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Abstract

Background: Arbovirus transmission by the mosquito Aedes aegypti can be reduced by the introduction and
establishment of the endosymbiotic bacteria Wolbachia in wild populations of the vector. Wolbachia spreads by
increasing the fitness of its hosts relative to uninfected mosquitoes. However, mosquito fitness is also strongly
affected by population size through density-dependent competition for limited food resources. We do not
understand how this natural variation in fitness affects symbiont spread, which limits our ability to design successful

control strategies.

Results: We develop a mathematical model to predict A. aegypti-Wolbachia dynamics that incorporates larval
density-dependent variation in important fitness components of infected and uninfected mosquitoes. Our model
explains detailed features of the mosquito—Wolbachia dynamics observed in two independent experimental A.
aegypti populations, allowing the combined effects on dynamics of multiple density-dependent fitness components
to be characterized. We apply our model to investigate Wolbachia field release dynamics, and show how invasion
outcomes can depend strongly on the severity of density-dependent competition at the release site. Specifically,
the ratio of released relative to wild mosquitoes required to attain a target infection frequency (at the end of a
release program) can vary by nearly an order of magnitude. The time taken for Wolbachia to become established
following releases can differ by over 2 years. These effects depend on the relative fitness of field and insectary-

reared mosquitoes.

Conclusions: Models of Wolbachia invasion incorporating density-dependent demographic variation in the host
population explain observed dynamics in experimental A. aegypti populations. These models predict strong effects
of density-dependence on Wolbachia dynamics in field populations, and can assist in the effective use of Wolbachia
to control the transmission of arboviruses such as dengue, chikungunya and zika.
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Background

The introduction of self-spreading infections of the
endosymbiotic bacteria Wolbachia into field populations
of Aedes aegypti mosquitoes is a novel strategy for the
biocontrol of arboviruses that is currently undergoing
field trials in disease-affected regions across multiple
countries [1]. Infection with Wolbachia reduces the cap-
acity of A. aegypti to transmit dengue [2, 3] and other
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arboviruses, including zika [4] and chikungunya [5].
Field releases of mosquitoes infected with the Wolbachia
strain wMel have achieved stable establishment of the
bacteria in wild A. aegypti populations in north-east
Australia [6]. Further field trials aim to establish wMel
in areas of south-east Asia and South America within
geographic regions that bear the highest dengue burden
[7]. In applying the strategy in these new environmental
settings, field releases will need to scale up to larger
urban areas. Large urban settlements with high human
and mosquito densities are important in driving dengue
transmission [8], and present more challenging
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conditions for Wolbachia invasion compared to the low-
density populations in north-east Australia.

The time taken for Wolbachia infections to become
established has varied across recent field release trials, and
establishment has failed to occur in some cases. wMel es-
tablishment occurred within 2 months following releases
in north-east Australia [6], while invasion in Indonesia has
been slower, with frequencies remaining below 90 % for
several months following releases, despite over 60 % of
mosquitoes in the field being infected during the release
period (Warsito Tantowijoyo pers. comm.). In Brazil, wMel
frequencies have declined to low levels following releases,
again despite the attainment of a high percentage infection
(65 %) during the release period [9].

In order to design release strategies that achieve success-
ful Wolbachia invasion across a range of environmental set-
tings, it is critical to develop an understanding of the
factors influencing Wolbachia invasion in wild mosquito
populations. Wolbachia is maternally transmitted and it in-
vades by manipulating host reproduction, most commonly
using a mechanism known as cytoplasmic incompatibility.
Cytoplasmic incompatibility in A. aegypti transfected by
wMel causes near-complete non-viability of offspring from
matings between uninfected females and infected males [3],
conferring a relative fitness advantage to infected females
[10]. This advantage is stronger when the Wolbachia fre-
quency in the insect population is higher, and simple popu-
lation genetic models predict a threshold frequency below
which invasion does not occur [11].

Most studies of Wolbachia invasion have assumed that
host demographic rates, and the relative fitness of infected
individuals, are constant and independent of population
density (e.g., [3, 6, 11] but see [12, 13]). However, in A.
aegypti, experimental studies have shown that fecundity,
and juvenile survival and development rates, vary strongly
depending on the level of larval density-dependent com-
petition for food [14—17]. Larval density-dependent demo-
graphic variation in field populations has proven difficult
to quantify because mosquito populations have overlap-
ping generations [15, 16, 18]. However, field observations
of A. aegypti suggest that competition is often relatively
intense. The body size of adults emerging from field-
collected pupae is typically significantly smaller than that
of individuals experiencing plentiful food in the laboratory
[12, 19, 20], and similar to those developing under condi-
tions of strong resource competition [21] where fecundity
is reduced [22]. Variation in these important fitness com-
ponents may strongly affect Wolbachia spread [17]. It is
thus important to develop our understanding of density-
dependent fitness in A. aegypti, as well as any differential
effects on infected individuals, in order to increase our
capacity to predict and facilitate Wolbachia invasion.

