish fillet contains ~4—18% by weight fat.
Rainbow trout cultured at Clear Springs Foods Inc.
(Buhl, ID, USA), the largest producer in the U.S., con-
tains fat content of 12—13% [4]. Variations in fat content
can result in positive and negative impacts on fillet qual-
ity [4, 5]. Both the quantity and quality of intramuscular
lipid impact fillet juiciness, flavor, color, texture, and
shelf-life [5—8]. Selection on fat content can enhance
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fillet color and texture [9], feed conversion ratio (FCR),
and protein-retention efficiency [10]. However, accumu-
lating excessive lipids in the muscle makes fillet process-
ing difficult and reduces fillet firmness [11-13]. In
addition, high levels of polyunsaturated fatty acids make
the fillet more prone to lipid oxidation, which contrib-
utes to the development of rancid flavor and changes in
color and nutritional value [14]. Therefore, management
of fat content in fish could be used to minimize the vari-
ation in eating quality and yield a product of predictable
quality [6]. The aquaculture industry usually controls
the fat content of fillets by adjusting lipid content in the
diet [15-17]. However, there are limitations in using the
dietary lipids approach without deteriorating fillet qual-
ity due to lipid oxidation and diminishing profitability
due to increased feed cost and accumulation of fat in the
viscera instead of the muscle. Also, a widely adopted cul-
turing triploid in rainbow trout can prevents loss of fillet
quality associated with fat mobilization and protein ca-
tabolism during sexual maturation [9, 18].

Fish fillet is a highly perishable food, at least partially,
due to high moisture content (60—-70%), which results in
off-flavors and faster flesh spoilage because water facili-
tates enzymatic activity and bacterial growth [19, 20].
Low-temperature storage is used to control water activ-
ity. However, slow enzymatic reactions can still support
microbial growth at low temperatures [21]. Previous
studies showed a high correlation between fat and mois-
ture content [22]. In mammals, the intramuscular fat
content exhibits a significant negative correlation with
moisture content [23, 24]. In fish, this correlation de-
pends greatly on the energetic demands associated with
various physiological conditions [18, 25, 26]. An antag-
onistic biological relationship between traits may hinder
their simultaneous improvement, which could lead to
unwanted changes in fillet quality [27, 28]. Therefore, an
optimal balance among important economic traits needs
to be established to enhance product quality and indus-
try returns [2]. Knowledge of the heritability and genetic
architecture of each trait provides information necessary
in developing appropriate multi-trait selection programs.

Selective breeding can be used to enhance phenotypic
traits of interest. A two-way program of selection on
muscle fat content was initiated in rainbow trout to pro-
duce lean and fat lines where the fat percentage in-
creased by ~ 15 to 31% in the fat line depending on the
diet [9, 29]. These lines were used as a model to study
the effect of muscle fat content on fillet quality [9]. Sep-
arately, five generations of family-based selection on
body weight of rainbow trout were performed at the
USDA NCCCWA [30]. In the third-generation (year
class (YC) 2010), fish fillet fat content showed a moder-
ate correlation with whole body weight (coefficient of
determination R? value of 0.50) [31]. Therefore, selection
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for bodyweight yielded heavier fish with more fat in the
muscle. Similarly, gilthead seabream exhibited a 0.1% in-
crease in muscular fat content concomitant with a 0.08%
decline in moisture content per increment of ten grams
in weight [32]. Muscle fat and moisture content showed
moderate heritability in fish, including rainbow trout,
implying the existence of genetic variance in a rainbow
trout population selected for an enhanced rate of growth
[33], thus making genetic responses to selection possible.
However, in salmonids, the genetic architecture of fat
and moisture content has not been fully explored in a
genome-wide scale [34]. Understanding the genetic basis
of the phenotypic traits in question and development of
fish strains of improved genetic gain will enhance the ef-
ficiency of breeding programs, aquaculture industry
profitability, and consumer satisfaction.

Genome-wide association (GWA) studies can identify
large-effect variants responsible for phenotypic varia-
tions, which can be prioritized in genomic selection. A
few GWA studies have been conducted on aquaculture
species to identify quantitative genomic loci (QTL) re-
sponsible for the genetic variability in body weight [35],
fillet quality [35, 36], and disease resistance [37]. In fish,
a few GWA studies were performed on Atlantic salmon
[11, 34] and common carp [38] to identify QTL associ-
ated with muscle fat content. In Atlantic salmon, few
significant SNPs associated with muscle fat content were
identified using a ~ 5K and 57 K SNP panels [11, 34]. In
common carp, a high-density, 250 K SNP array revealed
eight SNPs related to muscle fat content; however, none
of the SNPs surpassed the genome-wide significance
level [38]. The two studies did not identify QTL explain-
ing a large proportion of the genetic variance in fat con-
tent in fish. To the best of our knowledge, no GWA
studies have been performed in rainbow trout to identify
SNP markers associated with genetic variance for fat and
moisture content.

A 50K transcribed SNP-chip, suitable for GWA ana-
lyses, has been recently developed in our laboratory. The
array has been used to identify large-effect QTL respon-
sible for genetic variance in fillet yield, firmness, protein
content, and body weight gain using the same fish popu-
lation used in this study [36, 39, 40]. The current study
aimed to identify QTL associated with the additive gen-
etic variance in fillet fat and moisture content for the
same rainbow trout population.

Results and discussion

Muscle fat and moisture contents are interrelated attri-
butes that affect the organoleptic quality and nutritional
value of muscle foods [8, 38, 41, 42]. In fish, high-fat
content may influence fillet processing and reduce the
firmness leading to fillet downgrading [11]; moreover, it
significantly impacts texture, juiciness, and flavor [5-7].
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In mammals, increased marbling scores are positively re-
lated to beef tenderness, accounting for ~9% of the
shear force variation [43]. The inability to retain mois-
ture during postmortem storage, in both fish and mam-
mals, is associated with a high drip loss and, in turn,
reduces the industry profitability by influencing process-
ing yield and palatability [44, 45]. In the pork industry,
drip loss results in up to 10% product losses affecting
profitability at wholesale and retail levels [44]. Similarly,
1.5 to 5% of drip losses were reported in salmon [46,
47]. Muscle quality traits in rainbow trout are complex
and controlled by many genes (i.e., polygenic in nature)
[31, 39]. Increased knowledge of the genetic basis of
muscle quality traits will facilitate to advance the com-
mercial breeding in salmonids. GWA studies are power-
ful tools to identify genetic variants associated with
complex traits [36, 39, 40]. However, no GWA studies
were previously conducted to dissect the genetic archi-
tecture of fillet fat and moisture contents in rainbow
trout. The SNP-based heritability for fat and moisture
content was 0.39 and 0.51, respectively, suggesting exist-
ence of adequate genetic variability in the NCCCWA
fish population to allow genetic improvement through
selective breeding. A higher rate of genetic gain is ob-
tained when genomic information is used [48].

In this study, we used genomic windows of 50 SNPs of
a 50 K SNP chip to perform GWA analyses, in addition
to the single-marker analysis approach, to identify gen-
omic regions associated with the traits. Given that the
50K, SNP chip contains SNPs of potential association
with intramuscular fat content, all fish used to build the
SNP-chip were excluded from the GWA analysis in the
present study.
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The fish population had an average muscle fat content
of 92+191 (%) and moisture content of 69.93 +1.75
(%). Variations in fat and moisture content are shown in
Fig. 1. Previous studies reported a significant correlation
between changes in fat and moisture content in fish [26,
32]. Consistently, our data showed a significant negative
correlation between fat and moisture content (R=-
0.88; p-value = 6.3E-262). Further, fat content was
regressed on moisture content using phenotypic data
from separate year classes to make sure the size and age
differences between fish from YC 2010 and YC 2012 are
not influencing the correlation between the traits. Inter-
estingly, the negative correlation between fat and mois-
ture content (R = — 0.88) was maintained in fish from the
two consecutive generations.

QTL affecting muscle fat and moisture content using
WssGBLUP

All 35,322 SNPs (70.6%) that passed QC were used in
the WssGBLUP analysis. A complete list of proportions
of additive genetic variance for fat content explained by
all genomic windows is provided in Table S1. Of them, a
total of 137 genomic sliding windows explaining at least
2% (arbitrary value) of the additive genetic variance for
fat content are listed in Table S2. Most of the SNP slid-
ing windows (n=124; ~91%) were located within 62
protein-coding genes. Genomic loci affecting the addi-
tive variance for fat content were clustered in 5 chromo-
somes (1, 4, 5, 19, and 29) (Fig. 2).

Chromosome 19 harbored the highest number (n = 50)
and the most significant peaks affecting fat content (up
to 5.51%) (Table S2, Fig. 2). Many of the SNPs were lo-
cated within the CDS of the SNP-harboring genes (n =
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Fig. 1 Reverse relationship between intramuscular fat and moisture content in fish used for GWA analyses

) .'.”M.
T P

10 12 14 16 18




Ali et al. BMC Genomics (2020) 21:529 Page 4 of 17
p
6 —_
® 5 '
5 I
(U —
% 4 .
-
s 341 I !
£ : .
5 2
o .
O} .
= 1 4 g
0 —

123 456 8 10

variance explained by the sliding windows

Chromosome

Fig. 2 Manhattan plot showing association between 50 SNP-genomic sliding windows and muscle fat content. Chromosome 19 showed the
highest peaks with genomic loci explaining up to 5.51% of the additive genetic variance. The basal blue line represents 2% of the genetic
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58) as well as their 3'UTR (# =55). In order to under-
stand the biological significance of the QTL associated
with fat content, we annotated the SNP-harboring genes
and searched their functions in the literature (described
below).

Similarly, a complete list of the proportions of additive
genetic variance for moisture content explained by all
windows identified in this study is provided in Table S3.
A total of 178 genomic sliding windows revealing at least
2% of the additive genetic variance for moisture content
are listed in Table S4. Most of the SNP sliding windows
(n =165; ~93%) were located within 86 genes coding for
proteins. Genomic loci affecting the additive variance for
moisture content were clustered on 5 chromosomes (5,
14, 19, 25, and 29) (Fig. 3). Chromosome 29 harbored
the highest number (n =48), whereas the most signifi-
cant peaks affecting moisture content (up to 4.46%) were
identified on chromosome 19 (Table S4, Fig. 3). Many of
the SNPs were located within CDS of the SNP-
harboring genes (n = 68) as well as their 3UTR (n = 72).

Common genes affecting muscle fat and moisture content

As shown above, a negative linear relationship has been
established between fat and moisture content in this se-
lectively bred rainbow trout population (YC 2010 and
YC 2012), suggesting a common mechanism underlying
the genetic variation in the two traits. This negative cor-
relation was consistent with other studies in fish and
mammals [23, 24, 26, 32]. In rainbow trout, the correl-
ation between fat and moisture content depends on the
physiological status of the fish. For instance, gravid fish
approaching spawning and maintained on a high plane
of nutrition showed reduced intramuscular fat with a
concurrent increase in moisture, shear force, and protein
content [26]. On the other hand, fat content was not af-
fected during spawning, while moisture content in-
creased [25]. This was explained by a selective
mobilization of either fat or protein during sexual mat-
uration. Depleted macromolecules were replenished by
water [25, 26]. In addition to sexual maturation, season,
feeding, starvation, temperature, salinity, and selection
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Fig. 3 Manhattan plot showing association between 50 SNP-genomic sliding windows and muscle moisture content. Chromosome 19 showed
the highest peaks with genomic loci explaining up to 4.46% of the additive genetic variance. The basal blue line represents 2% of the genetic
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for WBW were found to affect the fat/moisture balance
and impact the product quality. For instance, increased
fat content due to fast growth of salmon in the summer
was accompanied by a high drip loss [49]. The drip loss
negatively impacted the sensory attributes and developed
unpleasant odors [49]. Exposure of juvenile salmon to a
high salinity stimulated lipid depletion that was partially
explained by increased depot lipase activity [50]. Chan-
nel catfish fed supplemental diets deposited fat concomi-
tant with loss of moisture. Starved channel catfish at
8.9 °C mobilized muscular fat to supply energy for meta-
bolic process, whereas both fat and protein were mobi-
lized at 21.1°C; in either case, moisture content
increased [51]. Selection for WBW in rainbow trout [30]
and gilthead seabream [32] led to high muscular fat con-
tent associated with a decline in moisture content (in
particular, the more loosely bound water).

