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Abstract Across sensory systems, complex spatio-temporal patterns of neural activity arise

following the onset (ON) and offset (OFF) of stimuli. While ON responses have been widely

studied, the mechanisms generating OFF responses in cortical areas have so far not been fully

elucidated. We examine here the hypothesis that OFF responses are single-cell signatures of

recurrent interactions at the network level. To test this hypothesis, we performed population

analyses of two-photon calcium recordings in the auditory cortex of awake mice listening to

auditory stimuli, and compared them to linear single-cell and network models. While the single-cell

model explained some prominent features of the data, it could not capture the structure across

stimuli and trials. In contrast, the network model accounted for the low-dimensional organization of

population responses and their global structure across stimuli, where distinct stimuli activated

mostly orthogonal dimensions in the neural state-space.

Introduction
Neural responses within the sensory cortices are inherently transient. In the auditory cortex (AC)

even the simplest stimulus, for instance a pure tone, evokes neural responses that strongly vary in

time following the onset and offset of the stimulus. A number of past studies have reported a preva-

lence of ON- compared to OFF-responsive neurons in different auditory areas (Phillips et al., 2002;

Luo et al., 2008; Fu et al., 2010; Pollak and Bodenhamer, 1981). As a result, the transient onset

component has been long considered the dominant feature of auditory responses and has been

extensively studied across the auditory pathway (Liu et al., 2019b; Kuwada and Batra, 1999;

Grothe et al., 1992; Guo and Burkard, 2002; Yu et al., 2004; Heil, 1997a; Heil, 1997b), with

respect to its neurophysiological basis and perceptual meaning (Phillips et al., 2002). In parallel,

due to less evidence of OFF-responsive neurons in anaesthetized animals, OFF cortical responses

have received comparably less attention. Yet, OFF responses have been observed in awake animals

throughout the auditory pathway, and in the mouse AC they arise in 30–70% of the responsive neu-

rons (Scholl et al., 2010; Keller et al., 2018; Joachimsthaler et al., 2014; Liu et al., 2019a;

Sollini et al., 2018).

While the generation of ON responses has been attributed to neural mechanisms based on short-

term adaptation, most likely inherited from the auditory nerve fibers (Phillips et al., 2002;

Smith and Brachman, 1980; Smith and Brachman, 1982), the mechanisms that generate OFF

responses are more diverse and seem to be area-specific (Xu et al., 2014; Kopp-Scheinpflug et al.,

2018). In subcortical regions, neurons in the dorsal cochlear nucleus and in the superior paraolivary

nucleus of the brainstem nuclei may generate OFF responses by post-inhibitory rebound, a synaptic
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mechanism in which a neuron emits one or more spikes following the cessation of a prolonged

hyperpolarizing current (Suga, 1964; Hancock and Voigt, 1999; Kopp-Scheinpflug et al., 2011). In

the midbrain inferior colliculus and in the medial geniculate body of the thalamus, OFF responses

appear to be mediated by excitatory inputs from upstream areas and potentially boosted by a post-

inhibitory facilitation mechanism (Kasai et al., 2012; Vater et al., 1992; Yu et al., 2004; He, 2003).

Unlike in subcortical areas, OFF responses in AC do not appear to be driven by hyperpolarizing

inputs during the presentation of the stimulus, since synaptic inhibition has been found to be only

transient with respect to the stimulus duration (Qin et al., 2007; Scholl et al., 2010). The precise cel-

lular or network mechanisms underlying transient OFF responses in cortical areas therefore remain

to be fully elucidated.

Previous studies investigating the transient responses in the auditory system mostly adopted a

single-neuron perspective (Henry, 1985; Scholl et al., 2010; Qin et al., 2007; He, 2002;

Wang et al., 2005; Wang, 2007). However, in recent years, population approaches to neural data

have proven valuable for understanding the role of transients dynamics in various cortical areas

(Buonomano and Maass, 2009; Remington et al., 2018; Saxena and Cunningham, 2019). Work in

the olfactory system has shown that ON and OFF responses encode the stimulus identity in the

dynamical patterns of activity across the neural population (Mazor and Laurent, 2005;

Stopfer et al., 2003; Broome et al., 2006; Friedrich and Laurent, 2001; Saha et al., 2017). In

motor and premotor cortex, transient responses during movement execution form complex popula-

tion trajectories (Churchland and Shenoy, 2007; Churchland et al., 2010) that have been hypothe-

sized to be generated by a mechanism based on recurrent network dynamics (Shenoy et al., 2011;

Hennequin et al., 2014; Sussillo et al., 2015; Stroud et al., 2018). In the AC, previous works have

suggested a central role of the neural dynamics across large populations for the coding of different

auditory features (Deneux et al., 2016; Saha et al., 2017; Lim et al., 2016), yet how these dynamics

are generated remains an open question.

Leveraging the observation that the AC constitutes a network of neurons connected in a recurrent

fashion (Linden and Schreiner, 2003; Oswald and Reyes, 2008; Oswald et al., 2009; Barbour and

Callaway, 2008; Bizley et al., 2015), in this study we test the hypothesis that transient OFF

responses are generated by a recurrent network mechanism broadly analogous to the motor cortex

(Churchland et al., 2006; Hennequin et al., 2014). We first analyzed OFF responses evoked by mul-

tiple auditory stimuli in large neural populations recorded using calcium imaging in the mouse AC

(Deneux et al., 2016). These analyses identified three prominent features of the auditory cortical

data: (i) OFF responses correspond to transiently amplified trajectories of population activity; (ii) for

each stimulus, the corresponding trajectory explores a low-dimensional subspace; and (iii) responses

to different stimuli lie mostly in orthogonal subspaces. We then determined to what extent these

features can be accounted for by a linear single-cell or network model. We show that the single-cell

model can reproduce the first two features of population dynamics in response to individual stimuli,

but cannot capture the structure across stimuli and single trials. In contrast, the network model

accounts for all three features. Identifying the mechanisms responsible for these features led to addi-

tional predictions that we verified on the data.

Results

ON/OFF responses in AC reflect transiently amplified population
dynamics
We analyzed the population responses of 2343 cells from the AC of three awake mice recorded

using calcium imaging techniques (data from Deneux et al., 2016). The neurons were recorded

while the mice passively listened to randomized presentations of different auditory stimuli. In this

study we consider a total of 16 stimuli, consisting of two groups of intensity modulated UP- or

DOWN-ramping sounds. In each group, there were stimuli with different frequency content (either 8

kHz pure tones or white noise [WN] sounds), different durations (1 or 2 s) and different intensity

slopes (either 50–85 dB or 60–85 dB and reversed, see Table 1 and Materials and methods, Section

’The data set’).

We first illustrate the responses of single cells to the presentation of different auditory stimuli,

focusing on the periods following the onset and offset of the stimulus. The activity of individual
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neurons to different stimuli was highly heterogeneous. In response to a single stimulus, we found

individual neurons that were strongly active only during the onset of the stimulus (ON responses), or

only during the offset (OFF responses), while other neurons in the population responded to both

stimulus onset and offset, consistent with previous analyses (Deneux et al., 2016). Importantly,

across stimuli some neurons in the population exhibited ON and/or OFF responses only when spe-

cific stimuli were presented, showing stimulus-selectivity of transient responses, while others strongly

responded at the onset and/or at the offset of multiple stimuli (Figure 1A).

Because of the intrinsic heterogeneity of single-cell responses, we examined the structure of the

transient ON and OFF responses to different stimuli using a population approach (Buonomano and

Maass, 2009; Saxena and Cunningham, 2019). The temporal dynamics of the collective response

of all the neurons in the population can be represented as a sequence of states in a high-dimensional

state space, in which the i-th coordinate corresponds to the (baseline-subtracted) firing activity riðtÞ
of the i-th neuron in the population. At each time point, the population response is described by a

population activity vector rðtÞ which draws a neural trajectory in the state space (Figure 1B left

panel).

To quantify the strength of the population transient ON and OFF responses, we computed the

distance of the population activity vector from its baseline firing level (average firing rate before

stimulus presentation), corresponding to the norm of the population activity vector jjrðtÞjj
(Mazor and Laurent, 2005). This revealed that the distance from baseline computed during ON and

OFF responses was larger than the distance computed for the state at the end of stimulus presenta-

tion (Figure 1B right panel). We refer to this feature of the population transient dynamics as the

transient amplification of ON and OFF responses.

To examine what the transient amplification of ON and OFF responses implies in terms of stimu-

lus decoding, we trained a simple decoder to classify pairs of stimuli that differed in their frequency

content, but had the same intensity modulation and duration. We found that the classification accu-

racy was highest during the transient phases corresponding to ON and OFF responses, while it

decreased at the end of stimulus presentation (Figure 1C). This result revealed a robust encoding of

the stimulus features during ON and OFF responses, as previously found in the locust olfactory sys-

tem (Mazor and Laurent, 2005; Saha et al., 2017).

Table 1. Stimuli set.

Stimulus Direction Frequency Duration (s) Modulation (dB)

1 UP 8 kHz 1 s 50–85

2 UP 8 kHz 1 s 60–85

3 UP 8 kHz 2 s 50–85

4 UP 8 kHz 2 s 60–85

5 UP WN 1 s 50–85

6 UP WN 1 s 60–85

7 UP WN 2 s 50–85

8 UP WN 2 s 60–85

9 DOWN 8 kHz 1 s 85–50

10 DOWN 8 kHz 1 s 85–60

11 DOWN 8 kHz 2 s 85–50

12 DOWN 8 kHz 2 s 85–60

13 DOWN WN 1 s 85–50

14 DOWN WN 1 s 85–60

15 DOWN WN 2 s 85–50

16 DOWN WN 2 s 85–60
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OFF responses rely on orthogonal low-dimensional subspaces
To further explore the structure of the neural trajectories associated with the population OFF

responses to different stimuli, we analyzed neural activity using dimensionality reduction techniques

(Cunningham and Yu, 2014). We focused specifically on responses within the period starting 50 ms

before stimulus offset to 300 ms after stimulus offset.

