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Abstract. Fetal rat brown adipocytes at time zero of 
culture constitute a population of cells of broad spec- 
trum, as estimated by cell size, endogenous fluores- 
cence and lipid content, and show an intrinsic mito- 
genic competence. They express constitutively early 
growth-related genes such as c-myc, c-fos, and/~-actin, 
tissue specific-genes such as the uncoupling protein 
(UCP) and the lipogenic marker malic enzyme (ME). 
Fetal brown adipocytes bear a high expression of 
insulin-like growth factor receptor (IGF-IR), and show 
a high affinity IGF-I specific-binding to its receptor, 
and a high number of binding sites per cell. After cell 
quiescence, insulin-like growth factor I (IGF-I) was as 
potent as 10% FCS in inducing DNA synthesis, cell 
number increase, and the entry of cells into the cell- 
cycle. In addition, IGF-I or 10% FCS for 48 h in- 
creased the percentage of [3H]thymidine-labeled nuclei 
as compared to quiescent cells. Single cell autoradio- 
graphic microphotographs show typical multilocular 

fat droplets brown adipocytes, resulting positive to 
[3H]thymidine-labeled nuclei in response to IGF-I. 
IGF-I increased mRNA expression of the early- 
response genes c-fos (30 min), c-myc (2 and 24 h), 
and H-ras (4 and 24 h). 10% FCS also increased c-fos 
and c-myc, but failed to increase H-ras as an early 
event. IGF-I or 10% FCS, however, similarly in- 
creased the mRNA late expression of c-myc, H-ras, 
c-raf,/~-actin, and glucose 6-phosphate dehydrogenase 
(G6PD) at 72 h, as compared to quiescent cells. IGF-I 
or FCS maintained at 24 h or increased at 48 and 
72 h UCP mRNA expression. The results demonstrate 
that IGF-I is a mitogen for fetal rat brown adipocytes, 
capable of inducing the expression of early and late 
growth-regulated genes, and of increasing the lipogenic 
marker ME and the tissue-specific gene UCP, suggest- 
ing the involvement of IGF-I in the differentiation as 
well as in the proliferation processes. 

I 
NSULIN-like growth factor I (IGF-I) ~ is an extracellular 
factor involved in differentiation and/or proliferation of 
eukaryotic cells (12, 14). Several lines of investigation 

suggest that both processes share common IGF-I signal trans- 
duction pathways, in which p21 Ras is a crucial intermediate. 

With regard to the differentiation process, insulin or IGF-I 
is involved in the meiotic maturation of Xenopus oocyte. 
This process was inhibited when Ras antibody Y13-259 was 
microinjected into the cells in the presence of insulin, sug- 
gesting a direct role of the Ras proteins in the insulin/IGF-I 
signaling transduction pathways involved in triggering that 
process in these amphibian cells (13, 23). Differentiation of 
mammalian 3T3 L1 cells into adipocytes shows an absolute 
requirement for insulin or IGF-I (39). However, the expres- 
sion oftransfected Ras oncogenes in 3T3 L1 leads to differen- 
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tiation into adipocytes in the absence of externally added 
insulin or IGF-I (4). Moreover, transfected dominant inhib- 
itory Ras mutants specifically block the differentiation pro- 
cess triggered by insulin, suggesting that endogenous ras 
proteins are mediators of insulin signaling in these cells, 
while other oncogenes, such as src or trk, could not induce 
such a differentiation process (4, 35). 

With regard to the proliferation processes, IGF-I (nM) or 
insulin (#M) are very poor mitogens in mouse fibroblast cell 
lines (14). In this system, insulin is unable to induce the ex- 
pression of c-fos, c-jun, and p33 (8). Overexpression of insu- 
lin receptors or p21 H-ras produced mitogenesis in NIH 3T3 
transfected cells. In those cells insulin stimulation produced 
an increase in Ras GTP/Ras GDP levels, while PDGF or 
EGF stimulation of cells expressing high levels of ~e  cog- 
nate receptors did not increase p21 Ras GTP levels (8). 
Quiescent BALB/c 3T3 cells enter the S phase of the cell cy- 
cle when growth factors are provided in a specific order, Ras 
function being essential for the ability of IGF-I to stimulate 
entry into S phase from late G1 (progression), but not for the 
ability of PDGF or EGF to induce c-fos mRNA early expres- 
sion in the G0/G1 transition (initiation) (26, 27). In addition, 
overexpression of IGF-I receptors (IGF-IR) in BALB/c 3T3 
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cells produced mitogenesis and the induction of cdc2 mRNA 
(a late growth-regulated gene) in the presence of IGF-I, but 
in the absence of PDGF (42), and in NIH 3T3 cells a ligand- 
dependent transformation (22). In non-fibroblastic mam- 
malian cells, however, although not yet described in adipo- 
cytes, IGF-I caused a transient increase of c-fos without 
changes in c-myc in mouse osteoblasts (29), and in canine 
kidney cell lines (18), an increase in c-fos and c-myc in mu- 
rine embryonic and tumor cells (32), and an increase in c-fos 
and c-jun in primary cultures of rat oligodendroglial cells 
(5), related to the stimulation of DNA synthesis and prolifer- 
ation. 