The current WssGBLUP identified common SNPs af-
fecting the additive genetic variance for fat and moisture
content on chromosomes 19 and 29 (Tables S2 & S4).
The majority of the common SNPs (1 = 47) were located
on chromosome 19. Thirty-two SNPs, out of 47, in-
volved in lipid metabolism were identified in 16 protein-
coding genes on chromosome 19 (Table 1). Briefly, ca-
thepsin B had a single 3'UTR SNP. Cathepsin B regu-
lates very-low-density lipoprotein (VLDL) secretion and
free fatty acid uptake in response to oleic acid exposure
in mice [52]. Thioredoxin-related transmembrane pro-
tein 1-like (TMX1) had three SNPs. Loss of TMX in-
creases lipid peroxidation in TMX(-/-) mice, which, in
turn, enhances oxidative stress [53]. Guanine nucleotide-
binding protein GI/GS/GO gamma-2 subunit (GNG2)
had a single 3'UTR SNP. GNG2 expression is positively
correlated with adipocyte size [54]. SNPs in genes en-
coding beta-taxilin and Alpha-L-fucosidase 2 (FUCA2)
were covering windows explaining the highest propor-
tion of the additive genetic variation for fat and moisture
content. Adipose tissue of obesity susceptible and resist-
ant rats differentially expressed beta-taxilin under a
high-fat diet [55]. FUCA2 is a glycolipid processing en-
zyme [56]. Two SNPs in F-box only protein 30
(FBX030) and the microtubule-binding protein enscon-
sin were ranked next to beta-taxilin and FUCA2. An
SNP in FBXO30 was located in a genomic region,
explaining 4.95% of the additive genetic variance for
polyunsaturated fatty acids in cattle [57]. Knockdown of
microtubule-binding or -associated proteins led to
changes in fat accumulation during adipogenesis [58].
Dihydropyrimidinase-related protein 5-like (CRMP5)
had a single synonymous SNP. CRMP5 has GO terms
belong to lipid metabolic processes [59]. Five SNPs were
identified in a gene encoding trifunctional enzyme sub-
unit alpha, mitochondrial (HADHA). This gene is in-
volved in fatty acid beta-oxidation [59]. mRNA decay
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activator protein ZFP36L1 had three SNPs in the 3’'UTR.
Knockdown of mammalian ZFP36L1 led to the down-
regulation of ERK activation and inhibition of adipogen-
esis [60]. A single 3UTR SNP was identified in ELM2
and SANT domain-containing protein 1 (ELMSANI).
Epigenome-wide association analysis showed DNA
methylation changes in ELMSANI1 were associated with
body mass index (a key measure of adiposity) [61]. Pros-
taglandin reductase 2 (PTGR2) had two nonsynonymous
SNPs. This enzyme catalyzes reduction of the conjugated
o,p-unsaturated double bond of 15-keto-PGE2 in an
NADPH-dependent manner, which is a critical step in
inhibition of PPARy-mediated adipocyte differentiation
[62]. Spectrin beta chain, erythrocytic (SPTB) gene had
two SNPs. The SPTB interacts with phospholipids in
natural [63] and model membrane systems [64] and has
a role in controlling the fluidity of the inner lipid leaflet
of the cell membrane (reviewed in [65]).

Chromosome 29 had 14 SNPs in genomic windows
explaining at least 2% of the additive genetic variance for
intramuscular fat and moisture content (Tables S2 & S4).
Of them, seven SNPs were involved in lipid metabolism
(Table 1). A gene encoding short-chain specific acyl-CoA
dehydrogenase, mitochondrial (ACADS) had a single SNP.
This enzyme has a role in fatty acid beta-oxidation [66].
An intronic SNP was identified in a gene coding for
arrestin domain-containing protein. The latter has GO
terms belonging to fat pad and skin development and reg-
ulates the body mass [67]. Myocyte enhancer factor 2c
(MEF2C) had the highest number of SNPs (n=5) on
chromosome 29. MEF2C is a transcription factor involved
in skeletal muscle differentiation; however, it has been re-
ported as a constituent of a mechanism that programs
gene expression involved in development of brown adipo-
cytes [68]. MEF2A and MEF2D isoforms exhibited in vivo
differential expression in mammalian striated muscle and
white adipose tissue of insulin-deficient diabetic mice [69].
To our knowledge, the role of MEF2C in white adipose
tissue remains uncertain.

In addition, twelve SNPs in genes involved in trans-
membrane transport and cytoskeleton remodeling were
identified in common QTL affecting additive variance
for fat and moisture content (Table 2). The majority of
these SNPs were identified on chromosome 19 (n =11).
Three synonymous SNPs were identified in a gene en-
coding intersectin-2 (ITSN2). This protein is necessary
for the clathrin-mediated endocytosis and actin cytoskel-
eton remodeling [70]. Six SNPs were identified in 3
genes involved in vesicle-mediated transport (i.e., exocyt-
osis); dnaJ] homolog subfamily C member 5B, visinin-like
protein 1, and syntaxin-binding protein 5. The actin
cytoskeleton remodeling controls each step of exocytosis
[71]. Three SNPs were identified in microtubule-
associated protein RP/EB family member 3 (MAPRE3)
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Table 1 SNP markers in genomic sliding windows explaining at least 2% of the genetic variance for fat and moisture content and
involved in lipid metabolism. A color gradient on the left indicates differences in additive genetic variance explained by windows
containing the representative SNP marker (green is the highest and red is the lowest). SNPs are sorted according to their

chromosome positions

Var%_Fat| Var%_Moisture | CHR| Position |Strand| Gene ID Function Gene annotation Region/effect
3.25 3.16 19 123140902 + |LOC110497560| Lipid metabolism cathepsin B-like 3'UTR
4.19 3.77 19 |23257105] + |LOC110497565| Lipid metabolism thioredoxin-related transmembrane protein 1-like CDS/nonsyn
4.15 3.77 19 123259435 + |LOC110497565] Lipid metabolism thioredoxin-related transmembrane protein 1-like 3'UTR
4.15 3.78 19 |23260053| + |LOC110497565] Lipid metabolism thioredoxin-related transmembrane protein 1-like 3'UTR
4.14 3.78 19 |23443626 + ghg2 Lipid metabolism| Guanine nucleotide-binding protein GI/GS/GO gamma-2 subunit 3'UTR
5.50 4.45 19 |23495709] - | LOC110497567| Lipid metabolism beta-taxilin-like CDS/syn
5.51 4.46 19 | 23496538 - LOC110497567| Lipid metabolism beta-taxilin-like CDS/syn
5.51 4.46 19 |23527643| - fuca2 Lipid metabolism alpha-L-fucosidase 2 3'UTR
5.33 4.28 19 |23528291| - fuca2 Lipid metabolism alpha-L-fucosidase 2 3'UTR
5.42 4.31 19 123699374 - |LOC110497583| Lipid metabolism F-box only protein 30-like 3'UTR
5.32 4.26 19 |24247835] - | LOC110497599| Lipid metabolism ensconsin-like 3'UTR
4.66 3.39 19 124329620 - | LOC110497602| Lipid metabolism dihydropyrimidinase-related protein 5-like CDS/syn
4.55 3.22 19 |24502571| - | LOC110497612] Lipid metabolism trifunctional enzyme subunit alpha, mitochondrial-like 3'UTR
4.56 3.23 19 24503147 - |LOC110497612] Lipid metabolism trifunctional enzyme subunit alpha, mitochondrial-like 3'UTR
4.56 3.24 19 |24509666] - |LOC110497612] Lipid metabolism trifunctional enzyme subunit alpha, mitochondrial-like CDS/nonsyn
4.67 3.33 19 |24512704] - |LOC110497612] Lipid metabolism trifunctional enzyme subunit alpha, mitochondrial-like CDS/nonsyn
4.63 3.28 19 |24512932| - | LOC110497612| Lipid metabolism trifunctional enzyme subunit alpha, mitochondrial-like CDS/syn
4.47 3.20 19 |25037839] + |LOC110497620| Lipid metabolism mRNA decay activator protein ZFP36L1-like 3'UTR
4.33 3.19 19 |125039247| + |LOC110497620| Lipid metabolism mRNA decay activator protein ZFP36L1-like 3'UTR
4.33 3,18 19 |125039632| + |LOC110497620| Lipid metabolism mRNA decay activator protein ZFP36L1-like 3'UTR
3.74 3.07 19 | 25366465 - | LOC110498698| Lipid metabolism ELM2 and SANT domain-containing protein 1-like 3'UTR
3.74 3.07 19 |25409419| + ptgr2 Lipid metabolism prostaglandin reductase 2 CDS/nonsyn
3.74 3.07 19 | 25414599 + ptgr2 Lipid metabolism prostaglandin reductase 2 CDS/nonsyn
3.74 3.07 19 25563733 + |LOC110497630] Lipid metabolism spectrin beta chain, erythrocytic-like CDS/nonsyn
3.74 3.07 19 |25581001| + |LOC110497630] Lipid metabolism spectrin beta chain, erythrocytic-like CDS/syn
2.24 2.54 29 110494611 + |LOC110509620| Lipid metabolism| short-chain specific acyl-CoA dehydrogenase, mitochondrial-like 3'UTR
2.39 2.61 29 |10714305) + |LOC110509628| Lipid metabolism arrestin domain-containing protein 3-like mRNA
2.39 2.62 29 |10776686) + |LOC110509321| Lipid metabolism myocyte-specific enhancer factor 2C-like 5'UTR
2.23 2.59 29 |10798819] + |LOC110509321| Lipid metabolism myocyte-specific enhancer factor 2C-like mRNA
2.24 2.59 29 |10800769] + |LOC110509321| Lipid metabolism myocyte-specific enhancer factor 2C-like CDS/syn
2.22 2.59 29 |10801091] + |LOC110509321| Lipid metabolism myocyte-specific enhancer factor 2C-like CDS/syn
2.01 2.53 29 |10801136f + |LOC110509321| Lipid metabolism myocyte-specific enhancer factor 2C-like CDS/syn

and centrin-3. MAPRE3 and centrin-3 control the dy-
namics of the microtubule cytoskeleton [59, 72].

Overall, the analysis revealed that most of the loci in
association with both fat and moisture content are in-
volved in lipid metabolic process. Therefore, our results
suggest that variation in moisture content is likely to be
driven by changes in fat content in an antagonistic fash-
ion. This notion was previously suggested as depletion
of macromolecules under catalytic muscle conditions is
likely forming voids for water accumulation [28].

Unique genes affecting the additive genetic variance for
moisture

The actin cytoskeleton interacts with the cell membrane to
control water transport [73]. Expression of genes involved
in the cytoskeletal organization has previously shown a
positive correlation with the drip loss [74]. In the current
study, thirty-five variants in genes (# = 14) involved in cyto-
skeleton remodeling were identified, affecting the additive
variance for moisture content in rainbow trout (Table 3).