Wolbachia-infected mosquitoes that are reared in an
insectary and then released into the field may be
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disadvantaged if they lack adaptations to the local envir-
onment. For example, the released infected adults may
experience higher susceptibility to chemical insecticides.
Although Wolbachia is not expected to directly influ-
ence insecticide resistance, released mosquitoes may be
more susceptible because of the genetic background of
Wolbachia-infected insectary A. aegypti colonies [23].
Backcrossing of these colonies with wild-collected mos-
quitoes can counteract this disadvantage [6], but these
procedures may be inadequate, particularly if insecticide re-
sistance incurs a fitness cost in the absence of insecticides
[24]. There are also ethical issues concerning the release of
insecticide-resistant vectors. Reduced insecticide re-
sistance in infected mosquitoes has been proposed as
a reason for the failure of wMel establishment follow-
ing field releases in Brazil [9] because of the local
heavy application of chemical insecticides [25]. We
need an improved understanding of natural mosquito
fitness variation in wild populations in order to pre-
dict the impacts of such fitness disadvantages on
Wolbachia invasion.

Here, we develop a mathematical model to predict the
effects of larval density-dependent demographic variation
on the dynamics of both A. aegypti and wMel Wolbachia.
Our model incorporates mathematical relationships de-
scribing density-dependent demographic traits in infected
and uninfected mosquitoes parameterized using observa-
tions from two independent field-cage experimental popu-
lations. We simulate wMel dynamics following field
releases, focusing on a practical target that requires re-
leases to rapidly achieve a high infection frequency. We
explore the consequences of released mosquitoes suffering
different degrees of fitness disadvantage as a result of lack-
ing relevant genetic adaptations, as would occur if they
were less resistant to insecticides than the native mosqui-
toes. We demonstrate how density-dependent variation in
demographic traits can strongly influence interactions be-
tween mosquito fitness and Wolbachia frequency dynam-
ics, greatly impacting the size of release required to meet
our target frequency as well as the time taken for Wolba-
chia to become established following releases. Wolbachia
is a promising candidate to help control diseases spread
by A. aegypti, and our models, incorporating important
features of natural population dynamics, can assist in de-
veloping effective field release strategies.

Results

Our model of mosquito—Wolbachia dynamics allows
two mosquito demographic traits, namely per-capita fe-
male fecundity and larval development times, to vary
with changing larval density (Fig. 1; double red lines).
We express these demographic traits as functions of lar-
val density and allow their values to differ between in-
fected and uninfected mosquitoes (see Methods). We
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Fig. 1 Model of mosquito-Wolbachia dynamics. Double red arrows
indicate demographic rates that depend on larval density, solid
arrows indicate fixed time lags, dotted arrows indicate mating
interactions, and open circle terminators indicate mortality rates.
Grey shading and no shading indicate Wolbachia-infected and
uninfected life stages, respectively. Parameter symbols and values
are defined in the text and Additional file 1: Table S1.1. The
computer code for implementing our model (gyp_sim.cpp) has

been made available (see doi 10.6084/m9figshare.3980472)

estimate the form of these functions using observations
from two independent populations of A. aegypti housed in
field-cages (see below). The other demographic traits de-
fined in our model (Fig. 1) are assumed to be density and
time independent, and are estimated from direct observa-
tions either from our work or from previous studies. De-
tails of the models and data are provided in the Methods.
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Estimating density-dependent demographic traits

We refer to our two experimental field-cage A. aegypti
populations as Population A (see [17]) and Population B
(see Methods). wMel Wolbachia was introduced into
both populations but in different ways. Population A
was initiated with a cohort of uninfected adults and then
at 2 months we began regular introductions of wMel-in-
fected adults produced from larvae which had been
reared in a separate facility (see Methods). Population B
was initiated with a cohort of which 40 % of the adults
were infected with wMel, and this population then re-
ceived no further introductions of infected mosquitoes.
The parameters of the functions describing density-
dependent demographic traits were estimated using
Bayesian Markov Chain Monte Carlo (MCMC) methods
informed by (1) our observed abundances of the juvenile
mosquito life stages, and (2) our observed wMel infec-
tion frequencies in first instar larvae and pupae over
time in our two populations (see Methods).

Larval development times

The mean development times of the larval cohorts are
much longer at higher larval densities, with similar fitted
models describing this relationship for both populations
(Fig. 2a). The variation in development times is also
greater at higher larval densities, with both populations
again showing similar relationships (Fig. 2b). The fitted
models of density-dependent larval development times
explain the major features of the dynamics of mosquito
numbers and Wolbachia infection frequencies as mea-
sured by daily pupal surveys (Additional file 3: Figure
S1.1, Additional file 4: Figure S1.2 and Additional file 2:
Text S1).

For both populations, the predicted larval develop-
ment times are highly variable amongst the individuals
hatched in each cohort (Fig. 3). For Population A, the
predicted mean development times of infected and unin-
fected larvae did not differ significantly (95 % credible
interval (CI) includes 0; see Methods and Additional file
6: Figure S2.1). However, for Population B infected lar-
vae developed faster than uninfected larvae for cohorts
hatched in the first 5 weeks (Additional file 6: Figure
S2.1; 95 % CI > 0 for cohorts hatched in weeks 4—8). For
subsequent cohorts (hatched in weeks 9-15), the pre-
dicted mean development times of infected and unin-
fected larvae did not differ significantly. The faster
development of infected larvae in the earlier cohorts
may possibly be caused by genetic differences between
the infected and uninfected mosquitoes (see the
Discussion).