Previous findings show that fetal brown adipocytes in pri- 
mary culture increase DNA synthesis and cell number, and 
DNA, RNA, and protein contents in response to IGF-I (44). 
In these cells, IGF-I induces the genetic expression of glu- 
cose 6-phosphate dehydrogenasc (G6PD), an enzyme in- 
volved in providing ribose-5-phosphate for DNA synthesis 
in growing cells (44). The aim of the present work is to in- 
vestigate, first, the expression of proliferation-related and 
differentiation-related genes in quiescent primary fetal brown 
adipocytes stimulated in response to IGF-I, and, second, 
the relationship between IGF-I-stimulated proliferation and 
IGF-I-stimulated differentiation. Our results show that IGF-I 
is a mitogen per se that increases the expression of early and 
late genes involved in fetal rat brown adipocytes prolifera- 
tion, and also increases the expression of the lipogenic 
marker malic enzyme (ME) and the tissue-specific gene un- 
coupling protein (UCP). In addition, differentiated fetal 
brown adipocytes, showing their typical multilocular fat 
droplets distribution, become positive for [3H]thymidine- 
labeled nuclei in response to IGF-I. 

Materials and Methods 

Cell Culture 
Brown adipocytes were obtained from interscapular brown adipose tissue 
of 20-d fetuses of Wlstar rats and isolated by collagenase dispersion as de- 
scribed (25). Cells were plated at 106 cells/60-mm tissue culture plates in 
2.5 ml of MEM supplemented with 10% FCS (Imperial Laboratories, 
Hampshire, U.K), the presence of serum being essential to allow cell attach- 
ment to the plastic surface of the plates. After 4-6 h of culture at 37 °C, cells 
were rinsed twice with PBS and 70% of the initial cells were attached form- 
ing a monolayer that under inverse light microscopy represented •30% of 
confluence (t/me 0 of culture). At this time, the study of cell cycle by 
propidium iodine staining followed by flow-cytometric analysis revealed 
that 15% of cells are in S+G2+M phases of the cell cycle and 85% of cells 
are G0/G1 (Fig. 1 E). Ceils were maintained for 20 h in a serum-free 
medium supplemented with 0.2% (wt/vol) BSA to assure inhibition of the 
intrinsic mitogenic competence of fetal cells. At this time, the study of cell 
cycle revealed that >95 % of cells are in G0/G1 phases of the cell cycle. This 
time (20 h serum-starved) is the starting point for mitogenie stimulation. 
Quiescent cells were further cultured for 30 min, 2, 4, 6, 8, 24, 48, and 
72 h in the presence of either IGF-I (1.4 nM, except in concentration- 
dependent experiments) (Boehringer, Mannheim, Germany), or 10% FCS 
as positive control for cell proliferation, or in the absence of serum and 
growth factors as control for cellular quiescence. 

Determination of p H]Thymidine Incorporation 
into Acid-Insoluble Material 
DNA synthesis was determined after 24, 48, and 72 h of cell culture in the 
presence or absence of IGF-I, or 10% FCS, by [3H]thymidine incorpora- 
tion (0.2 ~Ci/mi) (Amersham, Buckinghamshire, UK) into acid-insoluble 
material over the last 4 h of culture. Determination of radioactivity in TCA- 

insoluble material was as described (30). Results are expressed as dpm] dish 
or as percentage of radioactivity incorporated by untreated cells (100), 

Nuclear Labeling and Autoradiography 
For nuclear labeling, quiescent cells (20 h serum-starved) were cultured for 
48 h in the presence or absence of IGF-I, or 10% FCS, and [3H]thymid/ne 
(2 ~Ci/ml; 1 ~aM). At the end of the incubation, cultures were rinsed twice 
with PBS, extracted with TCA and washed with ethanol. The dishes were 
coated with Kodak AR 10 stripping film, exposed for 2 wk, developed, and 
photographed. The nuclei were lightly stained with Giemsa stain and the 
number of labeled and unlabeled cells of several microscopic fields were 
counted, and the results expressed as described (38). 

Flow Cytometric Analysis 
Several cellular parameters were determined by flow cytometric analysis of 
individual cells, such as size, endogenous fluorescence, cytoplasmatic lipid 
content by Nile red fluorescence, cell number, and analysis of cell cycle. 
Cells were detached from plates by addition of 0.05 % trypsin-O.02 % EDTA. 
After 2-3 rain, trypsinization was stopped with 10% FCS in the culture 
medium. All measurements were performed in a FACScan flow cytometer 
(Becton-Dickinson, San Jose, CA). Excitation light was 488 am. Size sig- 
nals (FSC-H) were measured through a filter BP 488/10 rim. Endogenous 
flavin green fluorescence (FLI-H) was measured through a filter BP 530/30 
run (43). Cytoplasmatic lipid content was determined by Nile red fluores- 
cence emission 530 (BP 530/30 nm) (16). Cell number was determined in 
the flow cytometer. The percentages of cells in G0/G1 and in S+G2+M 
phases of the cell cycle were determined after staining nuclei with 
propidium iodine by using the Cycle test DNA reagent kit (Becton- 
Dickinson), measured in a Double Discriminator Module and computer 
analyzed. 