Briefly, bone morphogenetic protein receptor type-2
(BMPR2) had a single synonymous SNP. BMPR2 is known
to interact with the cytoskeleton, and BMPR2 mutant mice
exhibited cytoskeletal defects [75]. A gene encoding muscle
associated receptor tyrosine kinase (MUSK) had a single
SNP. Activation of MUSK in myotubes regulates the
reorganization of the actin cytoskeleton [76]. Two SNPs
were identified in THAP domain containing 1 (THAP1),
which has a role in regulation of the mitotic cell cycle [77].
The gene encoding asparaginyl-tRNA synthetase (NARS)
had 3 SNPs in windows explaining the highest additive vari-
ance (up to 3.46%; Table 3). Mutations in NARS leads to
cell cycle arrest in the S phase [78]. The actin cytoskeleton
undergoes dramatic changes during the cell cycle [79]. Ten
SNPs were identified in three genes coding for cyclin-I
(CCNI), cyclin-G1 (CCNG1), and cyclin-G2 (CCNG2).
Cyclins function as regulators of the cell cycle and actin
cytoskeleton dynamics (reviewed in [80]). The serine/threo-
nine-protein, phosphatase 2A (PP2A), had a 3'UTR SNP.
This phosphatase is associated with microtubule
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Table 2 SNP markers in genomic sliding windows explaining at least 2% of the genetic variance for fat and moisture content and
involvement in transmembrane transport and cytoskeleton regulation. A color gradient on the left indicates differences in additive
genetic variance explained by windows containing the representative SNP marker (green is the highest and red is the lowest). SNPs

are sorted according to their chromosome positions

Var%_Fat| Var%_Moisture | CHR| Position [Strand| Gene ID Function Gene annotation Region/effect
2.60 2.81 19 123060380 L0C110497555| Endocytosis & cytoskeleton intersectin-2 CDS/syn
2.59 2.80 19 | 23062680 L0C110497555) Endocytosis & cytoskeleton intersectin-2 CDS/syn
3.17 3.11 19 123082360 L0C110497555| Endocytosis & cytoskeleton intersectin-2 CDS/syn
533 4.28 19 | 23561806 L0C110497574 Exocytosis dnaJ homolog subfamily C member 58 3'UTR
533 4.29 19 | 23621300 L0C110497579 Exocytosis visinin-like protein 1 3'UTR
5.34 431 19 123627722 LOC110497579 Exocytosis visinin-like protein 1 5'UTR
5.42 431 19 | 23627740 L0C110497579 Exocytosis visinin-like protein 1 5'UTR
5.32 4.26 19 (23838038] + |LOC110497586 Exocytosis syntaxin-binding protein 5 CDS/syn
5.33 4.26 19 123851302 + |LOC110497586 Exocytosis syntaxin-binding protein 5 3'UTR
5.34 430 19 | 24316246 L0C110497601| Microtubule cytoskeleton | microtubule-associated protein RP/EB family member 3 3'UTR
4.54 334 19 124317314 L0C110497601| Microtubule cytoskeleton | microtubule-associated protein RP/EB family member 3 3'UTR
2.39 2.61 29 |10746517] + |L0C110509629 Microtubule binding centrin-3 CDS/nonsyn

stabilization, where it binds and dephosphorylates the
microtubule-associated ~ proteins  [81]. Annexin A6
(ANXA®6) had two synonymous SNPs. ANXA6 contributes
to membrane and cytoskeleton organization in a Ca”*-
dependent manner [82]. Tubulin beta-4B chain (TUBB4B)
had four synonymous SNPs within 1Kb of chromosome 25.
TUBB4B is a critical component of microtubules [59]. Five
SNPs, clustered in ~2Kb, were identified in a gene coding
for midl-interacting protein 1 (MID1IP1). This protein en-
hances fatty acid biosynthesis [83] and stabilizes micro-
tubule organization [59]. Two SNPs were identified in a
gene encoding tubulin-specific chaperone A (TBCE). TBCE
is a tubulin-folding protein required for proper microtubule
cytoskeleton organization [84]. Additionally, mutations in
TBCE drive muscle atrophy [84]. Proteinase-activated re-
ceptor 1 (PAR1) and PAR2 had four SNPs. PAR-mediated,
RhoA activation is vital for cytoskeletal reorganization [85].

A strong positive correlation between moisture and
protein content has been established in different species.
A simultaneous decline in protein and moisture content
was previously reported in mammals [24]. Moisture con-
tent in rainbow trout exhibited a bidirectional relation-
ship with protein content depending on physiological/
metabolic status. For example, a negative correlation be-
tween moisture and protein content were previously re-
ported under muscle catabolic conditions associated
with full sexual maturation (R*=0.994, p<0.01) [25];
whereas, a positive correlation was reported in female
trout, on a high plane of nutrition, that were ap-
proaching spawning [26]. This was explained by selective
mobilization of either protein during spawning or fat be-
fore spawning; in either case, the depleted macromol-
ecule was replaced by water. It is noteworthy that
protein content variation of the current study was not
statistically significant between the 4 high-ranked

families versus 4 low-ranked families (data not shown).
The current WssGBLUP analysis indicated that thirteen
SNPs in genes involved in protein degradation were in-
volved in the additive genetic variance of moisture content
(Table 4). Briefly, E3 ubiquitin-protein ligase RNF170 is
an E3 ubiquitin-protein ligase that plays an essential role
in the ubiquitination and degradation of inositol 1,4,5-tris-
phosphate receptor type 1 (ITPR1) [59, 86]. The latter
controls the calcium release from the endoplasmic
reticulum [87], which affects the muscle protein content
in rainbow trout [39] and has a profound effect on the
regulation of cytoskeleton [88]. Cystatin-1, which pos-
sesses a peptidase inhibitor activity, had a single 5UTR
SNP. Thioredoxin-like 1 (TXNL1) had two synonymous
SNPs. The knockdown of TXNL1 moderately stabilizes
the ubiquitin-protein conjugates suggesting a connection
between protein reduction and proteolysis [89]. Pre-
mRNA-processing factor 19 (PRPF19) and ubiquitin-
conjugating enzyme E2 D2 (UBE2D2) had four SNPs.
These ligases catalyze polyubiquitin chain assembly and
play a role in proteasomal protein degradation [90, 91].
Nuclear factor NF-kappa-B p105 subunit (NFKB1) had
two 3'UTR SNPs. NFKBL is involved in the negative regu-
lation of cellular protein metabolic process [92] and apop-
totic process [93].

In addition to the ubiquitin-protein ligases, SNPs in
three genes involved in lysosomal/phagosomal pathways
were identified. Ras-related protein rab7 (RAB7A) har-
bored a 3'UTR SNP. RAB7A is a major regulator of
endo-lysosomal maturation/ trafficking and protein tar-
geting to lysosome inducing autophagosome formation
[94]. Thus, RAB7A positively regulates the protein cata-
bolic process [95]. V-type proton ATPase subunit B
(ATP6V1B2) had a 3'UTR SNP. V-ATPase is responsible
for acidifying the intracellular compartments, including
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Table 3 SNP markers in genomic sliding windows explaining at least 2% of the genetic variance for moisture content and involved
in cell cycle and cytoskeleton regulation. A color gradient on the left indicates differences in additive genetic variance explained by
windows containing the representative SNP marker (green is the highest and red is the lowest). SNPs are sorted according to their

chromosome positions

Var%| CHR| Position | Strand Gene ID Function Gene annotation Region/effect
3.42| 5 | 1581801 + | LOC110524928| Cytoskeleton bone morphogenetic protein receptor type-2 CDS/syn
3.43| 5 | 2416345 + musk Cytoskeleton muscle associated receptor tyrosine kinase 3'UTR
3.39| 5 | 3076608 - thapl Cell cycle THAP domain containing 1 3'UTR
3.39| 5 | 3077900 - thapl Cell cycle THAP domain containing 1 CDS/syn
3.34| 5 | 3948426 + nars Cell cycle asparaginyl-tRNA synthetase CDS/syn
3.45| 5 | 3954845 + nars Cell cycle asparaginyl-tRNA synthetase CDS/syn
3.46| 5 | 3956515 + nars Cell cycle asparaginyl-tRNA synthetase 3'UTR
2.72| 5 | 4499566 + | LOC110523126| Cell cycle cyclin-I 5'UTR
2.49| 5 | 4515345 - LOC110523127| Cell cycle cyclin-G2 3'UTR
2.48| 5 | 4517902 - LOC110523127| Cell cycle cyclin-G2 CDS/syn
2.31| 5 | 4523733 + | LOC110523126| Cell cycle cyclin-I| mRNA
2.30| 5 | 4529514 + | LOC110523126| Cell cycle cyclin-| CDS/nonsyn
2.30| 5 | 4533058 + | LOC110523126| Cell cycle cyclin-I CDS/nonsyn
2.30| 5 | 4539962 + LOC110523126| Cell cycle cyclin-I CDS/nonsyn
2.31| 5 | 4545000 + | LOC110523126| Cell cycle cyclin-I| CDS/nonsyn
2.09| 5 | 4547885 + | LOC110523126| Cell cycle cyclin-| 3'UTR
2.08 | 14 |74268218 + LOC110489167| Cell cycle cyclin-G1 3'UTR
2.08 | 14 | 74743050 - LOC110489177| Cytoskeleton| serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform 3'UTR
2.00| 14 |75046230 - LOC110489191| Cytoskeleton annexin A6 CDS/syn
2.00| 14 |75047544| - LOC110489191| Cytoskeleton annexin A6 CDS/syn
2.05| 25 |23765983| - LOC110504922| Cytoskeleton tubulin beta-4B chain CDS/syn
2.04| 25 |23766034 - LOC110504922| Cytoskeleton tubulin beta-4B chain CDS/syn
2.04| 25 |23766334| - LOC110504922| Cytoskeleton tubulin beta-4B chain CDS/syn
2.05| 25 |23766912| - LOC110504922| Cytoskeleton tubulin beta-4B chain CDS/syn
2.09| 25 ]23967070] + mlipl Cytoskeleton Mid1-interacting protein 1 5'UTR
2.09| 25 23968673 + mlipl Cytoskeleton Mid1l-interacting protein 1 3'UTR
2.11| 25 ]23969016| + m1lipl Cytoskeleton Mid1-interacting protein 1 3'UTR
2.05| 25 |23969082| + mlipl Cytoskeleton Mid1-interacting protein 1 3'UTR
2.05| 25 ]23969158] + mlipl Cytoskeleton Mid1-interacting protein 1 3'UTR
2.02| 29 |12409282] + |LOC110509670|Cytoskeleton tubulin-specific chaperone A CDS/syn
2.02| 29 |12410990] + |LOC110509670|Cytoskeleton tubulin-specific chaperone A 3'UTR
2.02| 29 |12653356| - LOC110509674| Cytoskeleton proteinase-activated receptor 2 3'UTR
2.02| 29 |12654062| - LOC110509674| Cytoskeleton proteinase-activated receptor 2 CDS/syn
2.07 | 29 |12654462 - LOC110509674| Cytoskeleton proteinase-activated receptor 2 CDS/nonsyn
2.10| 29 |12665454| - LOC110509677| Cytoskeleton proteinase-activated receptor 1 3'UTR

lysosomes [96]. The gene encoding the B chain of the
adaptor protein-3 (AP-3) complex had a single syn-
onymous SNP. Deletion in AP3B1 perturbs assembly of
AP-3 complex and, in turn, trafficking of transmem-
brane lysosomal proteins [97].