By performing principal component analysis (PCA) independently for the responses to individual

stimuli, we found that the dynamics during the transient OFF responses to individual stimuli explored
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Figure 1. Strong transient ON and OFF responses in auditory cortex of mice passively listening to different sounds. (A) Top: deconvolved calcium

signals averaged over 20 trials showing the activity (estimated firing rate) of 20 out of 2343 neurons in response to a 8 kHz 1 s UP-ramp with intensity

range 60–85 dB. We selected neurons with high signal-to-noise ratios (ratio between the peak activity during ON/OFF responses and the standard

deviation of the activity before stimulus presentation). Neurons were ordered according to the difference between peak activity during ON and OFF

response epochs. Bottom: activity of the same neurons as in the top panel in response to a white noise (WN) sound with the same duration and

intensity profile. In all panels dashed lines indicate onset and offset of the stimulus, and green solid lines show the temporal region where OFF

responses were analyzed (from 50 ms before stimulus offset to 300 ms after stimulus offset). (B) Left: cartoon showing the OFF response to one stimulus

as a neural trajectory in the state space, where each coordinate represents the firing rate of one neuron (with respect to the baseline B). The length of

the dashed line represents the distance between the population activity vector and its baseline firing rate, that is, jjrðtÞjj. Right: the red trace shows the

distance from baseline jjrðtÞjj computed for the population response to the 8 kHz sound in A. The gray trace shows the distance from baseline

averaged over the 8 kHz sounds of 1 s duration (four stimuli). The gray shading represents ±1 standard deviation. The dashed horizontal line shows the

average level of the distance jjrðtÞjj before stimulus presentation (even if baseline-subtracted responses were used, a value of the norm different from

zero is expected because of noise in the spontaneous activity before stimulus onset). (C) Accuracy of stimulus classification between a 8 kHz versus WN

UP-ramping sounds over time based on single trials (20 trials). The decoder is computed at each time step (spaced by ~50 ms) and accuracy is

computed using leave-one-out cross-validation. Orange trace: average classification accuracy over the cross-validation folds. Orange shaded area

corresponds to ±1 standard error. The same process is repeated after shuffling stimulus labels across trials at each time step (chance level). Chance

level is represented by the gray trace and shading, corresponding to its average and ±1 std computed over time. The red markers on the top indicate

the time points where the average classification accuracy is lower than the average accuracy during the ON transient response (P<0:01, two-tailed

t-test).
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only about five dimensions, as 80% of the variance of the OFF responses to individual stimuli was

explained on average by the first five principal components (Figure 2A; see Figure 2—figure sup-

plement 1 for cross-validated controls; note that, given the temporal resolution, the maximal

dimensionality explaining 80% of the variance of the responses to individual stimuli was 9). The pro-

jection of the low-dimensional OFF responses to each stimulus onto the first two principal compo-

nents revealed circular activity patterns, where the population vector smoothly rotated between the

two dominant dimensions (Figure 2B).

A central observation revealed by the dimensionality reduction analysis was that the OFF

response trajectories relative to stimuli with different frequency content spanned orthogonal low-

dimensional subspaces. For instance, the response to the 8 kHz sound was poorly represented on
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Figure 2. Low-dimensional structure of population OFF responses. (A) Cumulative variance explained for OFF responses to individual stimuli, as a

function of the number of principal components. The blue trace shows the cumulative variance averaged across all 16 stimuli. Error bars are smaller

than the symbol size. The triangular marker indicates the number of PCs explaining 80% (red line) of the total response variance for individual stimuli.

(B) Left: projection of the population OFF response to the 8 kHz and white noise (WN) sounds on the first two principal components computed for the

OFF response to the 8 kHz sound. Right: projection of both responses onto the first two principal components computed for the OFF response to the

WN sound. PCA was performed on the period from �50 ms to 300 ms with respect to stimulus offset. We plot the response from 50 ms before stimulus

offset to the end of the trial duration. (C) Cumulative variance explained for the OFF responses to all 16 stimuli together as a function of the number of

principal components. The triangular marker indicates the number of PCs explaining 80% of the total response variance for all stimuli. (D) Overlap

between the subspaces defined by the first five principal components of the OFF responses corresponding to pairs of stimuli. The overlap is measured

by the cosine of the principal angle between these subspaces (see Materials and methods, Section ’Correlations between OFF response subspaces’).

(E) Left: correlation matrix between the initial population activity states r
ðsÞ
0

¼ rðsÞð0Þ at the end of stimulus presentation (50 ms before offset) for each

pair of stimuli. Right: linear correlation between subspace overlaps (D) and the overlap between initial states r
ðsÞ
0

(E left panel) for each stimulus pair.

The component of the dynamics along the corresponding initial states was subtracted before computing the subspace overlaps.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Controls for PCA of OFF responses to individual stimuli and across stimuli.

Figure supplement 2. Controls for the orthogonality between OFF response subspaces.

Figure supplement 3. Relation between ON and OFF responses in the auditory cortex.

Figure supplement 4. Overlap between the states at the peak of the transient OFF responses.
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the plane defined by the two principal components of the response to the WN sound (Figure 2B),

and vice versa, showing that they evolved in distinct subspaces. To quantify the relationship between

the subspaces spanned by the OFF responses to different stimuli, we proceeded as follows. We first

computed the first five principal components of the (baseline-subtracted) OFF response rðsÞðtÞ to

each individual stimulus s. Therefore, for each stimulus s these dimensions define a five-dimensional

subspace. Then, for each pair of stimuli, we computed the relative orientation of the corresponding

pair of subspaces, measured by the subspace overlap (Figure 2D; see Materials and methods, Sec-

tion ’Correlations between OFF response subspaces’).

This approach revealed an interesting structure between the OFF response subspaces for differ-

ent stimuli (Figure 2D and Figure 2—figure supplement 2). Stimuli with different frequency content

evoked in general non-overlapping OFF responses reflected in low values of the subspace overlap.

Two clusters of correlated OFF responses emerged, corresponding to the 8 kHz UP-ramps and WN

UP-ramps of different durations and intensity. Surprisingly, DOWN-ramps evoked OFF responses

that were less correlated than UP-ramps, even for sounds with the same frequency content.

The fact that most of the stimuli evoked non-overlapping OFF responses is reflected in the num-

ber of principal components that explain 80% of the variance for all OFF responses considered

together, which is around 60 (Figure 2C and Figure 2—figure supplement 1). This number is in fact

close to the number of dominant components of the joint response to all 16 stimuli (see Table 1)

that we would expect if the responses to individual stimuli evolved on uncorrelated subspaces (given

by #PC per stimulus � #stimuli » 80). Notably this implies that while the OFF responses to individual

stimuli span low-dimensional subspaces, the joint response across stimuli shows high-dimensional

structure.

We finally examined to what extent the structure observed between the OFF response trajecto-

ries rðsÞðtÞ to different stimuli (Figure 2D) could be predicted from the structure of the population

activity states reached at the end of stimulus presentation, corresponding to the initial states rðsÞð0Þ.
Remarkably, we found that the initial states exhibited structure across stimuli that matched well the

structure of OFF response dynamics (Figure 2E left panel and Figure 2—figure supplement 4),

even though the component along the initial states was substracted from the corresponding OFF

response trajectories (Figure 2E right panel and Figure 2—figure supplement 4). This suggests

that initial states contribute to determining the subsequent dynamics of the OFF responses.

Single-cell model for OFF responses
Our analyses of auditory cortical data identified three prominent features of population dynamics: (i)

OFF responses correspond to transiently amplified trajectories; (ii) responses to individual stimuli

explore low-dimensional subspaces; (iii) responses to different stimuli lie in largely orthogonal sub-

spaces. We next examined to what extent these three features could be accounted for by a single-

cell mechanisms for OFF response generation.

The AC is not the first stage where OFF responses arise. Robust OFF responses are found

throughout the auditory pathway, and in subcortical areas the generation of OFF responses most

likely relies on mechanisms that depend on the interaction between the inhibitory and excitatory syn-

aptic inputs to single cells (e.g. post-inhibitory rebound or facilitation, see Kopp-Scheinpflug et al.,

2018). To examine the possibility that OFF responses in AC are consistent with a similar single-cell

mechanism, we considered a simplified, linear model that could be directly fit to calcium recordings

in the AC. Adapting previously used models (Anderson and Linden, 2016; Meyer et al., 2016), we

assumed that the cells received no external input after stimulus offset, and that the response of neu-

ron i after stimulus offset is specified by a characteristic linear filter, which describes the cell’s intrin-

sic response generated by intracellular or synaptic mechanisms (Figure 3A). We moreover assumed

that the shape of this temporal response is set by intrinsic properties, and is therefore identical

across different stimuli. In the model, each stimulus modulates the response of a single neuron line-

arly depending on its activity at stimulus offset, so that the (baseline-subtracted) OFF response of

neuron i to stimulus s is written as:

r
ðsÞ
i ðtÞ ¼ r

ðsÞ
0;i LiðtÞ (1)

where r
ðsÞ
0;i is the modulation factor for neuron i and stimulus s. We estimated the single-cell
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Figure 3. Comparison between single-cell and network models for OFF response generation. (A) Cartoon illustrating the single-cell model defined in

Equation (1). The activity of each unit is described by a characteristic temporal response LiðtÞ (colored traces). Across stimuli, only the relative

activation of the single units changes, while the temporal shape of the responses of each unit LiðtÞ does not vary. (B) Distance from baseline of the

population activity vector during the OFF response to one example stimulus (red trace; same stimulus as in C left panel). The dashed vertical line

indicates the time of stimulus offset. Gray dashed lines correspond to the norms of the population activity vectors obtained from fitting the single-cell

Figure 3 continued on next page
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responses LiðtÞ from the data by fitting basis functions to the responses of neurons subject to prior

normalization by the modulation factors r
ðsÞ
0;i using linear regression (see Materials and methods, Sec-

tion ’Single-cell model for OFF response generation’). We first fitted the single-cell model to

responses to a single stimulus, and then increased the number of stimuli.