Per-capita female fecundity
Per-capita female fecundity declined strongly (by about
factor of 10) with increasing larval density, with similar
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Fig. 2 Posterior fitted values of larval density-dependent mosquito
demographic traits for two field-cage populations. a Mean larval
development time. b Standard deviation of larval development times. ¢
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Populations A and B, respectively. Dark and light grey shaded areas show
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fitted models describing this relationship for both popu-
lations (Fig. 2c). Models incorporating these density-
dependent relationships describe the major features of
the dynamics of the average number of hatched larvae
per week for both populations (Additional file 5: Figure
$1.3), except for a short period in Population B (weeks
11-15), which is explored in Additional file 2: Text S1.
For Population B, the predicted per-capita female
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fecundity over time did not differ significantly between
infected and uninfected adults (95 % CI includes O;
Additional file 8: Figure S3.2, Additional file 7: Figure
S3.1). For Population A, our data allow estimation of the
per-capita fecundity over time of uninfected, but not in-
fected, adult females (see Methods and [17]).

Modelling density-dependent population dynamics

We incorporated these estimates of density-dependent
mosquito demographic traits into our model of mos-
quito—Wolbachia dynamics (Fig. 1 and Methods). We
first use the model to predict their values when the mos-
quito population is at equilibrium and Wolbachia is not
present. At equilibrium, the per-capita female fecundity

A" and the larval development time distribution 7', de-
pend on the level of larval density-dependent competi-
tion. We define the equilibrium net larval survival (from

first instar to pupal eclosion) to be HL(Tz,ptL) , which
depends on the mortality experienced throughout the
larval stage, which we assume here occurs at a constant
daily rate, y;. Then, at equilibrium,
A*9L<T2,ML)9P9AG
Ha a

(1)

where 0p and 64, are the probabilities of surviving
through the pupal stage and the early adult stage (during
which females are too young to produce eggs), respect-
ively (see Additional file 2: Text S1 and [26]). This ex-
pression simply states that each adult female produces,
on average, one adult female offspring throughout its
lifetime. Therefore, when the population experiences
higher juvenile or adult mortality (higher y; or u,), the
intensity of density-dependent competition at equilib-
rium decreases through changes in A'and Tz

Field mosquito populations are expected to experience
higher density-independent mortality than our experi-
mental field-cage populations, though mortality rates of
juveniles and adults in the field are uncertain [6, 18]. We
assume that the field population experiences density-
independent mortality at a constant daily rate, y;, during
both the larval and adult stages. We further assume that
this mortality acts in addition to the mortality occurring
in our experimental populations, so that p4 = 5 + p; and
yr = pi + p, where p and yf are the daily juvenile and
adult mortality rates in our field-cage populations, re-
spectively (Fig. 1 and Additional file 1: Table S1.1). We
define the intensity of density-dependent competition
experienced in the field population at equilibrium rela-
tive to the equilibrium derived from the field-cage exper-
iments as C; = L;/Lo where L; and Ly are the equilibrium
larval densities given by a fixed value of y;>0 and p;=0,
respectively.
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As we increase the level of density-independent mor-
tality, 4, the intensity of larval competition declines and
the equilibrium values of both the per-capita female fe-
cundity (Fig. 4a; red line) and the mean larval develop-
ment time (Fig. 4a; blue line) vary across the range of
values observed in our experimental populations. Higher
mortality, p;, has a stronger effect on population size
than the increased density-dependent fitness, and causes
a steep decline in equilibrium population size (Fig. 4a;
green line).

Predicting Wolbachia dynamics following field releases
We now explore how differences in the intensity of density-
dependent competition in the field population affect the dy-
namics of Wolbachia following release. We model a typical
strategy used in actual campaigns, where a fixed number of
mosquitoes infected with wMel is released every week over
3 months [6, 9] and assume that the field population is at
equilibrium when releases commence. The absolute num-
ber of mosquitoes that need to be released to achieve a
given infection frequency is determined by the “release ra-
tio”, or the size of each release divided by the initial wild
population size. We set as a target that the frequency of in-
fected adults must exceed 0.6 one week after the final re-
lease [3, 6] and calculate the minimum release ratio (MRR)
required to achieve the target frequency. We then obtain
the time taken for the Wolbachia to become established
following the final release, T, given that the release ratio is
equal to the MRR, and defining establishment to occur
when the infection frequency exceeds 0.95.

If larvae in the field population experience significant
density-dependent competition, then it is likely that the
released mosquitoes, reared with plentiful food, will have
higher average female fecundity. If the average fecundity
of the released females is equal to that which we ob-
served at the lowest larval density (Fig. 2c), then they
will have a very strong fecundity advantage (Fig. 4b; red
line), especially when the intensity of density-dependent
competition in the field population (C;) is high. There-
fore, the MRR increases by nearly an order of magnitude
across decreasing intensities of competition C; (Fig. 4b;
solid blue line).