In this study, most of the common genomic loci affect-
ing the highest proportion of the additive variance were
involved in lipid metabolism, suggesting a common
mechanism underlying intramuscular fat and moisture
content and, partially, explaining the strong negative
correlation between the fat and moisture content in this
selectively bred rainbow trout population. Unique loci
affecting moisture content were primarily involved in
cytoskeleton regulations and protein turnover. Inhibition
of protease activity, such as calpains, reduced degrad-
ation of proteins responsible for cell membrane-
cytoskeleton attachments and postmortem drip channel

formation in muscle [98]. The presence of calcium en-
hances proteolysis, by p-Calpain, of myofibrillar and
other cytoskeletal proteins during postmortem storage
[45, 99]. Further investigation is warranted to determine
QTL that could be prioritized in breeding programs to
achieve optimal moisture content with low enzymatic
activity and drip loss, and optimal fat content that can
meet consumer preferences.

Overall, the WssGBLUP analysis has enriched the current
understanding of the genetic architecture of the fat and
moisture content in rainbow trout. Common SNP windows
explained a high proportion of the additive genetic variance
associated with both fat and moisture content, suggesting
common regulatory mechanisms. Knowledge of the herit-
ability of fat and moisture content and their correlations
with other traits is needed for establishment of sustained
multi-trait selection programs. The aquaculture industry is
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Table 4 SNP markers in genomic sliding windows explaining at least 2% of the genetic variance for moisture content and involved
in proteolytic activities. A color gradient on the left indicates differences in additive genetic variance explained by windows
containing the representative SNP marker (green is the highest and red is the lowest). SNPs are sorted according to their

chromosome positions

Var%| CHR| Position |Strand] GeneID Function Gene annotation Region/effect
3.42 1402874 - |LOC110523084| Ubiquitin-protein ligase E3 ubiquitin-protein ligase RNF170 3'UTR
3.43 2249297| + |LOC110523107| peptidase inhibitor cystatin-1 5'UTR
3.37 3931855 - txnll Redox homeostasis thioredoxin like 1 CDS/syn
3.34 3941358 - txnll Redox homeostasis thioredoxin like 1 CDS/syn
2.05| 25]23666377] - |LOC110504917| Ubiquitin-protein ligase pre-mRNA-processing factor 19 CDS/syn
2.05| 2523690277 + |LOC110504919| Ubiquitin-protein ligase ubiquitin-conjugating enzyme E2 D2 5'UTR
2.05| 25]23698043] + |LOC110504919| Ubiquitin-protein ligase ubiquitin-conjugating enzyme E2 D2 3'UTR
2.06| 25]23698573] + |LOC110504919] Ubiquitin-protein ligase ubiquitin-conjugating enzyme E2 D2 3'UTR
2.06| 2523700241 - |LOC110504918| Transcription factor nuclear factor NF-kappa-B p105 subunit 3'UTR
2.06| 25]23700272] - |LOC110504918] Transcription factor nuclear factor NF-kappa-B p105 subunit 3'UTR
2.12| 29 |11141837] + |LOC110509643 Phagosome ras-related protein rab7 3'UTR
2.03| 29 ]|11416104] + |LOC110509654 Phagosome V-type proton ATPase subunit B, brain isoform 3'UTR
2.03| 29]12313543] + |LOC110509669 Lysosome AP-3 complex subunit beta-1 CDS/syn

interested in implementing genomic selection in the breed-
ing programs; however, applying high-density SNP chips is
cost-prohibitive for small-sized hatcheries and companies.
SNPs with a large-effect on genetic variances of fat and
moisture content, identified in this study, could be priori-
tized to reduce SNP panel density needed to evaluate the
predictive abilities for both traits. In another study, we
found that prioritizing SNPs based on the proportion of
variance explained for muscle yield and firmness allowed to
reduce the SNP panel density down to ~ 800 SNPs. Re-
duced SNP panels outperformed the traditional PBLUP
model in predicting the future fish performance, and main-
tained predictive abilities comparable to the 50K SNP
panel (data will be published elsewhere).

Single marker GWA analyses
To identify single SNP markers associated with variation
in fat and moisture content, we analyzed SNPs that
passed QC filtration (n=29,451) using a generalized
score test; this test incorporates multiple covariates in
the analysis and accounts for family structure using a
kinship matrix [100]. In this study, 8 and 24 significant
SNPs, surpassing the genome-wide significance level,
had a potential impact on the fat and moisture content
(Bonferroni-corrected p < 1.69E-06; Figs. 4 and 5 and
Tables S5 & S6), respectively. Whereas, 29 and 46 SNPs
surpassing the suggestive significance level (Bonferroni-
corrected p < 1E-05; Figs. 4 and 5 and Tables S5 & S6)
were detected in association with fat and moisture con-
tent, respectively. Suggestive significant SNPs were not
considered for the downstream analysis.

SNPs associated with the fat content were mainly lo-
cated on chromosome 5 (n=7), and SNP-harboring

genes have roles in lipid metabolism (Table 5). The list
includes 78kDa glucose-regulated protein (GRP78),
spindle and kinetochore associated complex subunit 1
(SKA1), apelin receptor B (APLNR-B), desmoplakin,
podocan, and calcium-binding mitochondrial carrier
protein SCaMC-1 (SLC25A24). Briefly, two missense
mutations were identified in genes coding for GRP78
and SKA1l. GRP78 is essential for adipocyte differenti-
ation and a balanced secretion of adipokines. Deletion of
GRP78 causes lipoatrophy in mice observed as a dra-
matic reduction in gonadal and subcutaneous adipose
tissue [101]. SKA1 was downregulated in adipose tissues
between samples from obese and healthy control chil-
dren and has been suggested as a candidate biomarker
for childhood obesity [102]. Three synonymous muta-
tions were identified in genes encoding APLNR, desmo-
plakin, and podocan. APLNR knockout mice
demonstrated excess fatty acid accumulation in skeletal
muscle [103]. Abnormalities in desmoplakin have been
associated with changes in lipid metabolism [104]. Podo-
can belongs to the small leucine-rich proteoglycans
(SLRPs) that bind to low-density lipoprotein receptor-
related protein (LRP-1) [105]. A 3'UTR SNP was identi-
fied in a gene coding for SLC25A24. Mice fed a high-fat
diet exhibited increased expression level of SLC25A24;
whereas, adipocyte differentiation was suppressed in
Slc25a24- knockout [106].

Puromycin-sensitive aminopeptidase (NPEPPS), on
chromosome 17, had a nonsynonymous SNP explaining
the highest variability in fat content (R*=3.2%) (Table
5). NPEPPS impacts different physiological processes, in-
cluding protein turnover and cell cycle regulation. NPEP
PS was upregulated in mitten crabs fed with a linseed oil
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Fig. 4 Manhattan plot showing single SNP markers significantly associated with variation in muscle fat content using family-based association
analysis. Many of the significant SNPs are located on chromosome 5. Blue and red horizontal lines represent suggestive (1e-05) and significant
(1.69e-06) threshold p-values, respectively

rich in linoleic acid [107]. However, the effect NPEPPS
on lipid metabolism in fish needs further investigations.
SNPs associated with moisture content (z = 24) were
associated with protein turnover, calcium metabolism,
and cytoskeleton integrity (Table S6). Most of these
SNPs (n=11; ~46%) were located on chromosome 17.
An SNP in a gene coding for acylphosphatase 2 ranked
at the top of the list (R*=7.4%) (Table 5); however, its
physiological role is not clear. Eight SNPs associated
with moisture content were identified in five genes en-
gaged in protein metabolism (Table 5). These genes are
NPEPPS, eukaryotic initiation factor 4A-III (EIF4A3),
eukaryotic translation initiation factor 4B (EIF4B), ribo-
some binding protein 1 (RRPB1), and F-box only protein
46 (FBXO46). Briefly, the aminopeptidase, NPEPPS, was
associated with variation in fat and moisture content,
suggesting a correlation between moisture and fat con-
tent. Five SNPs were identified in two genes encoding
EIF4A3 and EIF4B, suggesting a role for the protein
translation machinery in determining variation in mois-
ture content. RRPB1 is an ER integral membrane protein

implicated in polysome assembly and, therefore, protein
synthesis [108]. RRPB1 has been suggested as essential
in regulation of UPR signaling molecules and autophagy
[109]. Finally, the F-box family SCF-E3 ubiquitin ligase,
FBX046, had a single 3'UTR SNP.

A previous report showed that expression of genes in-
volved in the actin cytoskeleton and cytoskeletal
organization is positively correlated with drip loss in pig
[74]. In this study, a total of 10 SNPs were associated
with moisture content were identified in seven genes en-
gaged in cytoskeleton regulation (Table 5). These genes
are encoding serum response factor (SRF), kinesin-1
heavy chain (KIF5B), inositol-trisphosphate 3-kinase C
(IP3KC), supervillain (SVIL), calcineurin subunit B type
1 (PPP3R1), elF4A and EIF4B. Briefly, SRF is a master
regulator of the actin cytoskeleton [110]. Mutations in
KIF5A caused cytoskeletal defects in humans [111].
Two, 3'UTR SNPs were identified in IP3KC and
PPP3R1. IP3K and calcium/calcineurin signaling play
critical roles in maintaining Ca** homeostasis that has a
profound effect on the cytoskeleton [88, 112, 113].
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Fig. 5 Single SNP markers showing significant associations with variation in moisture content using family-based association analysis. Most of the
significant SNPs are located on chromosome 17. Blue and red horizontal lines represent suggestive (1e-05) and significance (1.69e-06) threshold
p-values, respectively
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Table 5 SNP markers significantly associated with variability in fat and moisture content using family-based association analysis. A
color gradient on the left shows the phenotypic variation explained by each SNP marker (green is the highest and red is the
lowest). SNPs associated with the phenotypes are sorted according to their chromosome positions

R®* [CHR| Position P_RAO | Region|effect|Strand| GeneID |Gene annotation Trait
0.016] 1 |54958459|1.26E-06] CDS|syn - | LOC110525667|serum response factor-like Moisture content
0.019] 5 [27016969]9.94E-07] CDS|nonsyn + | LOC110523600] 78 kDa glucose-regulated protein-like Fat content
0.019] 5 |31174527]9.94E-07 3'UTR - LOC110523653|uncharacterized LOC110523653 Fat content
0.021| 5 [32672947|8.47E-07] CDS|nonsyn - skal spindle and kinetochore associated complex subunit 1 Fat content
0.021] 5 [33025927|1.11E-06] CDS|syn - | LOC110523701)apelin receptor B-like Fat content
0.019] 5 |77138939|9.94E-07] CDS|syn + | LOC110524668]|desmoplakin-like Fat content
0.019] 5 |78880913|1.08E-06] CDS|syn - podn podocan Fat content
0.019] 5 |79116860]1.37E-06 3'UTR - | LOC110524700]calcium-binding mitochondrial carrier protein SCaMC-1 Fat content
0.029] 8 [75925893|1.15E-07 5'UTR LOC110530752]kinesin-1 heavy chain-like Moisture content
0.025| 12 |24047528]1.31E-06 3'UTR + | LOC110537317]inositol-trisphosphate 3-kinase C-like Moisture content
0.020] 12 |65629971|1.45E-06 5'UTR - | LOC110538950]supervillin-like Moisture content
0.032]| 17 |13538660]9.70E-07] CDS|nonsyn + | LOC110493605]puromycin-sensitive aminopeptidase-like Fat content
0.042| 17 [13538660|6.92E-09] CDS|nonsyn LOC110493605] puromycin-sensitive aminopeptidase-like Moisture content
0.030] 17 |17622851]9.55E-07 3'UTR - L0C110493736|calcineurin subunit B type 1 Moisture content
0.055| 17 | 20335252 1.05E-06 3'UTR - | LOC110493798|eukaryotic initiation factor 4A-11I Moisture content
0.057| 17 |20678734]1.11E-06] CDS|nonsyn + rrbpl ribosome binding protein 1 Moisture content
0.074]| 17 |21029747]1.37E-08 3'UTR - acyp2 acylphosphatase 2 Moisture content
0.034] 17 | 30097354 7.50E-07 3'UTR - | LOC110493954|eukaryotic translation initiation factor 4B-like Moisture content
0.055| 17 |30097441|7.32E-07 3'UTR - | LOC110493954]eukaryotic translation initiation factor 4B-like Moisture content
0.055| 17 [30098943|6.96E-07] CDS|nonsyn - | LOC110493954|eukaryotic translation initiation factor 4B-like Moisture content
0.056| 17 [30108957|5.40E-07] CDS|syn - | LOC110493954]eukaryotic translation initiation factor 4B-like Moisture content
0.019] 24 | 9580897 |3.27E-07 3'UTR + | LOC110503690|F-box only protein 46-like Moisture content

Supervillin (SVIL) is one of the first components of the
costameric membrane skeleton to assemble during
muscle formation. It establishes a high-affinity connec-
tion between the membranes and actin cytoskeleton
[114]. Translation initiation factors, including eIF4A and
EIF4B, associate with the actin cytoskeleton, which af-
fects protein synthesis [115].