(Iz~I)IGF-I Binding 
Quiescent monolayers (20 h serum-free) were incubated for 3 h at 20°C with 
0.03 nM (125I)IGF-I (80 pCi/~g) in binding buffer 25 mM Hepes-PBS con- 
raining 1 mg/ml BSA in the absence or presence of graded concentrations 
of unlabeled IGF-I. Triplicate dishes were used for all data point. At the 
end of the incubation, monolayers were rinsed three times with PBS-BSA 
and solubilized in 0.1 N NaOH-1% SDS-2% Na2CO3. Radioactivity was 
counted in a -/-Packard counter. Nonspecific binding was defined as radio- 
activity that remained bound in the presence of a 1,000-fold excess of unla- 
beled IGF-I. Scatchard plots and binding sites were calculated from three 
separate experiments, as described (33, 34). 

RNA Extraction and Analysis 
At the end of the culture time, cells were washed with ice-cold PBS and 
the monulayer was lysed directly with RNazol B (Biotecx Lab, Dallas, TX) 
after the protocol supplied by the manufacturer for total RNA isolation (10). 
For brown adipocyte primary cultures the yield was 7-23 ~g of RNA per 
60-ram tissue culture plates. Foly(A) + RNA was isolated by affinity chro- 
matography on oligo(dT)ceilulose columns (17). Oligo(dT)ceilulose (Col- 
laborative Research, Bedford, MA) was hydrated in DEPC-treated water, 
placed in a 10-ml polypropylene column (Econo-colunm, Bio-Rad Labs., 
Richmond, CA) and equilibrated in binding buffer (0.5 M NaCI, 10 mM 
Tris pH 7.5, 1 mM EDTA, 0.5 % SDS). Approximately 1 mg of total RNA 
suspended in 1 ml of binding buffer was heat denatured, applied to the 
column and washed with 10 ml of binding buffer. Poly(A) + RNA was then 
eluted by addition of elution buffer (10 mM Tris pH 7.5, 1 mM EDTA, 
0.05% SDS) and collected in 0.5-ml fractions. The fractions containing 
Poly(A) + RNA were then pooled and the mRNA was recovered by ethanol 
precipitation. 

Total cellular RNA (10-20 ~g) and Poly(A) + RNA (5-10 #g) were sub  
mired to No~.hern blot analysis, being electrophore,sed on 0.9% agarose 
gels containing 0.66 M formaldehyde, t ran~rred to GeneScrecffrM mem- 
branes (New England Nuclear Research Products, Boston, MA) using a 
VacuGene blotting apparatus (LKB, Pharmacia, Uppsala, Sweden) and 
cross-linked to the membranes by UV light. Hybridization was in 0.25 mM 
NaHPO4 pH 7.2, 0.25 M NaCI, 100 #g/ml denatured salmon sperm DNA, 
7% SDS and 50% deionized formamide, containing denatured 32P-labeled 
eDNA (106 cpm/ml) for 40 h at 42°C as described (3). eDNA-labeling was 
carried out with o?2p-dCTP to a specific activity of 109 cpm//tg of DNA 
by using a multiprimer DNA-labeling system kit (Amersham, Buckin~hanl- 
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shire, UK). For serial hybridization with different probes, the blots were 
stripped and rehybridized sequentially as needed in each case. Probes uti- 
lized included v-src (Oncor, Gaithersburg, MD) (41), v-fos (Oncor, Gai- 
thersburg, MD) (46), c-myc (Amer. Type Culture CoUection, RockviUe, 
MD) (2), v-tar (Oneor, Galthersburg, MD) (6), H-ras 0dndiy provided by 
E. Santos, Rethesda, MD) (24), B-actin (Oncor, Csaithersburg, MD) (11), 
UCP (7), ME (28), G6PD (21), IGF-IR (kindly provided try E. Hernandez, 
Baltimore, MD) (20). The resulting membranes were subject to autorediog- 
raphy for 1-3 d. Relative densities of the hybridization signals were deter- 
mined by densitomelric scanning of the autoradiograms in a laser densitom- 
eter (Molecular Dynamics, Sunnyvale, CA). 

Results 

Brown Adipocytes at Time 0 of Culture Are a 
Population of Cells of Broad Spectrum That Expressed 
Proliferation as Well as Differentiation Markers 
Brown adipocytes at time 0 of culture (as described in Ma- 
terials and Methods) were characterized by flow cytometry 
for size, endogenous fluorescence, cytoplasmatic lipid con- 
tent by Nile Red fluorescence, and cell cycle (Fig. 1). Cell 
size signals (FSC) gives a broad peak, indicating a popula- 

t~gure L Characterization of fetal brown adipocytes at time 0 of 
culture. Fetal brown adipocytes at time 0 of culture were character- 
ized by flow cytometry for size (FSC) (A), endogenous fluorescence 
(F/.2) (B), cytoplasmatic lipid content by Nile Red fluorescence 
(FL/) (C), and endogenous fluorescence vs size (D). Cell cycle 
analysis by propidium iodine staining of nuclei and flow cytometric 
analysis is shown in E. Poly(A) + RNA (10/~g) from brown adipo- 
cytes before cell culture was submitted to Northern blot analysis 
and hybridized with various labeled probes E Representative au- 
toradiograms are shown. 