However, when competition is more intense, greater ab-
solute numbers of released mosquitoes are required to
meet the target frequency (Fig. 4b; dotted blue line) even
though the MRR is lower. This is because the size of the
field population is much larger due to the low density-
independent mortality (Fig. 4a). Further, larval development
periods are longer under more intense competition, which
slows Wolbachia spread [17]. Therefore, the time to Wol-
bachia establishment following releases (T%) is longer
(Fig. 4c). Thus, situations where competition is intense are
disadvantageous for field release strategies overall, despite
released females having a much stronger fitness advantage.
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Fig. 4 Mosquito demographic traits and Wolbachia field release
dynamics depend strongly on the intensity of density dependence. a
Equilibrium values of the mean larval development time (blue line), the
per-capita female fecundity (red line) and the number of adults relative
to the value when C/* =1 (green line). b The fecundity of released relative
to wild mosquitos (red line), the minimum release ratio (solid blue line)
and the absolute number of released mosquitoes (dotted blue line).
The time to Wolbachia establishment (T solid line) for different inten-
sities of density-dependent competition C;. The dotted line shows the
time taken for the Wolbachia frequency to reach 0.7 following the final

release

Fitness disadvantages in released mosquitoes

We now consider the situation where released mosqui-
toes are at a fitness disadvantage compared to wild-type
individuals. Specifically, we assume that released

Page 6 of 12

individuals are more susceptible to a chemical insecti-
cide used widely at the release site, leading to reduced
adult survival. We assume that this fitness disadvantage
is independent of Wolbachia infection so the disadvan-
tage experienced by infected individuals declines over
the generations following release due to introgression of
wild-type genes. We assume that resistance is encoded
by one allele at a single nuclear locus (R, resistant; S,
susceptible) giving three genotypes: RR, SR, and SS.
Homozygote resistant individuals are unaffected by the
insecticide. Homozygote susceptible individuals experi-
ence a proportional reduction in daily adult survival of
1-cgs, with the cost, ¢gs = 0.8, assumed to be substantial.
Heterozygote survival is reduced by a fraction of this
amount to 1-fgrcss (see Methods and [27]), where 0 <
fsr< 1. The field population prior to releases is assumed
to be entirely composed of homozygote resistant individ-
uals and all released mosquitoes are assumed to have
the homozygote susceptible genotype. As before, we as-
sume that the per-capita fecundity of the released mos-
quitoes is high, equal to that observed at the lowest
larval densities in the field-cages.

Releasing mosquitoes with this substantial fitness dis-
advantage requires much higher MRRs to meet the tar-
get Wolbachia frequency (Fig. 5a). The MRR is
approximately an order of magnitude higher when het-
erozygotes are fully resistant (fsg =0) and even greater
when heterozygotes are also disadvantaged (fsg>0).
When heterozygotes are disadvantaged, the MRR is re-
duced less under more intense competition (Fig. 5a).
This is because the Wolbachia benefits greatly from the
introgression of resistant alleles through the population
following releases, which causes a rise in the average fit-
ness of its hosts. Introgression is slower when larval de-
velopment periods are lengthened by more intense
competition, which inhibits Wolbachia spread, particu-
larly when heterozygotes are disadvantaged.

The time taken for the Wolbachia to become estab-
lished, Tg, is more strongly affected by density-
dependent competition when released mosquitoes have
a fitness disadvantage, particularly if heterozygotes are
also affected (Fig. 5b). When heterozygotes are fully sus-
ceptible to insecticides (fsg = 1), T¢ is more than 3 years
when competition in the field population is intense but
less than a year when competition is low. This difference
arises due to the strong effects on mosquito population
dynamics of making large releases of Wolbachia-infected
mosquitoes, particularly the reduction in the numbers of
uninfected adults during the release period because of
cytoplasmic incompatibility (Fig. 5c, d; black lines). The
Wolbachia frequency drops rapidly to a low level after
releases end due to the high fitness disadvantage (Fig. 5c,
d; red lines), and cytoplasmic incompatibility therefore
becomes less effective. If the population experiences low
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levels of density-independent mortality, 4, it can recover
rapidly from the suppression because the population
growth rate is much higher at low densities. The popula-
tion grows to almost pre-release levels before introgres-
sion of resistance allows the Wolbachia frequency to
increase, and invasion is therefore very slow (Fig. 5c¢;
black line). However, if density-independent mortality is
high and population growth is less affected by density-
dependence, the population is slow to recover from the
reduction in density (Fig. 5d; black line). Introgression of
resistance occurs while the population size remains low,
allowing much faster Wolbachia invasion (Fig. 5d).