In our previous work, we profiled transcriptome ex-
pression of fish families (YC 2010) showing contrasting
phenotypes in fat content, which revealed only 17 differ-
entially expressed transcripts associated with fat content
[31]. About 90% of the genetic variation among individ-
uals comes from SNPs [116], and therefore, identifying
SNP markers associated with complex traits is most suit-
able for genetic evaluation in selection programs. Few
previous GWA studies identified a small number of
SNPs responsible for the additive variance for fat con-
tent in Atlantic salmon and Common Carp [11, 34, 38].
The current GWA analysis identified a total of 137 SNPs
in windows explaining at least 2% of the additive genetic
variance for fat content, suggesting a better
characterization of the genetic basis underlying variation
in fat content. The discrepancies among the different
GWA studies might be due to; 1) usage of different algo-
rithms in the GWA studies, 2) variation in population
size, 3) substantial difference in the capacity of the SNP

arrays, 4) polygenic nature of intramuscular fat content,
5) different thresholds in each study including sliding
window size [35].

Compared to our WssGBLUP analysis, the single
marker GWA analysis revealed a smaller number of SNP
markers associated with variation in intramuscular fat
and moisture content. Besides, these two GWA ap-
proaches revealed different significant peaks associated
with traits of interest. Aguilar et al. [117] showed that
the highest peak based on the p-value was not the same
based on the proportion of variance explained, and this
is because the latter depends on allele frequency, i.e.,
high effect but low frequency decreases the variance ex-
plained. This result is consistent with other studied
traits, such as fillet firmness, protein content [39], and
bodyweight gain [40] in rainbow trout. The potential
factors associated with observed heterogeneity between
the two approaches are different algorithms, thresholds,
and windows size used in each approach. For instance,
WssGBLUP uses a flexible default HWE threshold as it
assumes selection may have caused a departure from
equilibrium, and therefore only extreme outliers would
be excluded in order to keep the information content of
haplotypes. The WssGBLUB was more effective than the
single marker GWA in examining the genetic architec-
ture of studied traits and identifying common QTL
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between traits. This method has proven to be optimal
for breeding populations given the data structure: phe-
notyped individuals may not have genotypes, and there
is a long history of pedigree recording [117]. Common
QTL identified in this study may explain the high nega-
tive correlation between fat and moisture content. The
recombinational progression of QTL and nearby
markers determines the information content of haplo-
types [118]. However, SNP-harboring genes identified by
the two approaches had similar biological functions and
were involved in lipid metabolism, protein turnover, and
cytoskeletal remodeling. Routine use of single-SNP and
multi-makers for GWA analysis was previously recom-
mended to take advantage of the complete information
content of the genotypes [118].

Taken together, controlling muscular fat content can
help the aquaculture industry to produce a final product
of expected quality, including moisture content, drip
loss, firmness, and shelf-life. Dietary lipids are used to
increase fillet fat to improve fillet sensory characteristics
[119]. However, this can also elevate the feeding costs,
increase visceral fat, and accelerate lipid oxidation,
which increases fillet degradation. Alternatively, genetic/
genomic selection can be used to control fillet fat con-
tent. The findings of the current study can help breeders
where GEBV for muscular fat and moisture content can
be added to multi-trait selection indices that reflect the
various needs of producers and consumers [120].

Conclusions

The current GWA analyses identified novel genomic re-
gions associated with additive genetic variance for fat
and moisture content in rainbow trout. SNP-harboring
genes encode proteins with a role in lipid metabolism,
actin cytoskeleton remodeling, and protein synthesis/
degradation. This work reveals significant QTL associ-
ated with fat content, which appears to be a polygenic
trait. The top common windows affecting additive gen-
etic variance for fat and moisture content are mainly on
chromosome 19. These findings provide a genetic basis
for description of the molecular mechanisms underlying
fat and moisture content in teleost fish. Variation in
moisture content is likely to be driven by changes in fat
content in an antagonistic fashion. This work provides
putative markers that could be prioritized when estimat-
ing genomic breeding values for fat and moisture con-
tent. GEBV for muscular fat and moisture content can
be included in multi-trait selection indices that meet the
various producers’ and consumers’ demands [121].

Methods

Fish population, tissue sampling, and phenotypic traits
The fish population used in the current GWA analyses
was previously described in [122]. Briefly, a five-
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generation selective breeding program was established at
NCCCWA in 2002 by intercrossing seven domesticated
strains of rainbow trout; this fish population was se-
lected for improved growth performance [30]. Pheno-
typic data for muscle fat and moisture content were
obtained from 789 fish representing 197 full-sib families
produced from two consecutive generations (YC 2010
and 2012). Single-sirexsingle-dam matings occurred over
6 weeks to produce full-sib families. Individuals from
each family were reared together in a 200-L tank in
order to keep the pedigree information. Tagging fish at
~5-months post-hatch allowed to rear different fish
families together in 800-L communal tanks until ~ 13
months post-hatch. Fish were starved for 5 days before
harvest to facilitate viscera removal.

Over five weeks, a single fish/family was collected and
randomly assigned to a harvest group as described in
[40]. Fish from YC 2010 were younger than those from
YC 2012. Fish were euthanized (300 mg of MS-222 per
liter), harvested, and eviscerated. Afterwards, the car-
casses were hand-made into skinless fillets.

Proximate analyses, including crude lipid and moisture
content (water content), were previously described [123].
Crude lipid content was determined using Soxhlet ex-
traction with petroleum ether, whereas moisture content
was assessed by the loss on drying method. When
muscle fat and moisture content were regressed on body
weight, coefficient of determination (R?) values of 0.23
and 0.38 were observed, respectively. Heritability was es-
timated for fat and moisture content using a genomic re-
lationship matrix (GRM) [100].

SNP genotyping and quality control

A 50K, transcribed gene SNP-chip was recently devel-
oped and used in identifying genomic loci responsible
for additive genetic variance in fillet yield [36]. SNPs uti-
lized to construct the SNP chip were reported in our
previous study [122]. The chip included ~ 5 K nonsynon-
ymous SNPs and ~ 21 K SNPs exhibiting potential allelic
imbalances with economic traits [36, 122]. Other SNPs
were added to the chip to reach a total of 50,006 SNPs
with a minimum of 2 SNPs per SNP-harboring gene.

In total, 1728 rainbow trout fish were used for geno-
typing and quality assessment of the SNP chip. Geno-
typed samples were filtered by the SNPolisher software
using a call rate threshold of 0.97 and Dish QC cutoff of
0.82 [36]. Genotyped fish with records for intramuscular
fat and moisture content (789 fish), were used for the
current GWA studies.

Fifty-SNP window GWA analysis

Estimates of SNP effects from WssGBLUP were utilized
to conduct the current GWA analyses, as described in
[36]. The WssGBLUP combines phenotypes, genotypes,
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and pedigree information into a single evaluation. GRM
was created based on VanRaden equation [124]. SNPs
used to create the GRM were weighted according to the
proportion of additive variance they explain. The follow-
ing single-trait model was used:

y=Xb+Zja+Z,w+e

where vy is the vector of phenotypes (fat or moisture con-
tent), b, a and w are vectors of fixed and random effects,
and e is the vector of residual effects. Random and fixed
effects were determined according to [35, 125]. X, Z;,
and Z, are incidence matrices for fixed and random ef-
fects in vectors b, a, and w, respectively. Whereas the
family and residual random effects were considered un-
correlated, the animal effect was correlated. The covari-
ance structure for the animal effect was given by Ho?,
where H is a matrix that combines pedigree- and
genomic-based relationships [126] and o? is the additive
variance.

The variance components were estimated using AIRE
MLF90 [127]. The inbreeding coefficient was calculated
by INBUPGF90 [128], as described in [36]. Genomic
data were edited using PREGSF90 [127], and samples or
SNPs were kept according to the following parameters:
minor allele frequency (MAF) >0.05, a default value of
Hardy-Weinberg equilibrium (HWE)<0.15, and call
rate > 0.90. In total, 35,322 SNPs (70.6%) passed the QC
and were used for the WssGBLUP analyses.

The filtered SNPs (~35K) were subjected to a two-
iteration WssGBLUP analysis. All SNPs were assigned
weight = 1.0 in the first iteration. SNP effects (i) were
determined using POSTGSf90 (part of GBLUPf90 soft-
ware family) according to:

it =qDZ (zDZ'q) ' &

Where q is a weight factor based on SNPs frequency,
D is a weight matrix of SNPs, Z is a matrix of gene con-
tent adjusted for allele frequencies, and & is Genomic
Breading Values of genotyped animals [129].

Using # and the allele frequency (p), SNP weights were
determined as #*2p(1 - p) in the second iteration. SNP
effects and updated weights were computed by
POSTGSF90 [128] using genomic sliding windows of 50
contiguous SNPs. The proportion of additive variance
explained by an i-th region was computed according to
[129]:

50 A
VW(Z; g lzju,-)

2
0%

Y@ 1 oo% —
[

a

*100%

Where i is the i-th region that consists of 50 adjacent
SNPs, a; is the genetic value of the contiguous 50 SNP
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region, o, is the total genetic variance, j is the j-th SNP
within the 50 SNP region, Z; is a vector of the gene con-
tent of an SNP for all fish, and {; is the effect of an SNP
within the contiguous 50 SNP region.

The qqman package [130] in R was used to generate
Manhattan plots showing the percentage of genetic vari-
ance explained.

Single marker GWA analysis

PLINK [131] was used to filter the genomic data before
performing a single marker association analysis. The filter-
ing criteria included MAF >0.05 and a default value of
HWE <0.001. PLINK was used to retrieve R-squared
values (R?) of association between the quantitative traits
and genotypes. R* is the proportion of variance in the
phenotype explained by the genetic factors in a linear re-
gression model. ONETOOL [100] was used to perform a
family-based association analysis where it allows for in-
corporating multiple covariates and accounts for family
structure. Covariates were incorporated in the linear
model to account for fixed effects (harvest group and
hatch-year) and population structure. Bonferroni cor-
rected p-values were calculated as (a/total number of vari-
ants), where a=0.05 was used for a genome-wide
significance level, and a =0.3 was used for the suggestive
significance level. Manhattan plots showing single markers
associated with variation in intramuscular fat and mois-
ture content were generated using qqman package [130].

Gene annotation

The genome annotation file was used to annotate the
SNP-harboring genes by Bedtools [132]. SNPs were cate-
gorized as genic or intergenic depending on their physical
location relative to the body of the gene. Genic SNPs exist
in coding DNA sequence (CDS), introns, or untranslated
regions (5’'UTR and 3’'UTR). Intergenic SNPs are defined
as SNPs located in the region between genes.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-06932-0.