tion of cells with a broad spectrum of size (Fig. 1 A). Endog- 
enous flavin green fluorescence (FL1) gives evidence of the 
metabolic steady state of living cells. Since brown adipo- 
cytes have a high number of mitochondria, the detection of 
this green fluorescence is possible when flavins are in the ox- 
idized state (43). The analysis of endogenous fluorescence 
gives a fairly sharp peak with a pronounced tail of low inten- 
sity, suggesting at least two populations of cells of high and 
low metabolic activities, respectively (Fig. 1 B), both with 
a broad size distribution, as indicated when endogenous 
fluorescence is represented versus size (Fig. 1 D). Nile Red 
fluorescence serves as a sensitive detector of cytoplasmic 
lipid droplets (16). Brown adipocytes, bearing multilocular 
fat droplets, analyzed for Nile Red fluorescence show a 
broad peak, indicating again a population of ceils of broad 
spectrum, with a high cytoplasmatic lipid content (Fig. 1 C). 
Thus, the estimation of cell size, endogenous fluorescence, 
and lipid content indicate that brown adipocytes before cul- 
ture behave as a population of cells of broad spectrum. 

Cell cycle analysis of brown adipocytes at time 0 of culture 
(Fig. 1 E) indicates that 85 % of cell are in G0/G1 phase of 
cycle and 15% of cell are in S+G2+M. So, since brown 
adipocytes before cell culture have a high amount of lipid 
content as well as an intrinsic mitogenic competence, we 
studied the expression of several genes related to differentia- 
tion and proliferation processes (Fig. 1 F). Thus, we checked 
in poly(A)+ RNA by Northern blot analysis the expression 
of the UCP mRNA, a specific gene of brown adipose tissue 
highly regulated during development (36), as well as ME, 
a lipogenic gene highly expressed in brown adipocytes (45). 
Brown adipocytes before culture expressed constitutively 
early response genes of cell proliferation such as c-fos, c-myc, 
and /~-actin mRNA (15). A high expression of IGF-IR 
mRNA (a 7-7.5-Kb isoform) was also found in brown adipo- 
cytes. 

Brown Adipocytes Bind IGF-I with High A~inity 
and Expressed a High Number of IGF-l-binding Sites 
Per Cell 

Quiescent brown adipocytes (20 h serum-starved) (as de- 
scribed in Materials and Methods) bind IGF-I with high 
affinity (Kd = 4.8 nM) as shown in the Scatchard plot (Fig. 
2 A). A high number of IGF-I binding sites (190.000 
sites/cell) was calculated from this plot. Growth of brown 
adipocytes (determined by [SH]thymidine incorporation 
into acid-insoluble material) was maximally stimulated by 
IGF-I at 1.4 riM, as observed in the dose-response curve 
depicted in Fig. 2 B. This concentration was used in further 
experiments described below. 

IGF-I Increased the Percentage of Cells in S, G2, and M 
Phases of the Cell Cycle, l~H]Thymidine Incorporation 
into Acid-Insoluble Material and Cell Number in Fetal 
Primary Brown Adipocytes at 72 h 

Brown adipocytes showed an intrinsic mitogenic competence 
at time 0 of culture (15% of cells in S+G2+M), as above- 
described from cell cycle analysis by flow cytometry (Fig. 
1 E). The maintenance of cells for 20 h in a serum-free 
medium, as described in Materials and Methods, produced 
an inhibition of this intrinsic mitogenic competence (<5 % 
of cells in S+G2+M). This time is the starting point for 
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Figure 2. Scatchard plot of IGF-I-binding sites (,4) and dose- 
response IGF-I effect on DNA-synthesis (B) for fetal brown adipo- 
cytes. (,4) Quiescent cells (20 h serum-starved) were incubated for 
3 h with (nsI)IGF-I in the absence or presence of graded concen- 
trations of unlabeled IGF-I for receptor binding analysis, as de- 
scribed in Materials and Methods. A representative experiment is 
shown. Kd and binding sites are means + SEM from three indepen- 
dent experiments. (B) Quiescent cells (20 h serum-starved) were 
cultured for 72 h in the presence of graded concentrations of IGF-I 
for [3H]thymidine incorporation into acid-insoluble material dur- 
ing the last 4 h of culture as described. Results are means -t- SEM 
(n = 4-6) and are expressed as percentage of the radioactivity in- 
corporated by untreated cells (100). 

mitogenic stimulation. Cell-cycle analysis after 24, 48, and 
72 h in the presence of IGF-I, or 10% FCS, or in untreated 
cells, is shown in Fig. 3 (lower panel). The percentage of 
fetal brown adipocytes in S + G 2 + M  was very low (4%), 
when cells were cultured in the absence of serum and growth 
factors for 48 or 72 h, as control of  cellular quiescence. 
IGF-I had a low effect on S + G 2 + M  when present for either 
24 or 48 h in the culture medium, respectively. However, af- 
ter 72 h in the presence of  IGF-I, a threefold increase in the 
percentage of ceils in S+G2 + M  phases of the cell-cycle oc- 
curred, as compared to untreated quiescent cells. The posi- 
tive control of  cellular proliferation showed that the culture 
of brown adipocytes with 10% FCS produced a low effect at 
24, and a threefold increase at 48 and 72 h in the percentage 
of ceils in S + G 2 + M  phases of the cell-cycle, respectively, 
as compared to untreated cells. 