The single-cell model accounted well for the first two features observed in the data: (i) because

the single-cell responses LiðtÞ are in general non-monotonic, the distance from baseline of the popu-

lation activity vector displayed amplified dynamics (Figure 3B); (ii) at the population level, the trajec-

tories generated by the single-cell model spanned low-dimensional subspaces of at least two

dimensions (Figure 3C) and provided excellent fits to the trajectories in the data when the response

to a single stimulus was considered (Figure 3C). However, we found that the single-cell model could

not account for the structure of responses across multiple stimuli. Indeed, although fitting the model

to OFF responses to a single stimulus led to an excellent match with auditory cortical data (coeffi-

cient of determination R2 ¼ 0:75), increasing the number of simultaneously fitted stimuli led to

increasing deviations from the data (Figure 3B,C), and strongly decreased the goodness of fit

(Figure 3D). When fitting all stimuli at once, the goodness of fit was extremely poor (coefficient of

determination R2 ¼ 0:1), and therefore the single-cell model could not provide useful information

about the third feature of the data, the structure of subspaces spanned in response to different stim-

uli. A simple explanation for this inability to capture structure across stimuli is that in the single-cell

model the temporal shape of the response of each neuron is the same across all stimuli, while this

was not the case in the data (Figure 3E).

Figure 3 continued

model respectively to the OFF response to a single stimulus (dashed line), and simultaneously to the OFF responses to two stimuli (dash-dotted line; in

this example, the two fitted stimuli are the ones considered in panel C). In light gray we plot the norm of 100 realizations of the fitted OFF response by

simulating different initial states distributed in the vicinity of the fitted initial state (shown only for the simultaneous fit of two stimuli for clarity). Note

that in the single-cell model fit (see Materials and methods, Section ’Fitting the single-cell model’), the fitted initial condition can substantially deviate

from the initial condition taken from the data. (C) Colored traces: projection of the population OFF responses to two distinct example stimuli (same

stimuli as in Figure 2B) onto the first two principal components of either stimulus. As in panel B gray dashed and dash-dotted traces correspond to the

projection of the OFF responses obtained when fitting the single-cell model to one or two stimuli at once. (D) Goodness of fit (as quantified by

coefficient of determination R2) computed by fitting the single-cell model (blue trace) and the network model (red trace) to the calcium activity data, as

a function of the number of stimuli included in the fit. Both traces show the cross-validated value of the goodness of fit (10-fold cross-validation in the

time domain). Error bars represent the standard deviation over multiple subsamplings of a fixed number of stimuli (reported on the abscissa). Prior to

fitting, for each subsampling of stimuli, we reduced the dimensionality of the responses using PCA, and kept the dominant dimensions that accounted

for 90% of the variance. (E) Examples of the OFF responses to distinct stimuli of two different auditory cortical neurons (each panel corresponds to a

different neuron). The same neuron exhibits different temporal response profiles for different stimuli, a feature consistent with the network model (see

Figure 6A,D), but not with the single-cell model. (F) Illustration of the recurrent network model. The variables defining the state of the network are the

(baseline-subtracted) firing rates of the units, denoted by riðtÞ. The strength of the connection from unit j to unit i is denoted by Jij. (G) Distance from

baseline of the population activity vector during the OFF response to one example stimulus (red trace; same stimulus as in C left panel). Gray traces

correspond to the norms of the population activity vectors obtained from fitting the network model to the OFF response to a single stimulus and

generated using the fitted connectivity matrix. The initial conditions were chosen in a neighborhood of the population activity vector 50 ms before

sound offset. 100 traces corresponding to 100 random choices of the initial condition are shown. Dashed trace: average distance from baseline. (H)

Colored traces: projection of the population OFF responses to two different stimuli (same stimuli as in Figure 2B) on the first two principal

components. Gray traces: projections of multiple trajectories generated by the network model using the connectivity matrix fitted to the individual

stimuli as in G. The initial condition is indicated with a dot. 100 traces are shown. Dashed trace: projection of the average trajectory. (I) Left: overlap

between the subspaces corresponding to OFF response trajectories to pairs of stimuli (as in Figure 2D) generated using the connectivity matrix fitted

to all stimuli at once. Right: linear correlation between subspace overlaps and the overlaps between the initial states r
ðsÞ
0

for each stimulus pair

computed using the trajectories obtained by the fitted network model. The component of the dynamics along the corresponding initial states was

subtracted before computing the subspace overlaps.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Goodness of fit for the network and single-cell models adjusted for the number of parameters.

Figure supplement 2. Goodness of fit for the original and surrogate data sets.

Figure supplement 3. Goodness of fit as a function of PC dimensionality for original and surrogate data sets.
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Network model for OFF responses
We contrasted the single-cell model with a network model that generated OFF responses through

collective interactions between neurons. Specifically, we studied a linear network of N recurrently

coupled linear rate units with time evolution given by:

_ri ¼�riþ
X

N

j¼1

Jijrj: (2)

The quantity riðtÞ represents the deviation of the activity of the unit i from its baseline firing rate,

while Jij denotes the effective strength of the connection from neuron j to neuron i (Figure 3F). As in

the single-cell model, we assumed that the network received no external input after stimulus offset.

The only effect of the preceding stimulus was to set the initial pattern of activity of the network at

t¼ 0. The internal recurrent dynamics then fully determined the subsequent evolution of the activity.

Each stimulus s was thus represented by an initial state r
ðsÞ
0

that was mapped onto a trajectory of

activity rðsÞðtÞ. We focused on the dynamics of the network following stimulus offset, which we repre-

sent as t¼ 0.

To quantify to what extent recurrent interactions could account for auditory cortical dynamics, we

fitted the network model to OFF responses using linear regression (see Materials and methods, Sec-

tion ’Fitting the network model’). For each stimulus, the pattern of initial activity r
ðsÞ
0

was taken from

the data, and the connectivity matrix J was fitted to the responses to a progressively increasing num-

ber of stimuli.

Qualitatively, we found that the fitted network model reproduced well the first two features of

the data, transient amplification and low-dimensional population trajectories (Figure 3G,H). Quanti-

tatively, we evaluated the goodness of fit by computing the coefficient of determination R2. While

the goodness of fit of the network model was lower than the single-cell model when fitting the

response to a single stimulus (R2 ¼ 0:52), for the network model the goodness of fit remained consis-

tently high as the number of simultaneously fitted stimuli was increased (Figure 3D, R2 ¼ 0:52 when

fitted on the responses to all stimuli). Computing the goodness of fit by taking into account the num-

ber of parameters of the network and single-cell models led to the same conclusion (Figure 3—fig-

ure supplement 1). When fitted to all stimuli at once, the fitted network model captured the

structure of the subspace overlaps (Figure 3I left panel) and its correlation with the structure of ini-

tial conditions (Figure 3I right panel). In contrast to the single-cell model, the network model there-

fore accounted well for the third feature of the data, the structure of responses across stimuli. This

can be explained by the fact that, in the network model, the temporal OFF-responses of single cells

can in general differ across stimuli (see Figure 6A,D), similar to the activity in the AC (Figure 3E).

Testing the network mechanisms of OFF responses on the data
Having found that the fitted network model reproduced the three main features of the data, we

next analyzed this model to identify the mechanisms responsible for each feature. The identified

mechanisms provided new predictions that we tested on the effective connectivity matrix J obtained

from the fit to the data.

Transiently amplified OFF responses
The first feature of the data was that the dynamics were transiently amplified, i.e. the OFF responses

first deviated from baseline before eventually converging to it. A preliminary requirement to repro-

duce this feature is that dynamics are stable, that is, eventually decay to baseline following any initial

state. This requirement leads to the usual condition that the eigenvalues of the connectivity matrix J

have real parts less than unity. Provided this basic requirement is met, during the transient dynamics

from the initial state at stimulus offset, the distance from baseline can either monotonically decrease,

or transiently increase before eventually decreasing. To generate the transient increase, the connec-

tivity matrix needs to belong to the class of non-normal matrices (Trefethen and Embree, 2005;

Murphy and Miller, 2009; Goldman, 2009; Hennequin et al., 2012; see Materials and methods,

Section ’Normal and non-normal connectivity matrices’), but this is not a sufficient condition. More

specifically, the largest eigenvalue of the symmetric part defined by JS ¼ ðJþ JTÞ=2 needs to be

larger than unity, while the initial state r0 needs to belong to a subset of amplified patterns
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(Bondanelli and Ostojic, 2020; see Materials and methods, Section ’Sufficient condition for ampli-

fied OFF responses’).

To test the predictions derived from the condition for amplified transient responses, that is, that

J belongs to a specific subset of non-normal matrices, we examined the spectra of the full connectiv-

ity J and of its symmetric part JS (Bondanelli and Ostojic, 2020). The eigenvalues of the fitted con-

nectivity matrix had real parts smaller than one, indicating stable dynamics, and large imaginary

parts (Figure 4A). Our theoretical criterion predicted that for OFF responses to be amplified, the

spectrum of the symmetric part JS must have at least one eigenvalue larger than unity. Consistent

with this predictions, we found that the symmetric part of the connectivity had indeed a large num-

ber of eigenvalues larger than one (Figure 4B) and could therefore produce amplified responses

(Figure 3G).

Low-dimensionality of OFF response trajectories
The second feature of auditory cortical data was that each stimulus generated a population response

embedded in an approximately five-dimensional subspace of the full state space. We hypothesized

that low-dimensional responses in the fitted network model originated from a low-rank structure in

the connectivity (Mastrogiuseppe and Ostojic, 2018), implying that the connectivity matrix could

be approximated in terms of R � N modes, that is, as

J¼ uð1Þvð1ÞT þuð2Þvð2ÞT þ :::þuðRÞvðRÞT ; (3)

where each mode was specified by two N-dimensional vectors uðrÞ and vðrÞ, which we term the right

and left connectivity patterns respectively (Mastrogiuseppe and Ostojic, 2018). This set of connec-

tivity patterns is uniquely defined from the singular value decomposition (SVD) of the connectivity

matrix J (see Materials and methods, Section ’Low-dimensional dynamics’).