Discussion

Our model of mosquito-Wolbachia dynamics, validated
by observations from two independent field-cage A.
aegypti populations, allows the combined effects of lar-
val density-dependent variation in important mosquito
fitness components to be characterized. We show how
density-dependent competition can strongly affect the
dynamics of Wolbachia field releases through complex
interacting effects that are not represented in models as-
suming constant host demographic traits [6, 11]. First,

the intensity of density-dependent competition in the
field population is a very important determinant of the
relative fitness of the well-nourished, insectary-reared in-
sects that are released. Thus, when insects in the field
experience intense competition, lower ratios of released
to wild insects are required to achieve a given infection
frequency. However, situations where competition is
more intense are disadvantageous for field release strat-
egies overall. We show that intense competition arises
when population sizes are relatively high due to lower
impacts of density-independent factors on mosquito sur-
vival. We predict that this leads to higher required abso-
lute numbers of released mosquitoes. Further, larval
development times increase under more intense compe-
tition, which slows Wolbachia spread by delaying in-
creases in adult infection frequencies brought about by
cytoplasmic incompatibility (see also [17]). Wolbachia
releases can also cause strong perturbations in field
population densities resulting in transient dynamics that
are influenced by density-dependent population growth.
We show that these effects can strongly affect the speed
of Wolbachia invasion when released mosquitoes experi-
ence relative fitness disadvantages.
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These findings demonstrate the importance of ac-
counting for density-dependent variation in host fitness
when attempting to predict Wolbachia invasion dynam-
ics. Our ability to estimate the intensity of density-
dependent competition in field A. aegypti populations is
limited by the uncertainty about mosquito mortality and
the severity of density-independent effects [6, 17, 18, 21,
28]. To reflect this uncertainty, we explore mosquito-
Wolbachia dynamics across varying degrees of competi-
tion intensity. Our model can assist in the design of field
release strategies by predicting mosquito demography
and Wolbachia invasion across this range of competition
intensity. The computer code for implementing our
model (gyp_sim.cpp) has been made available (see doi
10.6084/m9.figshare.3980472).

The effects of density-dependence on the dynamics of
Wolbachia after field releases are stronger when released
mosquitoes experience fitness disadvantages. Our ana-
lysis considers fitness disadvantages arising from genetic
susceptibility to chemical insecticides, which had a po-
tential role in the failure of wMel to invade and establish
in field release trials in Brazil [9]. The rapid decline in
wMel frequency following these field releases suggests
strong fitness disadvantages. Field releases may com-
monly be impacted by insecticide susceptibility in re-
leased mosquitoes because resistance in wild A. aegypti
populations is widespread [29]. Insecticides targeted at
adults remain an important means of arbovirus control
[30], and attempts to release resistant mosquitoes may
generate public health concerns. The mechanisms iden-
tified in our analyses also apply to other fitness disad-
vantages that may result from the genetic background of
released mosquitoes (for example, those due to adapta-
tion to laboratory environments).

The strategy of using insecticides or other means to
suppress wild mosquito populations prior to releases has
often been proposed as a means to facilitate Wolbachia
invasion. However, several studies have expressed con-
cern that a density-dependent increase in mosquito fit-
ness may impede population suppression strategies [15,
18]. Our model predicts that increasing density-
independent mortality reduces adult numbers despite al-
leviating the effects of competition on mosquito fitness,
and therefore suggests that interventions to suppress
populations by killing juveniles and adults are likely to
be helpful. Our results also suggest that interventions
that increase mosquito mortality rates will increase the
rate of Wolbachia spread by reducing the effects of
density-dependence that act to slow spread. However,
this needs to be interpreted in the context of the method
of population suppression. If chemical insecticides are
employed, this could disadvantage the infected mosqui-
toes, which we have shown can substantially impede
Wolbachia invasion.

Page 8 of 12

Our Bayesian statistical models estimate variation in
demographic traits over time for both Wolbachia-in-
fected and uninfected mosquitoes in our experimental
populations. The fitness of infected and uninfected mos-
quitoes did not differ significantly, except for the devel-
opment times of larvae in the initial cohorts of one of
the two experimental populations. However, these effects
were small relative to the effects of larval density on de-
velopment times and do not affect the conclusions of
our field release simulations. We cannot assess whether
Wolbachia infection caused these differences in larval
development rate because our experiments do not con-
trol for effects of genetic differences between infected
and uninfected mosquitoes. Experimentally controlling
for effects of genetic variation is limited by the difficulty
of creating genetically identical infected and uninfected
mosquito lines [3]. Further, in field populations of A.
aegypti, mtDNA variation remains tightly associated
with wMel infection [31], meaning that any mitochon-
drial genetic differences between released and field mos-
quitoes will persist following the releases.

Our methods may be applied to investigate the dy-
namics of other Wolbachia strains with potential to as-
sist in the control of diseases transmitted by A. aegypti,
for example the “life-shortening” wMelPop strain [32]
and the wMelwAlbB superinfection [33]. A. aegypti car-
rying these infections are strongly refractory to dengue
[2, 33], but we know very little about the relative fitness
of infected mosquitoes developing in the field and sub-
ject to food limitation (but see Ross et al. [34]). Even in
the laboratory the wMelPop strain imposes high fitness
costs on A. aegypti [3], and field releases have failed to
establish wMelPop in wild populations [35].

We provide a framework for incorporating the effects
of density-dependence into models of A. aegypti popula-
tion dynamics on which further work can be based.
More detailed models will need to explore the conse-
quences of spatial structure and fluctuations in popula-
tion size that can arise from stochastic processes and
seasonality. Models based on ours but tailored to par-
ticular field settings could also be important in develop-
ing specific release strategies at different target locations.