[3H]Thymidine incorporation into acid-insoluble mate- 
rial in fetal brown adipocyte primary cultures at 24, 48, and 
72 h after the addition of  either IGF-I, or 10% FCS used as 
a positive control of  cell proliferation, or in the absence of  
serum and growth factors as negative control of  cell prolifer- 
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Figure 3. IGF-I increased [3H]thymidine incorporation into acid- 
insoluble material, cell number and percentage of fetal brown 
adipocytes in cell cycle at 72 h. Quiescent cells (20 h serum- 
starved) were cultured for 24, 48, and 72 h in the presence of IGF-I 
(1.4 nM) (I), or 10% FCS as positive control for cell proliferation 
([]), or in the absence of serum and growth factors as control for 
cellular quiescence ([]). ( Upper panel) [3H]Thymidine incorpora- 
tion into acid-insoluble material was measur~ in the last 4 h of cul- 
ture. Results are mean + SEM (n - 8-10) and are expressed as 
dpm/dish. (Central panel) Cell number was determined by flow 
cytometry at the indicated times of culture. Results are means -t- 
SEM (n = 4-6). (Lower panel) Cell-cycle study was performed af- 
ter propidium iodine staining of nuclei and flow cytometric analy- 
sis. Results are expressed as percentage of cells in S+G2+M 
phases of the cell cycle. 

ation (quiescent cells) is shown in Fig. 3 (upper panel). 
IGF-I slightly increased DNA synthesis at 24 and 48 h of 
treatment. However, at 72 h, IGF-I increased fourfold [3H]- 
thymidine incorporation as compared to quiescent cells. The 
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Figure 4. IGF-I induced nuclear labeling in fetal brown adipocytes. 
Quiescent cells (20 h serum-starved) were cultured for 48 h in the 
presence of IGF-I and [~H]thymidine, as described in Materials 
and Methods. The dishes were coated with Kodak AR 10 stripping 
film, exposed for 2 wk, and developed. (A and C) Phase-contrast 
microphotographs. (B and D) Light-field microphotographs. Bar, 
20 #m. 

presence of 10% FCS produced a fourfold increase in 
[3H]thymidine incorporation at 24, 48, and 72 h of treat- 
ment, compared to untreated quiescent ceils. 

The effect of IGF-I, or 10% FCS, or cells maintained un- 
treated, on the cell number determined by flow cytometry 
under the same experimental conditions seen above is shown 
in Fig. 3 (central panel). IGF-I gradually increased cell 
number throughout the time of culture, producing a twofold 
increase after 72 h of culture compared to untreated cells. 
10% FCS produced a similar effect at 48 h. 

Autoradiography of  [3HIThymidine-Labeled Nuclei 
Demonstrates That IGF-I Produced DNA Synthesis in 
Single Brown Adipocytes 

Besides incorporation of [3H]thymidine into acid-insoluble 
material for determination of DNA synthesis, the proportion 
of cells actually synthesizing DNA can be measured by au- 
toradiographic techniques (38). Quiescent brown adipocytes 
(20 h serum-starved) were incubated for 48 h with [3H]thy- 
midine in the absence or in the presence of IGF-I, or 10% 
FCS, for determination of the percentage of labeled nuclei 
after autoradiography, as described in Materials and 
Methods. In untreated cells, a 13.6 + 0.7 percent of nuclei 
were unlabeled, while the presence of IGF-I increased the 
percentage of labeled nuclei to 45.9 ± 0.8, and the positive 
control of cell growth (10% FCS) showed a 48.5 ± 2.0 per- 
cent of the labeled nuclei. Microphotographs of several au- 
toradiographic fields of brown adipocytes labeled nuclei cul- 

Figure 5. IGF-I induced the expression of c-los mRNA after 30 rain 
of stimulation in fetal brown adipocytes. Quiescent cells (20 h 
serum-starved) were stimulated for 30 rain with IGF-I (1.4 nM), or 
10% FCS, as compared to untreated cells (C). Poly(A) + RNA 
(5--10 #g) was submitted to Northern blot analysis and hybridized 
with various labeled probes. Representative autoradiograms are 
shown. 

tured for 48 h in the presence of IGF-I are shown in Fig. 4. 
These pictures illustrate that single fetal rat brown adipo- 
cytes, showing their typical multilocular fat droplets distri- 
bution, present positive and negative pH]thymidine labeled 
nuclei in the presence of IGF-I. 