To test the low-rank hypothesis, we re-fitted the network model while constraining the rank of

connectivity matrix (Figure 5A, Figure 5—figure supplement 1, Figure 5—figure supplement 2;
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Figure 4. Spectra of the connectivity matrix of the fitted network model. (A) Eigenvalues of the connectivity matrix

J obtained by fitting the network model to the population OFF responses to all 1 s stimuli at once. The dashed

line marks the stability boundary given by RelðJÞ ¼ 1. (B) Probability density distribution of the eigenvalues of the

symmetric part of the effective connectivity, JS. Eigenvalues larger than unity (lðJSÞ ¼ 1; highlighted in blue)

determine strongly non-normal dynamics. In A and B the total dimensionality of the responses was set to 100. The

fitting was performed on 20 bootstrap subsamplings (with replacement) of 80% of neurons out of the total

population. Each bootstrap subsampling resulted in a set of 100 eigenvalues. In panel A we plotted the

eigenvalues of J obtained across all subsamplings. In panel B the thin black lines indicate the standard deviation

of the eigenvalue probability density across subsamplings. In panels A and B, the temporal window considered for

the fit was extended from 350 ms to 600 ms, to include the decay to zero baseline of the OFF responses. The

extension of the temporal window was possible only for the 1 s long stimuli (n=8), since the length of the temporal

window following stimulus offset for the 2 s stimuli was limited by the length of the neural recordings.
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Figure 5. Low-dimensional structure of the dynamics of OFF responses to individual stimuli. (A) Goodness of fit (coefficient of determination) as a

function of the rank R of the fitted network, normalized by the goodness of fit computed using ordinary least squares ridge regression. The shaded

area represents the standard deviation across individual stimuli. For R ¼ 6 reduced-rank regression captures more than 80% (red solid line) of the

variance explained by ordinary least squares regression. (B) Left: overlap matrix Jov consisting of the overlaps between left and right connectivity

patterns of the connectivity J fitted on one example stimulus. The color code shows strong (and opposite in sign) correlation values between left and

right connectivity patterns within pairs of nearby modes. Weak coupling is instead present between different rank-2 channels (highlighted by dark

boxes). Right: histogram of the absolute values of the correlation between right and left connectivity patterns, across all stimuli, and across 20 random

subsamplings of 80% of the neurons in the population for each stimulus. Left and right connectivity vectors are weakly correlated, except for the pairs

corresponding to the off-diagonal couplings within each rank-2 channel. The two markers indicate the average values of the correlations within each

group. When fitting individual stimuli the rank parameter R and the number of principal components are set respectively to 6 and 100. (C) Left: absolute

value of the difference between D1 and D2 (see panel B) divided by 2, across stimuli. For a rank-R channel (here R ¼ 6) comprising R=2 rank-2 channels,

the maximum difference jD1 � D2j=2 across the R=2 rank-2 channels is considered. Large values of this difference indicate that the dynamics of the

corresponding rank-R channel are amplified. Right: component of the initial state r0 on the left connectivity vectors vð2;kÞ, (i.e. ðPk a
ðkÞ 2
2

Þ1=2 in
Equation (75)), obtained from the fitted connectivity J to individual stimuli (in green). The component of the initial condition along the left connectivity

vectors vð2;kÞ (green box) is larger than the component of random vectors along the same vectors (gray box). In both panels the boxplots show the

distributions across all stimuli of the corresponding average values over 20 random subsamplings of 80% of the neurons. The rank parameter and the

number of principal components are the same as in B. (D) For each stimulus, we show the correlation between the state at the end of stimulus

presentation and the state at the peak of the OFF response, defined as the time of maximum distance from baseline. Error bars represent the standard

deviation computed over 2000 bootstrap subsamplings of 50% of the neurons in the population (2343 neurons). (E) Correlation between initial state and

peak state obtained from fitting the single-cell (in green) and network models (in red) to a progressively increasing number of stimuli. For each fitted

response the peak state is defined as the population vector at the time of maximum distance from baseline of the original response. The colored

shaded areas correspond to the standard error over 100 subsamplings of a fixed number of stimuli (reported on the abscissa) out of 16 stimuli. For each

subsampling of stimuli, the correlation is computed for one random stimulus.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Selection of hyperparameters in rank-reduced ridge regression.

Figure supplement 2. Model recovery for simulated OFF responses using a low-rank network model.

Figure supplement 3. Controls for the orthogonality between initial and peak state.
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see Materials and methods, Section ’Fitting the network model’). Progressively increasing the rank

R, we found that R ¼ 6 was sufficient to capture more than 80% of the variance explained by the net-

work model when fitting the responses to individual stimuli (Figure 5A).

The dynamics in the obtained low-rank network model are therefore fully specified by a set of

patterns over the neural population: patterns corresponding to initial states r0 determined by the

stimuli, and patterns corresponding to connectivity vectors uðrÞ and vðrÞ for r ¼ 1; . . . ;R that deter-

mine the network dynamics. Recurrent neural networks based on such connectivity directly generate

low-dimensional dynamics: for a given stimulus s the trajectory of the dynamics lies in the subspace

spanned by the initial state r
ðsÞ
0

and the set of right connectivity patterns fuðrÞgr¼1;...;R

(Mastrogiuseppe and Ostojic, 2018; Bondanelli and Ostojic, 2020; Schuessler et al., 2020;

Beiran et al., 2020). More specifically, the transient dynamics can be written as (see Materials and

methods, Section ’Low-dimensional dynamics’)

rðtÞ ¼ e�t r0 þ e�tUJov
�1 exp tðJov� IÞð Þ½ � VTr0

� �

; (4)

where U and V are N�R matrices that contain respectively the R right and left connectivity vectors

as columns, and Jov is the R�R matrix of overlaps Jovkl ¼ vðkÞTuðlÞ between left and right connectivity

vectors. This overlap matrix therefore fully determines the dynamics in the network (see Materials

and methods, Section ’Low-dimensional dynamics’).

Inspecting the overlap matrix Jov obtained from the fitted connectivity matrix revealed a clear

structure, where left and right vectors were strongly correlated within pairs, but uncorrelated

between different pairs (Figure 5B left panel). This structure effectively defined a series of R=2 rank-

2 channels that were orthogonal to each other. Within individual rank-2 channels, strong correlations

were observed only across the two modes (e.g. between vð1Þ and uð2Þ, vð2Þ and uð1Þ, etc.; Figure 5B),

so that the connectivity matrix corresponding to each rank-2 channel can be written as

J2 ¼ D1v
ð2Þvð1ÞT �D2v

ð1Þvð2ÞT ; (5)

where D1 and D2 are two scalar values. Rank-2 matrices of this type have purely imaginary eigenval-

ues given by �i
ffiffiffiffiffiffiffiffiffiffi

D1D2

p
, reflecting the strong imaginary components in the eigenspectrum of the full

matrix (Figure 4A). These imaginary eigenvalues lead to strongly rotational dynamics in the plane

defined by vð1Þ and vð2Þ (Figure 6C; see Materials and methods, Section ’Dynamics of a low-rank

rotational channel’), qualitatively similar to the low-dimensional dynamics in the data (Figure 2B).

Such rotational dynamics however do not necessarily imply transient amplification. In fact, a rank-2

connectivity matrix as in Equation (5) generates amplified dynamics only if two conditions are satis-

fied (Figure 6B; see Materials and methods, Section ’Dynamics of a low-rank rotational channel’): (i)

the difference jD2�D1 j=2 is greater than unity; (ii) the initial state r0 overlaps strongly with the left

connectivity patterns vðrÞ. A direct consequence of these constraints is that when dynamics are tran-

siently amplified, the population activity vector at the peak of the transient dynamics lies along a

direction that is largely orthogonal to the initial state at stimulus offset (Figure 6C,E, see Materials

and methods, Section ’Correlation between initial and peak state’).

The theoretical analyses of the model therefore provide a new set of predictions that we directly

tested on the connectivity fitted to the data. We first computed the differences jD2 � D1j=2 for each

channel using the SVD of the fitted matrix JðsÞ, and found that they were sufficiently large to amplify

the dynamics within each rank-R channel (Figure 5C left panel). We next examined for each stimulus

the component of the initial state r0 on the vðrÞ’s and found that it was significantly larger than the

component on the vðrÞ’s of a random vector, across all stimuli (Figure 5C right panel). Finally, com-

puting the correlation between the peak state and the initial state at the end of stimulus presenta-

tion, we found that this correlation took values lower than values predicted by chance for almost all

stimuli, consistent with the prediction of the network model (Figure 5D, Figure 5—figure supple-

ment 3). The single-cell model instead predicts stronger correlations between initial and peak states,

in clear conflict with the data (Figure 5E).
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Orthogonal OFF response trajectories across stimuli
The third feature observed in the data was that population responses evoked by different stimuli

were orthogonal for many of the considered stimuli. Orthogonal trajectories for different stimuli can

be reproduced in the model under the conditions that (i) initial patterns of activity corresponding to

different stimuli are orthogonal, (ii) the connectivity matrix is partitioned into a set of orthogonal

low-rank terms, each individually leading to transiently amplified dynamics, and (iii) each stimulus

activates one of the low-rank terms. Altogether, for P stimuli leading to orthogonal responses, the

connectivity matrix can be partitioned in P different groups of modes:
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Figure 6. Population OFF responses in a network model with low-rank rotational structure. (A) Single-unit OFF responses to two distinct stimuli

generated by orthogonal rank-2 rotational channels (see Materials and methods, Section ’Dynamics of a low-rank rotational channel’). The two stimuli

were modeled as two different activity states r
ð1Þ
0

and r
ð2Þ
0

at the end of stimulus presentation (t ¼ 0). We simulated a network of 1000 units. The

connectivity consisted of the sum of P ¼ 20 rank-2 rotational channels of the form given by Equation (5, 6) (R1 ¼ R2 ¼ ::: ¼ RP ¼ 2 in Equation (6) and

D1 ¼ jjuð1;sÞjj ¼ 1, D2 ¼ jjuð2;sÞjj ¼ 7 for all s ¼ 1; :::;P). Here the two stimuli were chosen along two orthogonal vectors vð2;s¼1Þ and vð2;s¼2Þ. Dashed lines

indicate the time of stimulus offset. (B) Distance from baseline of the population activity vector during the OFF responses to the two stimuli in A. For

each stimulus, the amplitude of the offset responses (quantified by the peak value of the distance from baseline) is controlled by the difference

between the lengths of the right connectivity vectors of each rank-2 channel, that is, jD2 � D1 j=2. (C) Projection of the population OFF responses to the

two stimuli onto the first two principal components of either stimuli. The projections of the vectors vð2;s¼1Þ and �vð1;s¼1Þ (resp. vð2;s¼2Þ and �vð1;s¼2Þ) on

the subspace defined by the first two principal components of stimulus 1 (resp. 2) are shown respectively as solid and dashed arrows. The subspaces

defined by the vector pairs ðvð1;s¼1Þ,vð2;s¼1ÞÞ and ðvð1;s¼2Þ,vð2;s¼2ÞÞ are mutually orthogonal, so that the OFF responses to stimuli 1 and 2 evolve in

orthogonal dimensions. (D) Firing rate of one example neuron in response to two distinct stimuli: in the recurrent network model the time course of the

activity of one unit is not necessarily the same across stimuli. (E) Correlation between the initial state (i.e. the state at the end of stimulus presentation)

and the state at the peak of the OFF responses, for five example stimuli. Error bars represent the standard deviation computed over 100 bootstrap

subsamplings of 50% of the units in the population.
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J¼
X

P

s¼1

JðsÞ; (6)

with

JðsÞ ¼
X

Rs

r¼1

uðr;sÞvðr;sÞT ; (7)

where the vectors vðr;sÞ have unit norm. The set of modes indexed by s correspond to the s-th stimu-

lus, so that the pattern of initial activity r
ðsÞ
0

evoked by stimulus s overlaps only with those modes.