Additional file 1: Table S1. Genetic variance for fat content explained
by all SNP markers in genomic sliding windows. Table S2. SNP markers
in genomic sliding windows explaining at least 2% of the genetic
variance for fat content. Table S3. Genetic variance for moisture content
explained by all SNP markers in genomic sliding windows. Table S4. SNP
markers in genomic sliding windows explaining at least 2% of the
genetic variance for moisture content. Table S5. SNP markers
significantly associated with variability in fat content (highlighted in
yellow) using family-based association analysis. Table S6. SNP markers
significantly associated with variability in moisture content (highlighted in
yellow) using family-based association analysis.

Abbreviations
BCWD: Bacterial Cold Water Disease; GO: Gene ontology; GWA: Genome-
wide association; HWE: Hardy-Weinberg equilibrium; MAF: Minor allele


https://doi.org/10.1186/s12864-020-06932-0
https://doi.org/10.1186/s12864-020-06932-0

Ali et al. BMC Genomics (2020) 21:529

frequency; NCCCWA: USDA National Center of Cool and Cold Water
Aquaculture; QC: Quality control; QTL: Quantitative trait loci; SNP: Single
nucleotide polymorphism; UTR: Untranslated region; WssGBLUP: Weighted
single-step GBLUP; YC: Year class

Acknowledgments
The authors acknowledge J. Everson, M. Hostuttler, K. Jenkins, J. Kretzer, J.
McGowan, K. Melody, T. Moreland, and D. Payne for technical assistance.

Authors’ contributions

MS, TL, and BK conceived and designed the experiments. RA-T, MS, TL, and
BK performed the experiments. RA-T, AA, DL, BK, and MS analyzed the data.
AA and MS wrote the manuscript. The authors read and approved the final
manuscript.

Funding

This study was supported by a competitive grant No. 2014-67015-21602
from the United States Department of Agriculture, National Institute of Food
and Agriculture (MS), and by the USDA, Agricultural Research Service CRIS
Project 1930-31000-010 “Utilizing Genetics and Physiology for Enhancing
Cool and Cold Water Aquaculture Production”. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of any of the funding agents.

Availability of data and materials

All datasets generated for this study are included in the manuscript and/or
the Additional Files. The genotypes (ped and .map files) are available in our
previous publication [39].

Ethics approval and consent to participate

Institutional Animal Care and Use Committee of the United States
Department of Agriculture, National Center for Cool and Cold Water
Aquaculture (Leetown, WV) specifically reviewed and approved all husbandry
practices used in this study (IACUC protocol #056).

Consent for publication
Not applicable.

Competing interests
Mohamed Salem is a member of the editorial board of BMC Genomics.
Otherwise, the authors declare that they have no competing interests.

Author details

'Department of Animal and Avian Sciences, University of Maryland, College
Park, MD 20742, USA. 2Computationa\ Science Program, Middle Tennessee
State University, Murfreesboro, TN 37132, USA. *Department of Animal and
Dairy Science, University of Georgia, Athens, GA 30602, USA. “National Center
for Cool and Cold Water Aquaculture, Agricultural Research Service, United
States Department of Agriculture, Kearneysville, WV, USA. °Division of Animal
and Nutritional Sciences, West Virginia University, Morgantown, WV 26506,
USA.

Received: 18 March 2020 Accepted: 20 July 2020
Published online: 31 July 2020

References

1. FAQ. Livestock's long shadow: environmental issues and options. Rome; 2006.

2. Kankainen M, Setéld J, Kause A, Quinton C, Airaksinen S, Koskela J. Economic
values of supply chain productivity and quality traits calculated for a farmed
European whitefish breeding program. Aquaculture Econ Manage. 2016;
20(2):131-64.

3. Conte F, Passantino A, Longo S, Voslarova E. Consumers' attitude towards
fish meat. Ital J Food Saf. 2014;3(3):1983.

4. Kenney PB, DJW. Growth Performance, Fillet Quality, and Reproductive
Maturity of Rainbow Trout (Oncorhynchus mykiss) Cultured to 5 Kilograms
within Freshwater Recirculating Systems. J Aquaculture Res Dev. 2014,05(04).

5. Chaiyapechara S, Liu KKM, Barrows FT, Hardy RW, Dong FM. Proximate
composition, lipid oxidation, and sensory characteristics of fillets from
rainbow trout Oncorhynchus mykiss fed diets containing 10 to 30% lipid. J
World Aquacult Soc. 2003;34(3):266-77.

20.

21.

22.

23.

24,

25.

26.

27.

Page 14 of 17

Robb DHF, Kestin SC, Warriss PD, Nute GR. Muscle lipid content determines
the eating quality of smoked and cooked Atlantic salmon (Salmo salar).
Aquaculture. 2002;205(3-4):345-58.

Morkore T, Vallet JL, Cardinal M, Gomez-Guillen MC, Montero P, Torrissen OJ,
Nortvedt R, Sigurgisladottir S, Thomassen MS. Fat content and fillet shape of
Atlantic Salmon: relevance for processing yield and quality of raw and
smoked products. J Food Sci. 2001;66(9):1348-54.

Manor M, Weber G, Salem M, Yao J, Aussanasuwannakul A, et al. Effect of
sexual maturation and triploidy on chemical composition and fatty acid
content of energy stores in female rainbow trout, Oncorhynchus mykiss.
Aquaculture. 2012;364:312-21.

Florence L, Mireille C, Jéréme B, Laurent L, Frangoise M, Edwige Q. Selection
for muscle fat content and triploidy affect flesh quality in pan-size rainbow
trout, Oncorhynchus mykiss. Aquaculture. 2015;448:569-77.

Kause A, Kiessling A, Martin SA, Houlihan D, Ruohonen K. Genetic
improvement of feed conversion ratio via indirect selection against lipid
deposition in farmed rainbow trout (Oncorhynchus mykiss Walbaum). Br J
Nutr. 2016;116(9):1656-65.

Sodeland M, Gaarder M, Moen T, Thomassen M, Kjgglum S, Kent M, Lien S.
Genome-wide association testing reveals quantitative trait loci for fillet texture
and fat content in Atlantic salmon. Aquaculture. 2013;408-409:169-74.

Rye M, Gjerde B. Phenotypic and genetic parameters of body composition traits
and flesh colour in Atlantic salmon, Salmo salar L. Aquac Res. 1996,27(2):121-33.
Gjedrem T. Flesh quality improvement in fish through breeding. Aquac Int.
1997,5(3):197-206.

Jensen C, Birk E, Jokumsen A, Skibsted LH, Bertelsen G. Effect of dietary
levels of fat, a-tocopherol and astaxanthin on colour and lipid oxidation
during storage of frozen rainbow trout ( Oncorhynchus mykiss ) and during
chill storage of smoked trout. Zeitschrift fur Lebensmitteluntersuchung und
-Forschung A. 1998;207(3):189-96.

Chaiyapechara S, Casten MT, Hardy RW, Dong FM. Fish performance, fillet
characteristics, and health assessment index of rainbow trout
(Oncorhynchus mykiss) fed diets containing adequate and high
concentrations of lipid and vitamin E. Aquaculture. 2003;219(1-4):715-38.
Kiessling A, Pickova J, Johansson L, Asgard T, Storebakken T, Kiessling KH.
Changes in fatty acid composition in muscle and adipose tissue of farmed
rainbow trout (Oncorhynchus mykiss) in relation to ration and age. Food
Chem. 2001;73(3):271-84.

Regost C, Arzel J, Cardinal M, Laroche M, Kaushik SJ. Fat deposition and flesh
quality in seawater reared, triploid brown trout (Salmo trutta) as affected by
dietary fat levels and starvation. Aquaculture. 2001;193(3-4):325-45.

Paneru B, Ali A, Al-Tobasei R, Kenney B, Salem M. Crosstalk among IncRNAs,
microRNAs and mRNAs in the muscle 'degradome' of rainbow trout. Sci
Rep. 2018,8(1):8416.

Binsi PK, Viji P, Visnuvinayagam S, Ninan G, Sangeeta G, Triveni A,
Ravishankar CN. Microbiological and shelf life characteristics of eviscerated
and vacuum packed freshwater catfish (Ompok pabda) during chill storage.
J Food Sci Technol. 2015;52(3):1424-33.

Ozogul F, Polat A, Ozogul Y. The effects of modified atmosphere packaging
and vacuum packaging on chemical, sensory and microbiological changes
of sardines (Sardina pilchardus). Food Chem. 2004;85(1):49-57.

Shahidi F, Jones YM, Kitts D. Seafood safety, processing, and biotechnology.
UK: Taylor & Francis; 1997.

Ang CYW, Young LL, Wilson R. Interrelationships of protein, fat and moisture
content of broiler meat. J Food Sci. 1984;49(2):359-62.

Watanabe G, Motoyama M, Nakajima |, Sasaki K. Relationship between
water-holding capacity and intramuscular fat content in Japanese
commercial pork loin. Asian-Australas J Anim Sci. 2018;31(6):914-8.

Li YX, Cabling MM, Kang HS, Kim TS, Yeom SC, Sohn YG, Kim SH, Nam KC,
Seo KS. Comparison and correlation analysis of different swine breeds meat
quality. Asian-Australas J Anim Sci. 2013;26(7):905-10.

Salem M, Kenney PB, Rexroad CE, Yao J. Molecular characterization of
muscle atrophy and proteolysis associated with spawning in rainbow trout.
Comp Biochem Physiol Part D Genomics Proteomics. 2006;1(2):227-37.
Salem M, Manor ML, Aussanasuwannakul A, Kenney PB, Weber GM, Yao J.
Effect of sexual maturation on muscle gene expression of rainbow trout:
RNA-Seq approach. Physiol Rep. 2013;1(5):00120.

Kause A, Ritola O, Paananen T, Mantysaari E, Eskelinen U. Coupling body
weight and its composition: a quantitative genetic analysis in rainbow trout.
Aquaculture. 2002;211(1-4):65-79.



Ali et al. BMC Genomics

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

(2020) 21:529

Kause A, Ritola O, Paananen T, Wahlroos H, Méntysaari EA. Genetic trends in
growth, sexual maturity and skeletal deformations, and rate of inbreeding in
a breeding programme for rainbow trout (Oncorhynchus mykiss).
Aquaculture. 2005;247(1-4):177-87.

Quillet E, Le Guillou S, Aubin J, Labbé L, Fauconneau B, Médale F. Response
of a lean muscle and a fat muscle rainbow trout (Oncorhynchus mykiss) line
on growth, nutrient utilization, body composition and carcass traits when
fed two different diets. Aquaculture. 2007;269(1-4):220-31.

Leeds TD, Vallejo RL, Weber GM, Pena DG, Silverstein JS. Response to five
generations of selection for growth performance traits in rainbow trout
(Oncorhynchus mykiss). Aquaculture. 2016;465:341-51.

Ali A, Al-Tobasei R, Kenney B, Leeds TD, Salem M. Integrated analysis of
INcRNA and mRNA expression in rainbow trout families showing variation in
muscle growth and fillet quality traits. Sci Rep. 2018;8(1):12111.
Garcfa-Celdran M, Ramis G, Manchado M, Estévez A, Navarro A. Estimates of
heritabilities and genetic correlations of raw flesh quality traits in a reared
gilthead sea bream ( Sparus aurata L) population sourced from broodstocks
along the Spanish coasts. Aquaculture. 2015;446:181-6.

Leeds T, Kenney P, Manor M. Genetic parameter estimates for feed intake,
body composition, and fillet quality traits in a rainbow trout population
selected for improved growth. In: International Symposium on Genetics in
Aquaculture. Auburn, AL: Auburn University; 2012. p. 259.