IGF-I Induced the Expression o f  c-los mRNA after 30 
min of  Stimulation in Fetal Primary Brown Adipocytes 

Quiescent fetal brown adipocytes in culture (20 h serum- 
starved cells) were stimulated for 30 min with IGF-I, or 10% 
FCS, or maintained untreated. Poly(A) + RNA expression 
was analyzed by Northern blot as depicted in Fig. 5. After 
normalization of Poly(A) + RNA loaded by the amount of 
IGF-IR mRNA detected, as indicated below in the descrip- 
tion of Fig. 7, blot densitometric scanning results were ex- 
pressed as mRNA-fold increase compared to the expression 
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Table L Time Course of Gene Induction by IGF-I and 10% FCS: Densitometric Analysis 

0.5 2 4 6 8 

time (h) I F I F I F I F I F 

24 72 

I F I F 

fos 10 25 
myc 1.1 1.3 3.5 3 
H-ras 1 1 1.4 1 
raf 0.6 0.7 
src 1.2 0.9 
G6PD - 1 1 
~-actin 2 1.6 2.1 2 

. . . . . . .  1.3 3 
3 1.3 2 2.1 1.1 1.1 2.2 1.8 3 3 
3 0.8 1.8 1.3 1.3 1 3 1.9 6 4.2 
. . . . . .  23 28 
. . . . . . .  1 1 
1.6 0.5 1.4 0.7 1 0.5 4 1.2 20 10 
1.8 1 1.4 1.3 1 1.2 2 2.3 2.7 2.4 

Autoradiograms shown in Figs. 5 and 7 (from Poly A + RNA) were submitted to densitometry and normalized with the amount of IGF-IR mRNA detected. Au- 
toradiograms from Fig. 6 (total RNA) were submitted to densitornetry and normalized with the amount of 18S rRNA visualized by ethidinm bromide staining 
of blots, mRNA content induced by IGF-I or 10% FCS is expressed as fold increase relative to the expression detected in the untreated cell (1 arbitrary unit) 
at the various times of culture. 

detected in the control untreated cells (1 arbitrary unit) (Ta- 
ble I). The presence of  IGF-I for 30 rain produced a tenfold 
increase in los mRNA expression, the expression of  c-myc, 
H-ras, c-raf, c-src, and/3-actin mRNA remaining essentially 
unmodified. Concurrently, the presence of  10% FCS for 30 
min produced a 25-fold increase in fos mRNA expression, 
without changes in the mRNA expression of the other genes 
analyzed. 

IGF-I Induced the Expression of  c-myc, ~actin, H-ras, 
and G6PD mRNA throughout 24 h 

A 24 h time-course of IGF-I or 10 % FCS effect on mRNA 
expression of c-myc, ~actin,  H-ras, and G6PD was carried 
out in fetal primary brown adipocytes as compared to un- 
treated quiescent cells. Equal amounts of  total RNA were 
submitted to Northern blot analysis, as shown in Fig. 6. 
Northern blots were quantified by densitometric scanning 
analysis and normalized with the amount of 18S rRNA 
visualized by ethidium bromide staining of  blots (Table I). 
IGF-I increased the expression of c-myc mRNA at 2 h as 
compared to control cells (3.5-fold). After 2 h, however, the 
expression of c-myc progressively decreased, reaching at 8 h 
its lowest content found in the presence of IGF-I. After 24 h, 
a second peak of c-myc mRNA expression (2.2-fold) was 
found in the presence of  IGF-I. The expression of ~-actin 
mRNA by IGF-I showed a similar pattern throughout the 
time studied. IGF-I increased H-ras mRNA expression at 4 
and 24 h by threefold compared to the untreated cells. Con- 
versely, IGF-I increased G6PD at 24 h as compared to con- 
trol cells (Fig. 6, Table I). The presence of  10% FCS pro- 
duced similar results regarding the expression of  c-myc and 
/~-actin in fetal brown adipocytes primary cultures, as com- 
pared to control quiescent cells. However, 10% FCS failed 
to increase the expression of  H-ras mRNA at 4 and 24 h and 
the G6PD at 24 h, respectively (Fig. 6, Table I). 

IGF-1 Increased the Expression of H-ras, c-myc, 
~-actin, c-raf, and G6PD mRNA at 72 h 

Fetal brown adipocytes were cultured for 72 h in the pres- 
ence of  IGF-I, or 10% FCS, or maintained untreated, and 
poly(A) ÷ RNA was submitted to Northern blot analysis and 
serial hybridization for several genes studied, respectively 
(Fig. 7). Since most of  these genes are subject to changes in 
their expression levels related to proliferation and/or differ- 
entiation processes undergone in culture, Northern blots 

were normalized by the IGF-IR mRNA content found (Table 
I). In fact, although the expression of IGF-IR mRNA is 
highly regulated during development in the rat in a tissue- 
specific manner (48), and though its promoter has a number 
of  features suggesting potential regulatory elements (47), the 
expression of  IGF-IR mRNA remained unchanged in rat 
granulosa cells after 72 h in the presence of nM concentra- 
tions of  IGF-I (Hernandez, E.,  personal communication). 
Thus, IGF-I for 72 h increased threefold the expression of  
c-myc and/3-actin mRNA, sixfold the expression of H-ras 
mRNA, 23-fold the expression of raf mRNA and 20-fold the 
expression of  G6PD mRNA in fetal brown adipocytes in cul- 
ture, as compared to quiescent untreated cells (Fig. 7, Table 