Moreover, modes corresponding to different groups are orthogonal, and generate dynamics that

span orthogonal subspaces (Figure 2D). Each term in Equation (6) can therefore be interpreted as

an independent transient coding channel that can be determined from the OFF-response to stimulus

s alone.

We therefore examined whether the fitted connectivity J consisted of independent low-rank cod-

ing channels (Equation (6)), a constraint that would generate orthogonal responses to different stim-

uli as observed in the data. If J consisted of fully independent channels as postulated in

Equation (6), then it could be equivalently estimated by fitting the recurrent model to the OFF

responses to each stimulus s independently, leading to one matrix JðsÞ for each stimulus. The hypoth-

esis of fully independent channels then implies that (i) the connectivity vectors for the different con-

nectivity matrices are mutually orthogonal, (ii) the full connectivity matrix can be reconstructed by

summing the matrices JðsÞ estimated for individual stimuli. To test these two predictions, we esti-

mated the connectivity matrices JðsÞ (the rank parameter for each stimulus was set to R ¼ 5). We then

computed the overlaps between the connectivity vectors corresponding to different pairs of stimuli

(see Materials and methods, Section ’Analysis of the transient channels’) and compared them to the

overlaps between the subspaces spanned in response to the same pairs of stimuli (see Figure 2D).

We found a close match between the two quantities (Figure 7A,B): pairs of stimuli with strong sub-

space overlaps corresponded to high connectivity overlaps, and pairs of stimuli with low subspace

overlaps corresponded to low connectivity overlaps. This indicated that some of the stimuli, but not
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Figure 7. Structure of the transient channels across stimuli. (A) Overlaps between the transient channels corresponding to individual stimuli

(connectivity overlaps), as quantified by the overlap between the right connectivity vectors uðr;sÞ of the connectivities JðsÞ fitted to each individual

stimulus s (see Materials and methods, Section ’Analysis of the transient channels’). The ridge and rank parameters, and the number of principal

components have been respectively set to l ¼ 5, R ¼ 5 and #PC ¼ 100 (the choice of R ¼ 5 maximized the coefficient of determination between the

connectivity overlaps, A, and the subspace overlaps, Figure 2D). (B) Scatterplot showing the relationship between the subspace overlaps (see

Figure 2D) and connectivity overlaps (panel A) for each pair of stimuli. (C) Goodness of fit computed by predicting the population OFF responses using

the connectivity JFull (Full) or the connectivity given by the sum of the individual channels JSum (Sum). These values are compared with the goodness of

fit obtained by shuffling the elements of the matrix JSum (Shuffle). Box-and-whisker plots show the distributions of the goodness of fit computed for

each cross-validation partition (10-fold). For JFull the ridge and rank parameters, and the number of principal components were set to l ¼ 2, R ¼ 70 and

#PC ¼ 100 (Figure 5—figure supplement 1).
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all, corresponded to orthogonal coding channels. We further reconstructed the OFF responses using

the matrix JSum ¼Ps J
ðsÞ. We then compared the goodness of fit computed using the matrices JSum,

JFull and multiple controls where the elements of the matrix JSum were randomly shuffled. While the

fraction of variance explained when using the matrix JSum was necessarily lower than the one com-

puted using JFull, the model with connectivity JSum yielded values of the goodness of fit significantly

higher than the ones obtained from the shuffles (Figure 7C). These results together indicated that

the full matrix JFull can indeed be approximated by the sum of the low-rank channels represented by

the JðsÞ.

Amplification of single-trial fluctuations
So far we examined the activity obtained by averaging for each neuron the response to the same

stimulus over multiple trials. We next turned to trial-to-trial variability of simultaneously recorded

neurons and compared the structure of the variability in the data with the network and single-cell

models. Specifically, we examined the variance of the activity along a direction z0 of state-space

(Figure 8A; Hennequin et al., 2012), defined as:

varðz0; tÞ ¼ h zT
0
rðtÞ� zT

0
hrðtÞi

� �2i; (8)

where h�i denotes the averaging across trials. We compared the variance along the direction rampl

corresponding to the maximum amplification (distance from baseline) of the trial-averaged dynamics

with variance along a random direction rrand.

Inspecting the variability during the OFF-responses in the AC data revealed two prominent fea-

tures: (i) fluctuations across trials are amplified along the same direction rampl of state-space as trial-

averaged dynamics, but not along random directions (Figure 8B,C,D); (ii) cancelling cross-correla-

tions by shuffling trial labels independently for each cell strongly reduces the amplification of the var-

iance (Figure 8C,D). This second feature demonstrates that the amplification of variance is due to

noise-correlations across neurons that have been previously reported in the AC (Rothschild et al.,

2010). Indeed the variance along a direction z0 at time t can be expressed as

varðz0; tÞ ¼ zT
0
CðtÞz0; (9)

where CðtÞ represents the covariance matrix of the population activity at time t. Shuffling trial labels

independently for each cell effectively cancels the off-diagonal elements of the covariance matrix

and leaves only the diagonal elements that correspond to single-neuron variances. The comparison

between simultaneous and shuffled data (Figure 8C,D) demonstrates that an increase in single-neu-

ron variance is not sufficient to explain the total increase in variance along the amplified direction

rampl.

Simulations of the fitted models and a mathematical analysis show that the network model repro-

duces both features of trial-to-trial variability observed in the data (Figure 8E,F), based on a minimal

assumption that variability originates from independent noise in the initial condition at stimulus off-

set (see Materials and methods, Section ’Structure of single-trial responses in the network model’).

Surprisingly, the single-cell model also reproduces the first feature, the amplification of fluctuations

along the same direction of state-spate as trial-averaged dynamics, although in that model the dif-

ferent neurons are not coupled and noise-correlations are absent (Figure 8G,H). Instead, the single-

cell model fails to capture the second feature, as it produces amplified variability in both simulta-

neous and shuffled activity. This demonstrates that the amplification of variability in the single-cell

model is due to an amplification of single-cell variances, that is, the diagonal elements of covariance

matrix (see Materials and methods, Section ’Structure of single-trial responses in the single-cell

model’). Somewhat counter-intuitively, the disagreement between the single-cell model and the

data is not directly due to the lack of noise-correlations in that model, but due to the fact that the

single-cell model does not predict accurately the variance of single-neuron activity during the OFF-

responses, and therefore fails to capture variance in shuffled activity.

In summary, the network model accounts better than the single-cell model for the structure of sin-

gle-trial fluctuations present in the AC data.
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Figure 8. Structure of trial-to-trial variability generated by the network and single-cell models, compared to the auditory cortical data. (A) Cartoon

illustrating the structure of single-trial population responses along different directions in the state-space. The thick and thin blue lines represent

respectively the trial-averaged and single-trial responses. Single-trial responses start in the vicinity of the trial-averaged activity r0. Both the network and

single-cell mechanisms dynamically shape the structure of the single-trial responses, here represented as graded blue ellipses. The red and black lines

represent respectively the amplified and random directions considered in the analyses. (B) Time course of the variability computed along the amplified

direction (solid trace) and along a random direction (dashed trace) for one example stimulus and one example session (287 simultaneously recorded

neurons). In this and all the subsequent panels the amplified direction is defined as the population activity vector at the time when the norm of the trial-

averaged activity of the pseudo-population pooled over sessions and animals reaches its maximum value (thick dashed line). Thin dashed lines denote

stimulus offset. Shaded areas correspond to the standard deviation computed over 20 bootstrap subsamplings of 19 trials out of 20. (C, E, and G)

Variability amplification (VA) computed for the amplified and random directions on the calcium activity data (panel C), on trajectories generated using

the network model (panel E) and the single-cell model (panel G); (see Materials and methods, Section ’Single-trial analysis of population OFF

responses’), for one example stimulus (same as in B). The network and single-cell models were first fitted to the trial-averaged responses to individual

stimuli, independently across all recordings sessions (13 sessions, 180 ± 72 neurons). 100 single-trial responses were then generated by simulating the

fitted models on 100 initial conditions drawn from a random distribution with mean r0 and covariance matrix equal to the covariance matrix computed

from the single-trial initial states of the original responses (across neurons for the single-cell model, across PC dimensions for the recurrent model).

Results did not change by drawing the initial conditions from a distribution with mean r0 and isotropic covariance matrix (i.e. proportional to the

identity matrix, as assumed for the theoretical analysis in Materials and methods, Section ’Single-trial analysis of population OFF responses’). In the

three panels, the values of VA were computed over 50 subsamplings of 90% of the cells (or PC dimensions for the recurrent model) and 50 shuffles.