Horn SS, Ruyter B, Meuwissen THE, Moghadam H, Hillestad B, Sonesson AK.
GWAS identifies genetic variants associated with omega-3 fatty acid
composition of Atlantic salmon fillets. Aquaculture. 2020;514:734494.
Gonzalez-Pena D, Gao G, Baranski M, Moen T, Cleveland BM, Kenney PB,
Vallejo RL, Palti Y, Leeds TD. Genome-wide association study for identifying
loci that affect fillet yield, carcass, and body weight traits in rainbow trout
(Oncorhynchus mykiss). Front Genet. 2016;7:203.

Salem M, Al-Tobasei R, Ali A, Lourenco D, Gao G, Palti Y, Kenney B, Leeds
TD. Genome-wide association analysis with a 50K transcribed gene SNP-
Chip identifies QTL affecting muscle yield in rainbow trout. Front Genet.
2018,9(387):387.

Vallejo RL, Liu S, Gao G, Fragomeni BO, Hernandez AG, Leeds TD,
Parsons JE, Martin KE, Evenhuis JP, Welch TJ, et al. Similar genetic
architecture with shared and unique quantitative trait loci for bacterial
cold water disease resistance in two rainbow trout breeding
populations. Front Genet. 2017,8:156.

Zheng X, Kuang Y, Lv W, Cao D, Sun Z, Sun X. Genome-wide association
study for muscle fat content and abdominal fat traits in common carp
(Cyprinus carpio). PLoS One. 2016;11(12):e0169127.

Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-wide
association study identifies genomic loci affecting filet firmness and protein
content in rainbow trout. Front Genet. 2019;10(386):386.

Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-wide
identification of loci associated with growth in rainbow trout. BMC
Genomics. 2020;21(1):209.

Johansson L, Kiessling A, Kiessling KH, Berglund L. Effects of altered ration
levels on sensory characteristics, lipid content and fatty acid composition of
rainbow trout (Oncorhynchus mykiss). Food Qual Prefer. 2000;11(3):247-54.
Aussanasuwannakul A, Kenney PB, Weber GM, Yao J, Slider SD, Manor ML,
Salem M. Effect of sexual maturation on growth, fillet composition, and
texture of female rainbow trout (Oncorhynchus mykiss) on a high
nutritional plane. Aquaculture. 2011;317(1-4):79-88.

Lu D, Sargolzaei M, Kelly M, Vander Voort G, Wang Z, Mandell |, Moore S,
Plastow G, Miller SP. Genome-wide association analyses for carcass quality
in crossbred beef cattle. BMC Genet. 2013;14:80.

Melody JL, Lonergan SM, Rowe LJ, Huiatt TW, Mayes MS, Huff-Lonergan E.
Early postmortem biochemical factors influence tenderness and water-
holding capacity of three porcine muscles. J Anim Sci. 2004;82(4):1195-205.
Zhang WG, Lonergan SM, Gardner MA, Huff-Lonergan E. Contribution of
postmortem changes of integrin, desmin and mu-calpain to variation in
water holding capacity of pork. Meat Sci. 2006;74(3):578-85.

Claussen IC, Gullsvag PE, Bantle M, Tolstorebrov |, Kvalsvik K. Superchilling of
organic food: Part 2: Storage test with superchilled organic salmon and
pork chops. In: SINTEF Energy Research, Thermal Energy; 2017.

Rotabakk BT, Melberg GL, Lerfall J. Effect of season, location, filleting regime
and storage on water-holding properties of farmed Atlantic Salmon (Salmo
salar L.). Food Technol Biotechnol. 2018;56(2):238-46.

Garcia-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-Lopez FJ, Van Tassell
CP. Changes in genetic selection differentials and generation intervals in US

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Page 15 of 17

Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci U S
A. 2016;113(28):E3995-4004.

Mearkere T, Redbotten M, Vogt G, Fjeera SO, Kristiansen 1%, Manseth E.
Relevance of season and nucleotide catabolism on changes in fillet quality
during chilled storage of raw Atlantic salmon (Salmo salar L). Food Chem.
2010;119(4):1417-25.

Sheridan MA. Exposure to seawater stimulates lipid mobilization from depot
tissues of juvenile coho (Oncorhynchus kisutch) and Chinook (O.
tshawytscha) salmon. Fish Physiol Biochem. 1988;5(4):173-80.

Suppes C, Tiemeier OW, Deyoe CW. Seasonal Variations of Fat, Protein, and
Moisture in Channel Catfish. Trans Kansas Acad Sci (1903). 1967;70(3):349.
Thibeaux S, Siddiqi S, Zhelyabovska O, Moinuddin F, Masternak MM, Siddigi
SA. Cathepsin B regulates hepatic lipid metabolism by cleaving liver fatty
acid-binding protein. J Biol Chem. 2018;293(6):1910-23.

Matsuo Y, Irie K, Kiyonari H, Okuyama H, Nakamura H, Son A, Lopez-Ramos
DA, Tian H, Oka S, Okawa K; et al. The protective role of the transmembrane
thioredoxin-related protein TMX in inflammatory liver injury. Antioxid Redox
Signal. 2013;18(11):1263-72.

Heinonen S, Saarinen L, Naukkarinen J, Rodriguez A, Fruhbeck G,
Hakkarainen A, Lundbom J, Lundbom N, Vuolteenaho K, Moilanen E, et al.
Adipocyte morphology and implications for metabolic derangements in
acquired obesity. Int J Obes. 2014;38(11):1423-31.

Joo JI, Yun JW. Gene expression profiling of adipose tissues in obesity
susceptible and resistant rats under a high fat diet. Cell Physiol Biochem.
2011;27(3-4):327-40.

Flor AC, Wolfgeher D, Wu D, Kron SJ. A signature of enhanced lipid
metabolism, lipid peroxidation and aldehyde stress in therapy-induced
senescence. Cell Death Discov. 2017;3:17075.

Lemos MV, Chiaia HL, Berton MP, Feitosa FL, Aboujaoud C, Camargo GM,
Pereira AS, Albuquerque LG, Ferrinho AM, Mueller LF, et al. Genome-wide
association between single nucleotide polymorphisms with beef fatty acid
profile in Nellore cattle using the single step procedure. BMC Genomics.
2016;17:213.

Sohle J, Machuy N, Smailbegovic E, Holtzmann U, Gronniger E, Wenck H,
Stab F, Winnefeld M. Identification of new genes involved in human
adipogenesis and fat storage. PLoS One. 2012;7(2):31193.

Gaudet P, Livstone MS, Lewis SE, Thomas PD. Phylogenetic-based
propagation of functional annotations within the gene ontology
consortium. Brief Bioinform. 2011;12(5):449-62.

Lin NY, Lin TY, Yang WH, Wang SC, Wang KT, Su YL, Jiang YW, Chang GD,
Chang CJ. Differential expression and functional analysis of the
tristetraprolin family during early differentiation of 3T3-L1 preadipocytes. Int
J Biol Sci. 2012,8(5):761-77.

Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS,
Zhang W, Yang Y, et al. Epigenome-wide association study of body mass
index, and the adverse outcomes of adiposity. Nature, 2017,541(7635):81-6.
Wu YH, Ko TP, Guo RT, Hu SM, Chuang LM, Wang AH. Structural basis for
catalytic and inhibitory mechanisms of human prostaglandin reductase
PTGR2. Structure. 2008;16(11):1714-23.

Langner M, Repasky EA, Hui SW. Relationship between membrane lipid
mobility and spectrin distribution in lymphocytes. FEBS Lett. 1992;305(3):
197-202.

Sweet C, Zull JE. Interaction of the erythrocyte--membrane protein, spectrin,
with model membrane systems. Biochem Biophys Res Commun. 1970;41(1):
135-41.

Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM,
Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for
stabilization and activation of membrane channels, receptors and
transporters. Biochim Biophys Acta. 2014;1838(2):620-34.

Finocchiaro G, Ito M, Tanaka K. Purification and properties of short chain
acyl-CoA, medium chain acyl-CoA, and isovaleryl-CoA dehydrogenases from
human liver. J Biol Chem. 1987;262(17):7982-9.

Patwari P, Emilsson V, Schadt EE, Chutkow WA, Lee S, Marsili A, Zhang Y,
Dobrin R, Cohen DE, Larsen PR, et al. The arrestin domain-containing 3
protein regulates body mass and energy expenditure. Cell Metab. 2011;
14(5):671-83.

Lin JC. RBM4-MEF2C network constitutes a feed-forward circuit that facilitates
the differentiation of brown adipocytes. RNA Biol. 2015;12(2):208-20.

Mora S, Yang C, Ryder JW, Boeglin D, Pessin JE. The MEF2A and MEF2D
isoforms are differentially regulated in muscle and adipose tissue during
states of insulin deficiency. Endocrinology. 2001;142(5):1999-2004.



Ali et al. BMC Genomics

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

(2020) 21:529

Novokhatska O, Dergai M, Tsyba L, Skrypkina I, Filonenko V, Moreau J,
Rynditch A. Adaptor proteins intersectin 1 and 2 bind similar proline-rich
ligands but are differentially recognized by SH2 domain-containing proteins.
PLoS One. 2013;8(7):.e70546.

Porat-Shliom N, Milberg O, Masedunskas A, Weigert R. Multiple roles for the
actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci. 2013;70(12):
2099-121.

Komarova Y, De Groot CO, Grigoriev |, Gouveia SM, Munteanu EL, Schober
JM, Honnappa S, Buey RM, Hoogenraad CC, Dogterom M, et al. Mammalian
end binding proteins control persistent microtubule growth. J Cell Biol.
2009;184(5):691-706.

Wayne R, Tazawa M. The Actin Cytoskeleton and Polar Water Permeability in
Characean Cells. In: Tazawa M, editor. Cell Dynamics: Molecular Aspects of
Cell Motility Cytoskeleton in Cellular Structure and Activity. Vienna: Springer
Vienna; 1989. p. 116-30.

Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T, Walz C,
Schwerin M, Schellander K, Wimmers K. Trait correlated expression
combined with expression QTL analysis reveals biological pathways and
candidate genes affecting water holding capacity of muscle. BMC
Genomics. 2008;9:367.

Johnson JA, Hemnes AR, Perrien DS, Schuster M, Robinson LJ, Gladson S,
Loibner H, Bai S, Blackwell TR, Tada Y, et al. Cytoskeletal defects in Bmpr2-
associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol
Physiol. 2012;302(5):.L474-84.

Tan-Sindhunata MB, Mathijssen B, Smit M, Baas F, de Vries JI, van der Voorn
JP, Kluijt I, Hagen MA, Blom EW, Sistermans E, et al. Identification of a Dutch
founder mutation in MUSK causing fetal akinesia deformation sequence. Eur
J Hum Genet. 2015;23(9):1151-7.

Cayrol C, Lacroix C, Mathe C, Ecochard V, Ceribelli M, Loreau E, Lazar V,
Dessen P, Mantovani R, Aguilar L, et al. The THAP-zinc finger protein THAP1
regulates endothelial cell proliferation through modulation of pRB/E2F cell-
cycle target genes. Blood. 2007;109(2):584-94.

Diamond G, Cedar H, Marcus M. A temperature-sensitive mutation in
asparaginyl-tRNA synthetase causes cell-cycle arrest in early S phase. Exp
Cell Res. 1989;184(1):53-60.

Nakaseko Y, Yanagida M. Cell biology. Cytoskeleton in the cell cycle. Nature.
2001;412(6844):291-2.

Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and
beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle. 2015;
14(12):1786-98.

Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC. Regulation of
the phosphorylation state and microtubule-binding activity of tau by
protein phosphatase 2A. Neuron. 1996;17(6):1201-7.