Figure 6. IGF-I induced the expression of H-ras, c-myc, jff-actin, 
and G6PD mRNA. Quiescent cells (20 h serum-starved) were cul- 
tured for 2, 4, 6, 8, and 24 h in the presence of IGF-I (1.4 nM) (I), 
or 10% FCS (F), as compared to untreated cells (C). Total RNA 
(10 pg) was submitted to Northern blot analysis and hybridized with 
various labeled probes. Representative autoradiograms are shown 
as well as a photograph of Ethidium bromide staining of blots. 
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Figure 7. IGF-I increased the expression of H-ras, c-myc, B-actin, 
c-tar, and G6PD mRNA at 72 H. Quiescent cells (20 h serum- 
starved) were cultured for 72 h with IGF-I (1.4 riM) (I), or 10% 
FCS (F), as compared to untreated cells (C). Poly(A) + RNA 
(5-10 #g) was submitted to Northern blot analysis and hybridized 
with various labeled probes. Representative autoradiograms are 
shown. 

I). In the presence of 10% FCS for 72 h, the expression of 
c-fos mRNA remarkably increased by threefold as compared 
to IGF-I or untreated cells. However, the expression of 
c-myc, ~actin, G-6PD, H-ras, and c-raf increased in the pres- 
ence of 10% FCS in a similar fashion to that in the IGF-I, 
related to untreated cells (Fig. 7, Table I). Concurrently, the 
expression of specific differentiation genes, such as ME and 
UCP present in fetal brown adipocytes before culture (45) 
(Fig. 1), strongly decreased after 72 h of primary culture in 
the quiescent-untreated cells. In the presence of IGF-I or 
10% FCS, however, the expression of both genes was con- 
siderably higher than in the untreated cells after 72 h of cul- 
ture, although these results were not densitometrically quan- 
tiffed at this stage due to the necessary overexposure of the 
UCP mRNA expression (Fig. 7). 

IGF-I Increased the Expression of the Uncoupling 
Protein mRNA at 48 and 72 h 

A time-course at 24, 48, and 72 h was performed to study 
the effect of IGF-I, or 10% FCS, on the expression of the 
UCP mRNA in fetal brown adipocyte primary cultures as 
compared to untreated cells. Northern blot analysis of total 
RNA and its densitometric analysis using 18S rRNA for nor- 
realization are shown in Fig. 8. As described above, the ex- 
pression of UCP mRNA drastically decreased between 24 
and 48 h of culture in fetal brown adipocytes, remaining al- 
most undetectable at 72 h. The presence of 10% FCS at 48 
and 72 h maintained the UCP mRNA expression at almost 
the same level found at 24 h in the untreated cells. IGF-I, 
however, increased fivefold the UCP mRNA expression at 
48 h and tenfold at 72 h relative to their corresponding con- 
trol values. The latter increased, even though to a higher 
level than that found in the IGF-I treated or untreated cells 
at 24 h of culture (Fig. 8). 

Figure 8. IGF-I increased the expression of the uncoupling protein 
mRNA at 48 and 72 h. Quiescent cells (20 h serum-starved) were 
cultured for 24, 48, and 72 h in the presence of IGF-I (1.4 riM) 
(I), or 10% FCS ([]), as compared to untreated cells ([]). Total 
RNA (20 #g) was submitted to Northern blot analysis and hybrid- 
ized with UCP eDNA (upper panel) and 18S rRNA cDNA (central 
panel). Densitometric analysis of the autoradiograms, after nor- 
malization ofdensitometrie units with the amount of 18S rRNA de- 
tected, is shown in the lower panel. 

Discussion 

Our studies show that fetal rat brown adipocytes at time zero 
of culture constitute a population of cells of broad spectrum, 
as indicated by cell size, lipid content and endogenous 
fluorescence, presenting intrinsic mitogenic competence as 
revealed by the number of cells in S+G2+M phases of the 
cell cycle, and constitutively expressing growth-related genes 
and differentiation-related genes. In addition, fetal brown 
adipocytes present a high IGF-IR mRNA expression, high 
IGF-I-binding affinity, and a high number of IGF-I-binding 
sites per cell. After cell quiescence, our studies also show 
that IGF-I can behave as mitogen per se and mimic the effect 
of the fetal serum increasing the DNA synthesis, the percent- 
age of cells into the cell cycle, and the cell number. However, 
considering that IGF-I-stimulated proliferation lagged be- 
hind serum-stimulated growth by 24 h, the possibility cannot 
be ruled out that IGF-I may induce the expression of endoge- 
nously produced growth factors producing a conditioned 
medium. In addition, single cell analysis of [3H]thymidine- 
labeled nuclei revealed that some fetal brown adipocytes, 
showing their typical multilocular lipid droplets distribution, 
result positive to [3H]thymidine-labeled nuclei in response 
to IGF-I, suggesting that differentiated cells become prolifer- 
ative in culture in response to IGF-I. 