Error bars represent the standard deviation over multiple subsamplings, after averaging over all sessions and shuffles. Significance levels were

evaluated by first computing the difference in VA between amplified and random directions (DVA) and then computing the p-value on the difference

between DVAðRealÞ and DVAðShufflesÞ across subsamplings (two-sided independent t-test). For the network model, the VA is higher for the amplified

direction than for a random direction, and this effect is significantly stronger for the real than for the shuffled responses. Instead, for the single-cell

model the values of the VA computed on the real responses are not significantly different from the ones computed on the shuffled responses. (D, F,

Figure 8 continued on next page
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Discussion
Adopting a population approach, we showed that strong OFF responses observed in auditory corti-

cal neurons form transiently amplified trajectories that encode individual stimuli within low-dimen-

sional subspaces. A geometrical analysis revealed a clear structure in the relative orientation of these

subspaces, where subspaces corresponding to different auditory stimuli were largely orthogonal to

each other. We found that a simple, linear single-neuron model captures well the average response

to individual stimuli, but not the structure across stimuli and across individual trials. In contrast, we

showed that a simple, linear recurrent network model accounts for all the properties of the popula-

tion OFF responses, notably their global structure across multiple stimuli and the fluctuations across

single trials. Our results therefore argue for a potential role of network interactions in shaping OFF

responses in AC. Ultimately, future work could combine both single-cell and network mechanisms in

a network model with more complex intrinsic properties of individual neurons (Beiran and Ostojic,

2019; Muscinelli et al., 2019).

In this study, we focused specifically on the responses following stimulus offset. Strong transients

during stimulus onset display similar transient coding properties (Mazor and Laurent, 2005) and

could be generated by the same network mechanism as we propose for the OFF responses. How-

ever, during ON-transients, a number of additional mechanisms are likely to play a role, in particular

single-cell adaptation, synaptic depression, or feed-forward inhibition. Indeed, recent work has

shown that ON and OFF trajectories elicited by a stimulus are orthogonal to each other in the state-

space (Saha et al., 2017), and this was also the case in our data set (Figure 2—figure supplement

3). Linear network models instead produce ON and OFF responses that are necessarily correlated

and cannot account for the observed orthogonality of ON and OFF responses for a given stimulus.

Distinct ON and OFF response dynamics could also result from intrinsic nonlinearities known to play

a role in the AC (Calhoun and Schreiner, 1998; Rotman et al., 2001; Sahani and Linden, 2003;

Machens et al., 2004; Williamson et al., 2016; Deneux et al., 2016).

A major assumption of both the single-cell and network models we considered is that the AC

does not receive external inputs after the auditory stimulus is removed. Indeed, the observation that

the structure of the dynamics across stimuli could be predicted by the structure of their initial states

(Figure 2D,E and Figure 2—figure supplement 4) indicates that autonomous dynamics at least

partly shape the OFF responses. The comparisons between data and models moreover show that

autonomous dynamics are in principle sufficient to reproduce a number of features of OFF responses

in the absence of any external drive. However, neurons in the AC do receive direct afferents from

the medial geniculate body of the thalamus, and indirect input from upstream regions of the audi-

tory pathway, where strong OFF responses have been observed. Thus, in principle, OFF responses

observed in AC could be at least partly inherited from upstream auditory regions (Kopp-

Scheinpflug et al., 2018). Disentangling the contributions of upstream inputs and recurrent dynam-

ics is challenging if one has access only to auditory cortical activity (but see Seely et al., 2016 for an

interesting computational approach). Ultimately, the origin of OFF responses in AC needs to be

addressed by comparing responses between related areas, an approach recently adopted in the

context of motor cortical dynamics (Lara et al., 2018). A direct prediction of our model is that the

inactivation of recurrent excitation in auditory cortical areas should weaken OFF responses (Li et al.,

2013). However, recurrency in the auditory system is not present only within the cortex but also

between different areas along the pathway (Ito and Malmierca, 2018; Winer et al., 1998;

Lee et al., 2011). Therefore OFF responses could be generated at a higher level of recurrency and

might not be abolished by inactivation of AC.

The dimensionality of the activity in large populations of neurons in the mammalian cortex is cur-

rently the subject of debate. A number of studies have found that neural activity explores low-

dimensional subspaces during a variety of simple behavioral tasks (Gao et al., 2017). In contrast, a

Figure 8 continued

and H) Values of the VA computed as in panels C, E, and G pooled across all 16 stimuli. Error bars represent the standard error across stimuli.

Significance levels were evaluated computing the p-value on the difference between DVAðRealÞ and DVAðShufflesÞ across stimuli (two-sided Wilcoxon

signed-rank test). The fits of the network and single-cell models of panels E, G, F, and H were generated using ridge regression (l ¼ 0:5 for both

models).
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recent study in the visual cortex has shown that the response of large populations of neurons to a

large number of visual stimuli is instead high-dimensional (Stringer et al., 2019). Our results provide

a potential way of reconciling these two sets of observations. We find that the population OFF

responses evoked by individual auditory stimuli are typically low-dimensional, but lie in orthogonal

spaces, so that the dimensionality of the responses increases when considering an increasing number

of stimuli. Note that in contrast to Stringer et al., 2019, we focused here on the temporal dynamics

of the population response. The dimensionality of these dynamics is in particular limited by the tem-

poral resolution of the recordings (Figure 2—figure supplement 1).

The analyses we performed in this study were directly inspired by an analogy between OFF

responses in the sensory areas and neural activity in the motor cortices (Churchland and Shenoy,

2007; Churchland et al., 2010). Starting at movement onset, single-neuron activity recorded in

motor areas exhibits strongly transient and multiphasic firing lasting a few hundreds of milliseconds.

Population-level dynamics alternate between at least two dimensions, shaping neural trajectories

that appear to rotate in the state-space. These results have been interpreted as signatures of an

underlying dynamical system implemented by recurrent network dynamics (Churchland et al., 2012;

Shenoy et al., 2011), where the population state at movement onset provides the initial condition

able to generate the transient dynamics used for movement generation. Computational models

have explored this hypothesis (Sussillo et al., 2015; Hennequin et al., 2014; Stroud et al., 2018)

and showed that the complex transient dynamics observed in motor cortex can be generated in net-

work models with strong recurrent excitation balanced by fine-tuned inhibition (Hennequin et al.,

2014). Surprisingly, fitting a linear recurrent network model to auditory cortical data, we found that

the arrangement of the eigenvalues of the connectivity matrix was qualitatively similar to the spec-

trum of this class of networks (Hennequin et al., 2014), suggesting that a common mechanism

might account for the responses observed in both areas.

The perceptual significance of OFF responses in the auditory pathway is still matter of ongoing

research. Single-cell OFF responses observed in the auditory and visual pathways have been postu-

lated to form the basis of duration selectivity (Brand et al., 2000; Alluri et al., 2016; He, 2002;

Aubie et al., 2009; Duysens et al., 1996). In the auditory brainstem and cortex, OFF responses of

single neurons exhibit tuning in the frequency-intensity domain, and their receptive field has been

reported to be complementary to the receptive field of ON responses (Henry, 1985; Scholl et al.,

2010). The complementary spatial organization of ON and OFF receptive fields may result from two

distinct sets of synaptic inputs to cortical neurons (Scholl et al., 2010), and has been postulated to

form the basis for higher-order stimulus features selectivity in single cells, such as frequency-modu-

lated (FM) sounds (Sollini et al., 2018) and amplitude-modulated (AM) sounds (Deneux et al.,

2016), both important features of natural sounds (Sollini et al., 2018; Nelken et al., 1999). Comple-

mentary tuning has also been observed between cortical ON and OFF responses to binaural localiza-

tion cues, suggesting OFF responses may contribute to the encoding of sound-source location or

motion (Hartley et al., 2011). At the population level, the proposed mechanism for OFF response

generation may provide the basis for encoding complex sequences of sounds. Seminal work in the

olfactory system has shown that sequences of odors evoked specific transient trajectories that

depend on the history of the stimulation (Broome et al., 2006; Buonomano and Maass, 2009). Sim-

ilarly, within our framework, different combinations of sounds could bring the activity at the end of

stimulus offset to different regions of the state-space, setting the initial condition for the subsequent

OFF responses. If the initial conditions corresponding to different sequences are associated with dis-

tinct transient coding channels, different sound sequences would evoke transient trajectories along

distinct dimensions during the OFF responses, therefore supporting the robust encoding of complex

sound sequences.

Materials and methods

Data analysis
The data set
Neural recordings
Neural data was recorded and described in previous work (Deneux et al., 2016). We analyzed the

activity of 2343 neurons in mouse AC recorded using two-photon calcium imaging while mice were
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passively listening to different sounds. Each sound was presented 20 times. Data included record-

ings from three mice across 13 different sessions. Neural recordings in the three mice comprised

respectively 1251, 636, and 456 neurons. Recordings in different sessions were performed at differ-

ent depths, typically with a 50 mm difference (never less than 20 mm). Since the soma diameter is

~15 mm, this ensured that different cells were recorded in different sessions. We analyzed the trial-

averaged activity of a pseudo-population of neurons built by pooling neural activity across all record-

ing sessions and all animals. The raw calcium traces (imaging done at 31.5 frames per second) were

smoothed using a Gaussian kernel with standard deviation s ¼ 32 ms. We then subtracted the base-

line firing activity (i.e. the average neural activity before stimulus presentation) from the activity of

each neuron, and used the baseline-subtracted neural activity for the analyses.

The stimuli set
The stimuli consisted of a randomized presentation of 16 different sounds, 8 UP-ramping sounds,

and 8 DOWN-ramping sounds. For each type, sounds had different frequency content (either 8 kHz

or WN), different durations (1 or 2 s), and different combinations of onset and offset intensity levels

(for UP-ramps either 50–85 dB or 60–85 dB, while for DOWN-ramps 85–50 dB or 85–60 dB). The

descriptions of the stimuli are summarized in Table 1.

Decoding analysis
To assess the accuracy of stimulus discrimination (8 kHz vs. WN sound) on single-trials, we trained

and tested a linear discriminant classifier (Bishop, 2006) using cross-validation. For each trial, the

pseudo-population activity vectors (built by pooling across sessions and animals) were built at each

50 ms time bin. We used leave-one-out cross-validation. At each time bin we used 19 out of 20 trials

for the training set, and tested the trained decoder on the remaining trial. The classification accuracy

was computed as the average fraction of correctly classified stimuli over all 20 cross-validation folds.