Conclusions

Our models incorporating larval density-dependent vari-
ation in mosquito demographic traits are effective in
explaining mosquito and Wolbachia dynamics in field-
cage A. aegypti populations. Our model simulations
show qualitatively different host-symbiont dynamics
compared to models that assume constant host demo-
graphic traits, with significant implications for Wolba-
chia field releases. Specifically, the intensity of density-
dependent competition in the field population strongly
affects the relative fitness of released insects, and is
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therefore important to predicting the infection frequency
that will be achieved by a set program of releases. The
development rate of juvenile mosquitoes is also strongly
density-dependent, which affects the speed of Wolbachia
spread. Further, transient Wolbachia dynamics associ-
ated with field releases are influenced by density-
dependent mosquito population growth rates. These ef-
fects have greater impacts on dynamics when released
mosquitoes experience fitness disadvantages. By incorp-
orating these important ecological aspects of Wolba-
chia-host dynamics, our models can assist in
understanding and achieving Wolbachia invasion in field
mosquito populations.

Methods

Observations of A. aegypti-Wolbachia dynamics

We studied two populations of A. aegypti housed in
field-cages receiving limited larval food resources, in-
cluding the population experiment described in Hancock
et al. [17] and a new population experiment presented in
this study. The field-cage, of dimensions 7 x 4 x 5 m, was
designed to simulate the natural habitat of A. aegypti in
north-east Australia [36]. The first population (Popula-
tion A) was initiated from a cohort of 100 pupae that
were produced from larvae hatched on December 20,
2013, from wild caught eggs of an A. aegypti population
located in Cairns, north-east Australia. All individuals
were uninfected with Wolbachia [17]. The second popu-
lation (Population B) was initiated from a cohort of 100
pupae produced from larvae hatched on October 17,
2014. A fraction (40 %) of these individuals was infected
with wMel. The uninfected pupae in this initial cohort
were the third generation progeny of wild-caught eggs of
an A. aegypti population located in Babinda, north-east
Australia. The infected pupae were the progeny of a
field-cage colony that has fixed wMel infection and is
regularly backcrossed with wild-caught A. aegypti from
north-east Australia [3].

Both Populations A and B were maintained and moni-
tored following the procedures described previously [17]
(and also in Additional file 2: Text S1) for periods of
194 days (Population A) and 170 days (Population B).
Regular collections were made (three times per week) of
all eggs present in the field-cage. Eggs from each collec-
tion were transferred to a controlled temperature room
at 26 °C where, after a 2 day incubation period, they
hatched and all resulting first instar larvae were counted.
A sample of 30 newly-hatched larvae was retained and
the remaining individuals in the cohort were placed in
the field-cage larval container habitat. A sample of 20 %
of the pupae that eclosed in the field-cage populations
on each day was retained (see [17]).

As described by Hancock et al. [17], Population A
began receiving regular introductions (three times per
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week) of 16 wMel-infected pupae at about 2 months
(68 days) after its initiation. These infected pupae were
taken from the field-cage colony described in Walker et
al. [3]. The pupae were previously reared as larvae under
the same food supply regime as that delivered to our
field-cage experimental populations and experienced
similar larval densities (see [17] for details of the larval
rearing environment).

For both populations, we monitored the Wolbachia
frequency over time by testing all individuals in the sam-
ples of first instar larvae and pupae for Wolbachia infec-
tion using real time PCR [37]. The Wolbachia frequency
in each sample of first instar larvae was used to estimate
the Wolbachia frequency in each cohort of newly-
hatched first instar larvae. The Wolbachia frequency in
the eclosed pupae was estimated by the frequency in the
sampled pupae pooled over each week in order to re-
duce the sampling error.

The experimental design for Population B was in-
formed by the results of the Population A experiment
[17]. Specifically, in order to parameterize our popula-
tion dynamic model (Fig. 1), we aimed to produce a wide
range of Wolbachia frequencies in the eclosed pupae
across the two populations. We therefore chose the Wol-
bachia frequency in the initial cohort of Population B to
be close to the maximum frequency of 36 % observed in
the eclosed pupae in Population A. Further, in Popula-
tion A, we observed strong variation in per-capita female
fecundity associated with changing larval density in the
field-cage [17]. Therefore, in order to simplify the esti-
mation of larval density-dependent variation in per-
capita female fecundity, we did not make any introduc-
tions of externally-reared infected or uninfected mosqui-
toes into Population B following its initiation (see below
and Additional file 2: Text S1).