Qi H, Liu S, Guo C, Wang J, Greenaway FT, Sun MZ. Role of annexin A6 in
cancer. Oncol Lett. 2015;10(4):1947-52.

Sugiyama M, Takenaga F, Kitani Y, Yamamoto G, Okamoto H, Masaoka T,
Araki K, Nagoya H, Mori T. Homozygous and heterozygous GH transgenesis
alters fatty acid composition and content in the liver of Amago salmon
(Oncorhynchus masou ishikawae). Biol Open. 2012;1(10):1035-42.

Sferra A, Baillat G, Rizza T, Barresi S, Flex E, Tasca G, D'Amico A, Bellacchio E, Ciolfi
A, Caputo V, et al. TBCE mutations cause early-onset progressive encephalopathy
with distal spinal muscular atrophy. Am J Hum Genet. 2016,99(4):974-83.
Greenberg DL, Mize GJ, Takayama TK. Protease-activated receptor mediated
RhoA signaling and cytoskeletal reorganization in LNCaP cells. Biochemistry.
2003;42(3):702-9.

Lu JP, Wang Y, Sliter DA, Pearce MM, Wojcikiewicz RJ. RNF170 protein, an
endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-
trisphosphate receptor ubiquitination and degradation. J Biol Chem. 2011;
286(27):24426-33.

Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber
J, Zou R, Schofield PW, Douglas S, Bulman DE, et al. Missense mutations in
ITPRT cause autosomal dominant congenital nonprogressive spinocerebellar
ataxia. Orphanet J Rare Dis. 2012,7:67.

Hepler PK. The cytoskeleton and its regulation by calcium and protons.
Plant Physiol. 2016;170(1):3-22.

Andersen KM, Madsen L, Prag S, Johnsen AH, Semple CA, Hendil KB,
Hartmann-Petersen R. Thioredoxin Txnl1/TRP32 is a redox-active cofactor of
the 26 S proteasome. J Biol Chem. 2009;284(22):15246-54.

David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin-conjugating enzymes
direct polyubiquitination to preferred lysines. J Biol Chem. 2010;285(12):
8595-604.

9.

92.

93.

94.

95.

96.

97.

98.

99.

102.

104.

105.

107.

108.

111,

112.

Page 16 of 17

Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. U box
proteins as a new family of ubiquitin-protein ligases. J Biol Chem. 2001;
276(35):33111-20.

Ferreira V, van Dijk KW, Groen AK, Vos RM, van der Kaa J, Gijbels MJ,
Havekes LM, Pannekoek H. Macrophage-specific inhibition of NF-kappaB
activation reduces foam-cell formation. Atherosclerosis. 2007;192(2):283-90.
Cahir-McFarland ED, Davidson DM, Schauer SL, Duong J, Kieff E. NF-kappa B
inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed
lymphoblastoid cells. Proc Natl Acad Sci U S A. 2000,97(11):6055-60.

Lin WJ, Yang CY, Li LL, Yi YH, Chen KW, Lin YC, Liu CC, Lin CH. Lysosomal
targeting of phafin1 mediated by Rab7 induces autophagosome formation.
Biochem Biophys Res Commun. 2012;417(1):35-42.

Caillet M, Janvier K, Pelchen-Matthews A, Delcroix-Genete D, Camus G,
Marsh M, Berlioz-Torrent C. Rab7A is required for efficient production of
infectious HIV-1. PLoS Pathog. 2011;7(11):21002347.

Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. Activation of
lysosomal function during dendritic cell maturation. Science. 2003;299(5611):
1400-3.

Jung J, Bohn G, Allroth A, Boztug K, Brandes G, Sandrock |, Schaffer AA,
Rathinam C, Kollner |, Beger C, et al. Identification of a homozygous
deletion in the AP3B1 gene causing Hermansky-Pudlak syndrome, type 2.
Blood. 2006;108(1):362-9.

Lawson MA. The role of integrin degradation in post-mortem drip loss in
pork. Meat Sci. 2004,68(4):559-66.

Cong J, Goll DE, Peterson AM, Kapprell HP. The role of autolysis in activity of
the Ca2+-dependent proteinases (mu-calpain and m-calpain). J Biol Chem.
1989,264(17):10096-103.

. Song YE, Lee S, Park K, Elston RC, Yang HJ, Won S. ONETOOL for the analysis

of family-based big data. Bioinformatics. 2018,34(16):2851-3.

. Zhu G, Ye R, Jung DY, Barron E, Friedline RH, Benoit VM, Hinton DR, Kim JK,

Lee AS. GRP78 plays an essential role in adipogenesis and postnatal growth
in mice. FASEB J. 2013;27(3):955-64.

Zhu ZL, Yang QM, Li C, Chen J, Xiang M, Chen MM, Yan M, Zhu ZG.
Identification of biomarkers for childhood obesity based on expressional
correlation and functional similarity. Mol Med Rep. 2018;17(1):109-16.

. Hwangbo C, Wu J, Papangeli |, Adachi T, Sharma B, Park S, Zhao L, Ju H, Go

GW, Cui G, et al. Endothelial APLNR regulates tissue fatty acid uptake and is
essential for apelin's glucose-lowering effects. Sci Transl Med. 2017,9(407).
Yang Z, Bowles NE, Scherer SE, Taylor MD, Kearney DL, Ge S, Nadvoretskiy
W, DefFreitas G, Carabello B, Brandon LI, et al. Desmosomal dysfunction due
to mutations in desmoplakin causes arrhythmogenic right ventricular
dysplasia/cardiomyopathy. Circ Res. 2006;99(6):646-55.

Merline R, Schaefer RM, Schaefer L. The matricellular functions of small leucine-
rich proteoglycans (SLRPs). J Cell Commun Signal. 2009;3(3-4):323-35.

. Urano T, Shiraki M, Sasaki N, Ouchi Y, Inoue S. SLC25A24 as a novel

susceptibility gene for low fat mass in humans and mice. J Clin Endocrinol
Metab. 2015;100(4):E655-63.

Wei B, Yang Z, Cheng Y, Zhou J, Yang H, Zhang L, Yang X. Proteomic
analysis of the Hepatopancreas of Chinese mitten crabs (Eriocheir
sinensis) fed with a linoleic acid or a-Linolenic acid diet. Front Physiol.
2018;9:1430.

Ueno T, Kaneko K, Sata T, Hattori S, Ogawa-Goto K. Regulation of polysome
assembly on the endoplasmic reticulum by a coiled-coil protein, p180.
Nucleic Acids Res. 2012;40(7):3006-17.

. Pan Y, Cao F, Guo A, Chang W, Chen X, Ma W, Gao X, Guo S, Fu C, Zhu J.

Endoplasmic reticulum ribosome-binding protein 1, RRBP1, promotes
progression of colorectal cancer and predicts an unfavourable prognosis. Br
J Cancer. 2015;113(5):763-72.

. Miano JM, Long X, Fujiwara K. Serum response factor: master regulator of

the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol.
2007;292(1).C70-81.

Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, Dominov JA,
Kenna BJ, Nalls MA, Keagle P, et al. Genome-wide analyses identify KIF5A as
a novel ALS gene. Neuron. 2018,97(6):1268-83 e1266.

Wu J, Zheng C, Wang X, Yun S, Zhao Y, Liu L, Lu Y, Ye Y, Zhu X, Zhang C,
et al. MicroRNA-30 family members regulate calcium/calcineurin signaling in
podocytes. J Clin Invest. 2015;125(11):4091-106.

. Xia HJ, Yang G. Inositol 1,4,5-trisphosphate 3-kinases: functions and

regulations. Cell Res. 2005;15(2):83-91.

. Oh SW, Pope RK, Smith KP, Crowley JL, Nebl T, Lawrence JB, Luna EJ.

Archvillin, a muscle-specific isoform of supervillin, is an early expressed



Ali et al. BMC Genomics

115.

117.

118.

122.

123.

124.

125.

126.

127.

(2020) 21:529

component of the costameric membrane skeleton. J Cell Sci. 2003;116(Pt
11):2261-75.

Howe JG, Hershey JW. Translational initiation factor and ribosome
association with the cytoskeletal framework fraction from Hela cells. Cell.
1984;37(1):85-93.

. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery

resource for research on human genetic variation. Genome Res. 1998;8(12):
1229-31.

Aguilar |, Legarra A, Cardoso F, Masuda Y, Lourenco D, Misztal |. Frequentist
p-values for large-scale-single step genome-wide association, with an
application to birth weight in American Angus cattle. Genet Sel Evol. 2019;
51(1):28.

Lorenz AJ, Hamblin MT, Jannink JL. Performance of single nucleotide
polymorphisms versus haplotypes for genome-wide association analysis in
barley. PLoS One. 2010;5(11):e14079.

. Rasmussen RS. Quality of farmed salmonids with emphasis on proximate

composition, yield and sensory characteristics. Aquac Res. 2001;32(10):767-86.

. Cole JB, VanRaden PM. Symposium review: possibilities in an age of

genomics: the future of selection indices. J Dairy Sci. 2018;101(4):3686-701.

. Karaman E, Lund MS, Su G. Correction: Multi-trait single-step genomic

prediction accounting for heterogeneous (co)variances over the genome.
Heredity (Edinb). 2020;124(4):618.

Al-Tobasei R, Ali A, Leeds TD, Liu S, Palti Y, Kenney B, Salem M. Identification
of SNPs associated with muscle yield and quality traits using allelic-
imbalance analyses of pooled RNA-Seq samples in rainbow trout. BMC
Genomics. 2017;18(1):582.

Manor ML, Cleveland BM, Kenney PB, Yao J, Leeds T. Differences in growth,
fillet quality, and fatty acid metabolism-related gene expression between
juvenile male and female rainbow trout. Fish Physiol Biochem. 2015;41(2):
533-47.

VanRaden PM. Efficient methods to compute genomic predictions. J Dairy
Sci. 2008,91(11):4414-23.

Fox GA, Negrete-Yankelevich S, Sosa VJ. Ecological statistics: contemporary
theory and application. UK: Oxford University Press; 2015.

Legarra A, Aguilar |, Misztal I. A relationship matrix including full pedigree
and genomic information. J Dairy Sci. 2009,92(9):4656-63.

Misztal I, Tsuruta S, Lourenco D, Aguilar I. style="mso-bidi-font-style: Li,
normal"> a, Vitezica Z: manual for BLUPF90 family of programs. Athens,
USA: Univ. Georg,; 2014

. BLUPF90 and related programs (BGF90) [WWW Document], in Proceeding of

7th World Congress on Genetics Applied to Livestock Production (Montpellier)
[http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=28-07 pdf]. Accessed 24
July 2020.

. Wang H, Misztal |, Aguilar I, Legarra A, Fernando RL, Vitezica Z, Okimoto R,

Wing T, Hawken R, Muir WM. Genome-wide association mapping including
phenotypes from relatives without genotypes in a single-step (ssGWAS) for
6-week body weight in broiler chickens. Front Genet. 2014;5:134.

. Turner SD. ggman: an R package for visualizing GWAS results using Q-Q

and manhattan plots. bioRxiv. 2014.

. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,

Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet. 2007;
81(3):559-75.

. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics. 2010;26(6):841-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 17 of 17

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=28-07.pdf

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	QTL affecting muscle fat and moisture content using WssGBLUP
	Common genes affecting muscle fat and moisture content
	Unique genes affecting the additive genetic variance for moisture

	Single marker GWA analyses

	Conclusions
	Methods
	Fish population, tissue sampling, and phenotypic traits
	SNP genotyping and quality control
	Fifty-SNP window GWA analysis
	Single marker GWA analysis
	Gene annotation

	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