At each time t the decoder for classification between stimuli s1 and s2 was trained using the trial-

averaged pseudo-population vectors c1t and c2t. These vectors defined the decoder wt and the bias

term bt as:

wt ¼ c1t � c2t; bt ¼
c1t þ c2t

2
(10)

A given population vector x was classified as either stimulus s1 or stimulus s2 according to the

value of the function yðxÞ ¼wT
t x�bt:

if yðxÞ>0 then x is classified as stimulus s1

if yðxÞ<0 then x is classified as stimulus s2

�

(11)

Random performance was evaluated by training and testing the classifier using cross-validation

on surrogate data sets built by shuffling stimulus single-trial labels at each time bin. We performed

the same analysis using more sophisticated decoder algorithms, that is, Linear Discriminant Analysis

(LDA), Quadratic Discriminant Analysis (QDA), and C-SVM decoders. For none of these decoder

algorithms was the cross-validated accuracy substantially better than the naive classifier reported in

Figure 1C (and for the QDA algorithm the accuracy was substantially worse; not shown).

Principal component analysis
To perform PCA on the population responses to C stimuli si1 ; :::; siC we considered the matrix

X 2 R
N�TC, where N is the number of neurons and T is the number of time steps considered. The

matrix X contained the population OFF responses to the stimuli si1 ; :::; siC , centered around the mean

over times and stimuli. If we denote by li the i-th eigenvalue of the covariance matrix XXT=ðTCÞ, the
percentage of variance explained by the i-th principal component is given by:

VARðiÞ ¼ li=
X

N

j¼1

lj (12)

while the cumulative percentage of variance explained by the first M principal components

(Figure 2A,C) is given by:
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CUMVARðMÞ ¼
X

M

j¼1

lj=
X

N

j¼1

lj: (13)

In Figure 2A, for each stimulus s we consider the matrix XðsÞ 2R
N�T containing the population

OFF responses to stimulus s. We computed the cumulative variance explained as a function of the

number of principal components M and then averaged over all stimuli.

Cross-validated PCA
We used cross-validation to estimate the variance of OFF responses to individual stimuli and across

stimuli attributable to the stimulus-related component, discarding the component due to trial-to-trial

variability (Figure 2—figure supplement 1). Specifically, we applied to the calcium activity data the

method of cross-validated PCA (cvPCA) developed in Stringer et al., 2019. This method provides

an unbiased estimate of the stimulus-related variance by computing the covariance between a train-

ing and a test set of responses (e.g. two different trials or two different sets of trials) to an identical

collection of stimuli. Let XðtrainÞ and XðtestÞ be the N � TC matrices containing the mean-centered

responses to the same C stimuli. We consider the training and test responses to be two distinct tri-

als. We first perform ordinary PCA on the training responses XðtrainÞ and find the principal component

u
ðtrainÞ
i (i ¼ 1; :::;N). We then evaluate the cross-validated PCA spectrum flig as:

li ¼
1

C
u

ðtrainÞT
i XðtestÞTXðtrainÞuðtrainÞ

i : (14)

We repeat the procedure for all pairs of trials ði; jÞ with i 6¼ j and average the result over pairs. The

cross-validated cumulative variance is finally computed as in Equation (13).

Correlations between OFF response subspaces
To quantify the degree of correlation between pairs of OFF responses corresponding to two differ-

ent stimuli, termed subspace overlap, we computed the cosine of the principal angle between the

corresponding low-dimensional subspaces (Figure 2D, Figure 3I). In general, the principal angle �P
between two subspaces U and V corresponds to the largest angle between any two pairs of vectors

in U and V respectively, and it is defined by Bjorck and Golub, 1973; Knyazev and Argentati,

2002:

cos�P ¼ max
u2U;v2V

uTv (15)

To compute the correlations between the OFF responses to stimuli s1 and s2 we first identified

the first K ¼ 5 principal components of the response to stimulus s1 and organized them in a N�K

matrix Qðs1Þ. We repeated this for stimulus s2, which yielded a matrix Qðs2Þ. Therefore the columns

of Qðs1Þ and Qðs2Þ define the two subspaces on which the responses to stimuli s1 and s2 live. The

cosine of the principal angle between these two subspaces is given by Bjorck and Golub, 1973;

Knyazev and Argentati, 2002:

cos�Pðs1; s2Þ ¼ smax Qðs1ÞTQðs2Þ
� �

; (16)

where smaxðAÞ denotes the largest singular value of a matrix A. We note that this procedure directly

relates to canonical correlation analysis (CCA; see Hotelling, 1936; Uurtio et al., 2018). In particular

the first principal angle corresponds to the first canonical weight between the subspaces spanned

by the columns of Qðs1Þ and Qðs2Þ (Golub and Zha, 1992; Bjorck and Golub, 1973).

Controls for subspace overlaps and initial state-peak correlations
In this section we describe the controls that we used to evaluate the statistical significance of the

measures of orthogonality between subspaces spanned by neural activity during OFF responses to

different stimuli (Figure 2D, Figure 3I), and between initial and peak activity vectors for a single

stimulus (Figure 5D). We assessed the significance of the orthogonality between OFF response sub-

spaces across stimuli using two separate controls, which aim at testing for two distinct null hypothe-

ses (Figure 2D, Figure 3I, Figure 2—figure supplement 2). The first hypothesis is that small
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subspace overlaps (i.e. low correlations) between OFF responses to different stimuli may be due to

the high number of dimensions of the state-space in which they are embedded. To test for this

hypothesis we compared the subspace overlap computed on the trial-averaged activity with the sub-

space overlaps computed on the trial-averaged activity where the stimulus labels had been shuffled

across trials for each pair of stimuli. We shuffled stimulus labels multiple times, resulting in one value

of the subspace overlap for each shuffle. For each pair of stimuli, significance levels were then com-

puted as the fraction of shuffles for which the subspace overlap was lower than the subspace overlap

for the real data (lower tail test; Figure 2—figure supplement 2A).

Alternatively, small subspace overlaps could be an artifact of the trial-to-trial variability present in

the calcium activity data. In fact, for a single stimulus, maximum values of the correlation between

two different trials were of the order of 0.2 (Deneux et al., 2016). To test for the possibility that

small subspace overlaps may be due to trial-to-trial variability, for each pair of stimuli we computed

the values of the subspace overlaps by computing the trial-averaged activity on only half of the trials

(10 trials), subsampling the set of 10 trials multiple times for each stimulus. This yielded a set of val-

ues cos �realðs1; s2; nÞ, where s1 and s2 are the specific stimuli considered and n ¼ 1; :::;Nshuffle. We then

computed the subspace overlaps between the trial-averaged responses to the same stimulus, but

averaged over two different sets of 10 trials each, over multiple permutations of the trials, resulting

in a set of values cos �shuffleðs; nÞ, where s 2 fs1; s2g is the specific stimulus considered and

n ¼ 1; :::;Nshuffle. For each pair of stimuli s1 and s2, significance levels were computed using two-tailed

t-test and taking the maximum between the p-values given by pðcos �realðs1; s2; :Þ; cos �shuffleðs1; :ÞÞ and
pðcos �realðs1; s2; :Þ; cos �shuffleðs2; :ÞÞ for those stimulus pairs for which

hcos �realðs1; s2; :Þin<hcos �shuffledðs1; :Þin and hcos �realðs1; s2; :Þin<hcos �shuffledðs2; :Þin, where the bar symbol

indicated the mean over shuffles (Figure 2—figure supplement 2B).

The same null hypotheses have been used to test the significance of the orthogonality between

initial state and peak state for individual stimuli (Figure 5D, Figure 5—figure supplement 3). A pro-

cedure analogous to the one outlined above was employed. Here, instead of the subspace overlaps,

the quantity of interest is the correlation (scalar product) between the initial and peak state. For the

first control shuffled data are obtained by shuffling the labels ‘initial state’ and ‘peak state’ across tri-

als. Significance levels were evaluated as outlined above for the first control (Figure 5—figure sup-

plement 3A). To test for the second hypothesis, we computed correlations between activity vectors

defined at the same time point, but averaged over two different sets of 10 trials each. For each trial

permutations we computed these correlations for all time points belonging to the OFF response (35

time points) and average over time points. Significance level was then assessed as outlined above

for the second control (Figure 5—figure supplement 3B).

Single-cell model for OFF response generation
In the next section we describe the procedure used to fit the single-cell model to the auditory corti-

cal OFF responses. We consider the single-cell model given by Equation (1), where r
ðsÞ
0;i Lið0Þ repre-

sents the initial state of the response of unit i to stimulus s. Without loss of generality we assume

that the dynamic range of the temporal filters, defined as jmaxt LiðtÞ �mint LiðtÞj, is equal to unity,

so that r
ðsÞ
0;i represents the firing rate range of neuron i for stimulus s. If that was not true, i.e. if the

single-neuron responses were given by r
ðsÞ
i ðtÞ ¼ r

ðsÞ
0;iKiðtÞ with ai ¼ jmaxt KiðtÞ �mint KiðtÞj 6¼ 1 we

could always write the responses as r
ðsÞ
i ðtÞ ¼ ~r

ðsÞ
0;i
~LiðtÞ, where ~r

ðsÞ
0;i ¼ r

ðsÞ
0;iai and ~LiðtÞ ¼ KiðtÞ=ai, formally

equivalent to Equation (1).

Fitting the single-cell model

To fit the single-cell OFF responses r
ðsÞ
i ðtÞ, we expressed the single-cell responses on a set of basis

functions (Pillow et al., 2008).

r
ðsÞ
i ðtÞ ¼

X

Nbasis

j¼1

a
ðsÞ
ij fjðtÞ; (17)

where the shape and the number of basis function Nbasis are predetermined. We choose the func-

tions fiðtÞ to be Gaussian functions centered around a value �ti and with a given width wi, that is,
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fiðtÞ ¼ expð�ðt��tiÞ2=2w2

i Þ. The problem then consists in finding the coefficients a
ðsÞ
ij that best approxi-

mate Equation (17). By dividing the left- and right-hand side of Equation (17) by the firing rate

range r
ðsÞ
0;i we obtain:

r
ðsÞ
i ðtÞ
r
ðsÞ
0;i

¼
X

Nbasis

j¼1

b
ðsÞ
ij fjðtÞ; b

ðsÞ
ij ¼ a

ðsÞ
ij =r

ðsÞ
0;i : (18)

In general the coefficients b
ðsÞ
ij could be fitted independently for each stimulus. However, the sin-

gle-cell model assumes that the coefficients bij do not change across stimuli (see Equation (1)).