Estimating density-dependent demographic traits

We focus on two mosquito demographic traits, namely
larval development time and per-capita adult female fe-
cundity [17]. We express these demographic variables as
functions of larval density, defining separate relation-
ships for the infected and uninfected subpopulations,
and infer the form of these functions using (1) our ob-
served abundances of the juvenile mosquito life stages
and (2) our observed Wolbachia infection frequencies in
first instar larvae and pupae in our field-cage A. aegypti
population over time (Additional file 2: Text S1). We
make three assumptions, namely that (1) the sex ratio in
the mosquito population is equal, (2) the population is
panmictic (random mating) [38], and (3) adult females
mate once only within a day of emergence [39]. Model
parameters and values are defined in Additional file 1:
Table S1.1.
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Larval development time

For the Wolbachia-infected and uninfected individuals
within each cohort of larvae we estimated the distribu-
tions of the probability of pupation over time [17]. We
denote p;.w and p;.;; as the probabilities that the in-
fected and uninfected larvae within a cohort that hatch
on day ¢ pupate on day i We assume that p;.yw and
Picu follow gamma distributions with means 4w and
Uep and standard deviations o,y and o, respectively.
We use flexible power law functions of larval density to
estimate the means and standard deviations and choose
a measure of average larval density that allows forward
prediction (Additional file 2: Text S1). For the infected
larvae hatched in cohort c:

tew (T0) =aw + By (7)™ 2)

—P —P\ ¥Yw
aew (Lc) =Vw + UW(LC)

where ff is the estimated average larval density that the
larvae in cohort ¢ experience during the time period
from hatching to eclosion of the first pupa from the co-
hort and aw, Sws Yws vws» #w and Yy are constant pa-
rameters. Functions of the same form as (2) but with
different constant parameters (distinguished by subscript
U instead of W) are used to estimate y;; and o,

We estimate the 12 constant parameters using a
Bayesian MCMC model that calculates the likelihood of
observing our daily pupal eclosions and our Wolbachia
infection frequencies in the samples of pupae (see Add-
itional file 2: Text S1 for further details). The likelihood
is also informed by our data on the number of first in-
star larvae hatched in each cohort, the daily larval sur-
vival (estimated using our larval counts; see Additional
file 9: Figure S5.1, Additional file 10: Figure S5.2 and
Additional file 2: Text S1), and the Wolbachia infection
frequency in the first instar larvae sampled from each
cohort. The priors are truncated uniform distributions
that restrict the parameters’ ranges. Convergence diag-
nostics are presented in Additional file 11: Figure S7.1.

Per-capita female fecundity

We assume that only adult females with compatible
matings (unaffected by cytoplasmic incompatibility) who
have passed the minimum age for the first oviposition
(Tg; Additional file 1: Table S1.1) are capable of produ-
cing offspring. We require estimates of the abundance of
these reproducing adult females (both Wolbachia-in-
fected and uninfected) over time. We did not observe
adult abundance or infection status in our study popula-
tions so we estimated these quantities using our daily re-
cords of pupal eclosion and observed Wolbachia
frequencies in the sampled pupae (calculations are pre-
sented in Additional file 2: Text S1). This required
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estimates of the time required for pupal development,
Tp the time lag between oviposition and hatching of
eggs, Ty, and the daily rate of pupal and adult survival
ua. We estimated T, Tp and Ty directly from our data,
and py4 from Walker et al. [3] (Additional file 1: Table
S1.1). Our methodology also assumes that maternal
transmission of Wolbachia is perfect [3].

We define the per-capita fecundity of infected adult fe-
males on day i, A;w, as the number of infected first in-
star larvae hatched on that day per infected adult female
capable of contributing offspring to this cohort. The per-
capita fecundity of uninfected adults on day i, A;; is
similarly defined based on numbers of uninfected larvae
hatched on day i. We assume that per-capita female fe-
cundity is a log-linear function of the average larval

density Zﬁ over a fixed time lag of 3 weeks ending on
day n =i-Tg-Tp (Additional file 2: Text S1). A,y is esti-
mated by:

)LLW(Z;‘) —aw + bwlog(zjj) (3)

where ay and by, are constant parameters, and A, is
estimated by a function of the same form as (3) but with
different constant parameters, distinguished by substitut-
ing subscript U for subscript W.

We estimate the constant parameters using a Bayesian
MCMC model that calculates the likelihood of our ob-
served numbers of larvae hatched in each cohort and
observed Wolbachia infection frequencies in each sam-
ple of newly hatched larvae (Additional file 2: Text S1
and Additional file 12: Figure S7.2). The likelihood is
also informed by the daily counts of eclosed pupae and
the Wolbachia infection frequency in the pupae sampled
over each week. For Population A, we estimated the per-
capita fecundity of uninfected, but not infected, females
(A;1; only; see Additional file 2: Text S1) because the in-
fected females that were introduced into the population
were produced from larvae that had been reared separ-
ately [17].

Modelling mosquito-Wolbachia dynamics

Our model of mosquito—Wolbachia dynamics assumes
that larval development times and per-capita female fe-
cundity depend on larval density (Fig. 1; double red
lines) according to the forms estimated (Fig. 2a—c). We
use the set of parameters that gives the maximum pos-
terior probability for Population B. Mosquito demo-
graphic traits that are assumed to be temporally
constant (Fig. 1; black solid lines) include the daily larval
mortality, y;, the daily pupal and adult mortality y., the
time lags T, Tp and Ty defined above, the strength of
cytoplasmic incompatibility, s;, and the rate of maternal
transmission of Wolbachia, 1- » [3]. The mathematical
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model formulation and examples of the predicted dy-
namics are provided in Additional file 2: Text S1 and
Additional file 13: Figure S4.1. The parameter values
used in our model are provided in Additional file 1:
Table S1.1.