Moreover, IGF-I, in the absence of other exogenous growth 
factors present, induces in fetal brown adipocytes the expres- 
sion of early response genes such as c-fos, c-myc, and H-ras. 
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These genes are early induced by serum in mouse fibroblasts 
(15, 31). In a defined medium, PDGF ascertains the expres- 
sion of c-fos and c-myc but fails to increase the expression 
of H-ras, an absolute requirement for these cells to progress 
throughout the G1 to the S phase of the cell cycle, leading 
to the DNA synthesis (19, 31, 37). However, the presence of 
IGF-I increases the early expression of H-ras in G0-G1 tran- 
sition, and H-ras-encoded protein may then mediate the pro- 
gression of these cells from late G1 to S phase of the cell cy- 
cle (1, 27). In addition, in Balb/3T3 A31 cells the presence 
of EGF is also required for the commitment of these cells 
to DNA synthesis. While PDGF is required for the early ex- 
pression of c-myc and c-fos, and IGF-I for the early expres- 
sion of H-ras, only EGF is able to increase all three genes, 
c-myc and c-fos as an early cell-cycle event, and H-ras as a 
late cell cycle event (27). Although IGF-I may also increase 
early response genes in non-fibroblastic mammalian cells (5, 
18, 29, 32), no evidence is available regarding the implica- 
tion of IGF-I, as the only signal exogenously added, in the 
stimulation of c-fos, c-myc, and H-ras as an early event in 
these cells. Our results suggest the importance of the expres- 
sion of c-myc, c-fos, and H-ras as an early event for the IGF- 
I-stimulated DNA synthesis in non-fibroblastic mammalian 
cells (brown adipocytes), in the absence of other mitogenic 
signals exogenously added to the culture medium. 

In addition, IGF-I in fetal brown adipocytes produces a 
late response H-ras mRNA expression in parallel to the ex- 
pression of c-myc, fl-actin, and G6PD, suggesting the impor- 
tance of the expression of H-ras for the progression of these 
primary cells into the S phase from late G1 of the ceil-cycle, 
and for the DNA synthesis (26, 31). Although yet unknown, 
the early biochemical events associated with insulin receptor 
or IGF-IR upon the ligand binding, the overexpression of in- 
sulin receptors in NIH 3T3 ceils results in the activation of 
p21-ras to its GTP active form and the stimulation of the 
DNA synthesis in a ligand-dependent manner (8). Under our 
experimental conditions, we cannot rule out that, in our pri- 
mary brown cells, IGF-I might induce active ras-GTP com- 
plex, triggering as an early event the expression of c-fos, 
c-myc, and H-ras in G0-G1 transition of the cell cycle, and 
as a late event induces the expression of H-ras and newly 
encoded-ras protein, allowing ceils to progress into the S 
phase and DNA synthesis, as previously suggested (27). 

The present study also shows that IGF-I increases the ex- 
pression of c-raf in fetal brown adipocytes. The expression 
of this gene has been proposed as an early event occurring 
downstream ras activation, in the growth factors signaling 
transduction pathways involved in mouse fibroblasts prolifer- 
ation or transformation (9, 40, 49). Our results suggest the 
importance of the c-raf mRNA late expression in the IGF-I- 
induced signaling pathways involved in brown adipocytes 
proliferation. 

IGF-I increases proliferation and the expression of the 
malic enzyme mRNA at 72 h and UCP mRNA in a time- 
dependent manner in cultured fetal brown adipocytes. We 
have recently shown that insulin, or IGF-I, or the expression 
of transfected ras in the absence of insulin/IGF-I, produce 
3T3L1 mouse fibroblast differentiation into adipocytes (4). 
The effect of insulin/IGF-I on 3T3LI cells increases active 
ras-GTP complex (35). Accordingly, IGF-I signaling trans- 
duction pathways, mediating proliferation in fetal rat brown 
adipocytes, might be partly involved in the expression of 

differentiation-regulated genes, such as ME and UCP mRNA, 
the activation and/or the expression of ras being a common 
crucial intermediate. 

In conclusion, IGF-I behaves as mitogen per se, as the 
only growth factor exogenously added to cultured fetal rat 
brown adipocytes, stimulating DNA synthesis, and increas- 
ing the percentage of cells into S+G2+M phases of the cell- 
cycle and the cell number, to an extent similar to 10% FCS. 
In addition, single differentiated brown adipocytes, showing 
their typical multilocular fat droplets distribution, become 
positive for [3H]thymidine-labeled nuclei in response to 
IGF-I. Moreover, IGF-I increases c-fos, c-myc, and H-ras as 
an early regulatory event, and c-myc, H-ras, c-raf, and 
C-6PD as a late regulatory event, in the absence of other ex- 
ogenous mitogenlc signals. In addition, IGF-I increases the 
mRNA expression of the lipogenlc gene ME and the tissue- 
specific gene UCP. Our results suggest the involvement of 
IGF-I in the differentiation as well as in the proliferation 
processes in primary fetal brown adipocytes. 
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