Genetic fitness disadvantages in released mosquitoes

We use a simple representation of insecticide resistance
in the mosquito population that assumes that resistance
is determined at a single nuclear locus with susceptible
(S), or resistant (R), alleles [40]. Frequencies of homozy-
gotes (SS and RR) and heterozygotes (SR) in the juvenile
offspring (eggs) produced by the (panmictic) adult popu-
lation are determined by Mendelian inheritance (see
Additional file 2: Text S1 for details of the mathematical
model formulation). We assume that heterozygotes may
experience an intermediate level of resistance [27, 40].
Insecticides are assumed to affect only adult mortality
(and no other demographic traits). The frequency of the
S-allele in the population declines over time after the
end of the Wolbachia releases due to selection for the
resistant phenotype.

Additional files

Additional file 1: Table S1.1. Definitions and values of model
parameters. (PDF 111 kb)

Additional file 2: Text S1. Additional methods and results. (PDF 1746 kb)

Additional file 3: Figure S1.1. Observed mosquito and wMel
Wolbachia dynamics and the posterior fitted values. Red lines show the
Markov Chain Monte Carlo iteration with the highest posterior probability
and blue shaded areas show the 95 % credible interval. Results for
Populations A and B are on the left and right of the dashed vertical line
respectively. (A) Red circles show the observed wMel frequency in the
pupae that eclosed in each week and vertical lines are the exact binomial
95 % confidence intervals. (B) Black circles show the observed weekly
average pupal eclosion (PDF). (PDF 108 kb)

Additional file 4: Figure S1.2. The observed cumulative number of
pupae (red lines) and hatched larvae (black lines) compared and the
posterior fitted values. The predicted cumulative numbers of pupae (blue
lines) and hatched larvae (green lines) are given by the maximum
posterior probability iteration. Blue and green shaded areas show the

95 % credible interval for the cumulative numbers of pupae and hatched
larvae respectively. Results for Populations A and B are shown on the left
and right side of the vertical dotted line. (PDF 65 kb)

Additional file 5: Figure S1.3. Observed numbers of larvae hatched
and the posterior fitted values. Red lines show the Markov Chain Monte
Carlo iteration with the highest posterior probability and blue shaded
areas show the 95 % credible interval. Results for Population A and B are
on the left and right of the dashed vertical line, respectively. Black circles
show the observed weekly average total number of larvae hatched.
(PDF 62 kb)

Additional file 6: Figure S2.1. Posterior distributions of the differences
in means (Ucy — Uewi blue lines) and standard deviations (o — o w; red
lines) of the development time distributions of infected and uninfected
larvae hatched in each cohort. For Population A, results for cohorts 47, 48
and 52 are not shown because the observed infection frequency in these
first instar larvae was close to 0. For Population B, results for cohorts 19,
22 and 26 are not shown because the observed infection frequency in
these first instar larvae was close to 1. (PDF 238 kb)
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Additional file 7: Figure S3.1. Observed wMel Wolbachia dynamics in
the first instar larvae and the posterior fitted values, for Population B. The
red lines show the Markov Chain Monte Carlo iteration with the highest
posterior probability and blue shaded area shows the 95 % credible
interval. Red circles show the observed wMel frequency in the first instar
larvae that hatched in each week and vertical lines are the exact binomial
95 % confidence intervals. (PDF 61 kb)

Additional file 8: Figure S3.2. Posterior distributions of the difference
in the predicted per-capita fecundity of Wolbachia-infected and unin-
fected adult females (A;, — ;) for each cohort for Population B. (PDF
119 kb)

Additional file 9: Figure S5.1. Total number of larvae counted in each
week (black line and circles), divided into first and second instars (blue
shading), third instars (yellow shading), and fourth instars (pink shading).
A Population A; the red arrow indicates the day that introductions of
wMel-infected pupae were initiated and the black arrow indicates the
day that both wMel introductions and egg hatching were terminated
(see [17]). B Population B; the black arrow indicates the day that egg
hatching was terminated. (PDF 87 kb)

Additional file 10: Figure S5.2. The observed (black line and markers)
and interpolated (red dashed line) larval survival over time. (PDF 57 kb)

Additional file 11: Figure S7.1. Gelman-Rubin plots of the posterior
fitted values. Plots show the shrink factor for three chains each starting at
different initial values: A, B. By and By; C, D. ay and aw; E, F. yy and yw; G,
H. vy and vy, 1, J. ny and nuw; K L. ¢y and . (PDF 199 kb)

Additional file 12: Figure S7.2. Gelman-Rubin plots showing the
shrink factor for three chains each starting at different initial values: A. b;
B. a. (PDF 71 kb)

Additional file 13: Figure S4.1. Long term behaviour of the uninfected
mosquito population in the absence of Wolbachia. A, B. The intensity of
density-dependent competition is low (CZ =0018, 4;=0.12). C, D. The
intensity of density-dependent competition is high (C; = 1.0, t=0). A, C.
Numbers of larvae (black line) and adults (red line). B, D. Per-capita adult
female fecundity (red lines), larval development time mean (blue line)
and standard deviation (black line). (PDF 107 kb)
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