Therefore, to find the stimulus-independent coefficients bij that best approximate Equation (18)

across a given set of stimuli, we minimize the mean squared error given by:

MSE¼
X

i;s

Z

dt
r
ðsÞ
i ðtÞ
r
ðsÞ
0;i

�
X

Nbasis

j¼1

bijfjðtÞ
 !2

(19)

The minimization of the mean squared error can be solved using linear regression techniques.

Suppose we want to fit the population responses to C different stimuli simultaneously. Let RðCÞ be

the matrix of size N�TC obtained by concatenating the N�T matrices ðrðsÞnormÞit ¼ r
ðsÞ
i ðtÞ=rðsÞ

0;i

(i¼ 1; :::;N, t¼ 1; :::;T , s¼ 1; :::;C) corresponding to the normalized responses to the C stimuli. Let

FðCÞ be the Nbasis �TC matrix obtained by concatenating C times the Nbasis�T matrix ðfÞit ¼ fiðtÞ. Let
B be the N�Nbasis matrix given by Bij ¼ bij. Then Equation (18) can be written as:

RðCÞ ¼BFðCÞ; (20)

which can be solved using linear regression.

In order to avoid normalizing by very small values, we fit only the most responding neurons in the

population, as quantified by their firing rate range. We set wi ¼ w ¼ 35ms for all i ¼ 1; :::;Nbasis, and

we set the number of basis functions to Nbasis ¼ 10, corresponding to the minimal number of basis

functions sufficient to reach the highest cross-validated goodness of fit.

The network model
We consider a recurrent network model of N randomly coupled linear rate units. Each unit i is

described by the time-dependent variable riðtÞ, which represents the difference between the firing

rate of neuron i at time t and its baseline firing level. The equation governing the temporal dynamics

of the network reads:

t _ri ¼�riþ
X

N

j¼1

Jijrj; (21)

where t represents the time constant (fixed to unity), and Jij is the effective synaptic strength from

neuron j to neuron i. The system has only one fixed point corresponding to ri ¼ 0 for all i. To have

stable dynamics, we require that the real part of the eigenvalues of the connectivity matrix J is

smaller than unity, that is, RelðJÞð Þmax<1. We represent each stimulus as the state of the system

reached at the end of stimulus presentation, which we denote by the vector r0. We moreover

assume that during the OFF response the network receives no external input. The OFF response to

the stimulus associated with the state r0 therefore corresponds to the network dynamics starting

from the initial condition r0.

Fitting the network model
In this section we describe the procedure we used for fitting a linear recurrent network model (Equa-

tion (21)) to the auditory cortical data using ridge and reduced-rank ridge regression. To fit the net-

work model to the responses to C stimuli, we first concatenate the C matrices XðsÞ 2 R
T�D (where

X
ðsÞ
t;i ¼ r

ðsÞ
i ðtÞ, with s ¼ 1; :::;C and i ¼ 1; :::;D) containing the neural responses to stimulus s across

T timesteps and D neurons (or PC dimensions) along the first dimension, obtaining a matrix
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X 2 R
CT�D contains the neural activity across C stimuli, T time steps, and D neurons or PC dimen-

sions. We then fit the network model _X ¼ X ðJ� IÞ by first computing from the data the velocity of

the trajectory as

_X¼Xðtiþ1Þ�XðtiÞ
tiþ1 � ti

: (22)

Both ridge and reduced-rank ridge regression aim at minimizing the mean squared error

jj _X�X ðJ� IÞjj2 subject to different constraints, which are described below. Since ridge regression

involves computationally expensive matrix inversion, we first reduced the dimensionality of the origi-

nal data set by using PCA. Unless otherwise stated, we kept a number of PC components equal to

K = 100 for the fit of individual stimuli (Figure 3G,H, Figure 5A–C, Figure 8, Figure 7) and for the

fit of all stimuli together (Figure 3I, Figure 4, Figure 7C, Figure 3—figure supplement 2, Fig-

ure 3—figure supplement 3, Figure 5—figure supplement 1; K = 100 principal components suf-

ficed to explain more than 90% of the variance of the responses to all stimuli together). As a result,

the data matrix X 2R
TC�K contains the activity across T time bins and across all K dimensions for a

number C of stimuli.

Ridge regression
Ridge regression aims at determining the connectivity matrix J that minimizes the mean squared

error jj _X� X ðJ� IÞjj2 with a penalty for large entries of the matrix J, so that the cost function to

minimize is given by jj _X� X ðJ� IÞjj2 þ ljjðJ� IÞjj2, where l is a hyperparameter of the model. We

can write the ridge regression optimization problem as:

ðJ� IÞ�l ¼
J�I

argmin jj _Xl �Xl ðJ� IÞjj2 (23)

where we defined _Xl ¼ ð _X;0Þ and Xl ¼ ðX;
ffiffiffi

l
p

IÞ. The solution to Equation (23) is given by:

J�l ¼ IþðXT
lXlÞ�1

XT
l
_Xl: (24)

This procedure was used for fits shown in Figure 3, Figure 3—figure supplement 1, Figure 3—

figure supplement 3, and Figure 4.

Reduced-rank ridge regression
Reduced-rank regression aims at minimizing the mean squared error jj _X� X ðJ� IÞjj2 under a rank

constraint on the matrix J, that is, rank J � R, where R is a hyperparameter of the model (Izen-

man, 1975; Davies and Tso, 1982). Here we combined reduced-rank and ridge regression in the

same framework. The reduced-rank ridge regression optimization problem with hyperparameters R

and l can be therefore written as (Mukherjee et al., 2015):

ðJ� IÞ�r;l ¼
rankJ�R

argmin jj _Xl�Xl ðJ� IÞjj2: (25)

To solve Equation (25) we consider the solution to the ridge regression problem given by Equa-

tion (24). If the matrix XlJ
�
l has SVD given by XlJ

�
l ¼USVT , then it can be shown that the solution

to the reduced-rank ridge regression problem given by Equation (25) can be written as:

J�r;l ¼ J�l
X

R

i¼1

ViV
T
i (26)

We note that each term in the sum of Equation (26) has unit rank, so that the resulting matrix

J�R;l has rank equal to or less than R.

This procedure was used for fits shown in Figure 5, Figure 7, Figure 8, Figure 3—figure supple-

ment 2, Figure 5—figure supplement 1, and Figure 5—figure supplement 2.
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Selection of hyperparameters for ridge regression
To select the value of the hyperparameter l, we fitted the network model to the data and computed

the goodness of fit as the coefficient of determination R2ðlÞ using cross-validation. We then selected

the value of l which maximized the goodness of fit.

Selection of hyperparameters for reduced-rank ridge regression
To select the values of the hyperparameters l and R, we fitted the network model to the data with

hyperparameters ðl;RÞ and computed the goodness of fit as the coefficient of determination

R2ðl;RÞ using cross-validation. We repeated the process for a range of values of ðl;RÞ. We observed

that, independent of the value of l, the goodness of fit as a function of the rank R saturates at a par-

ticular value of the rank R�, but does not exhibit a clear maximum. We took the value R� as the mini-

mal rank hyperparameter, while we defined the best ridge parameter as l� ¼ argmaxl R
2ðl;R�Þ

(Figure 5—figure supplement 1).

For both ridge and reduced-rank ridge regression, we used K-fold cross-validation, with K ¼ 10.

When fitting multiple stimuli at once, for each stimulus we partitioned the temporal activity into K

chunks, resulting in a total of KC chunks. At the i-th iteration of the cross-validation procedure, we

leave out the i-th partition for each stimulus to construct the training set (consisting of ðK � 1ÞC
chunks) and test the trained model on the remaining C folds.

In Figure 4A,B, the temporal window considered for the fit was extended from 350 ms to 600 ms

to include the decay to baseline of the OFF responses, thus obtaining stable eigenvalues. The exten-

sion of the temporal window was possible only for the 1 s long stimuli (n ¼ 8), since the length of the

temporal window following stimulus offset for the 2 s stimuli was limited to approximately 380 ms by

the length of the neural recordings.

Control data sets
To evaluate whether the fitted network model captured nontrivial collective dynamics of auditory

cortical OFF responses, we followed the approach introduced in Elsayed and Cunningham, 2017.

We first computed the goodness of fit (as quantified by the coefficient of determination R2), then

repeated the model fitting on control data sets which kept no additional structure than the one

defined by correlations across time, neurons and stimuli of the original neural responses. We found

that the goodness of fit obtained from fitting the model to the original data set was significantly

higher than the one obtained from fitting the control data sets (Figure 3—figure supplement 2,

Figure 3—figure supplement 3), confirming that the recurrent network model captured nontrivial

collective dynamics in the data beyond the correlations across time, neurons and stimuli.

We generated the control data sets using a recent method based on a maximum entropy model

(Savin and Tkačik, 2017) and described in Elsayed and Cunningham, 2017. This method, termed

Tensor Maximum Entropy, allowed us to build surrogate data sets that are maximally random

(entropy maximization), but constrained in a way that their marginal means and covariances are

equal to the means and covariances of the original data set.

Marginal means and covariances
Let the temporal activity along all K dimensions for all C stimuli be organized in a tensor

Z 2 R
T�K�C. The mean tensor M is defined as the tensor that makes all the marginal means of Z van-

ish. Specifically, if �Z ¼ Z�M, the tensor M is such that:

X

K

k¼1

X

C

c¼1

�Ztkc ¼ 0;
X

T

t¼1

X

C

c¼1

�Ztkc ¼ 0;
X

T

t¼1

X

K

k¼1

�Ztkc ¼ 0 (27)

The marginal covariances of the tensor �Z across times, neural dimensions, and stimuli are there-

fore defined as:
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ST
ij ¼

X

K

k¼1

X

C

c¼1

�Zikc
�Zjkc

SK
ij ¼

X

T

t¼1

X

C

c¼1

�Ztic
�Ztjc

SC
ij ¼

X

T

t¼1

X

K

k¼1

�Ztki
�Ztkj

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(28)

Tensor maximum entropy method
The method generates the desired number of surrogate data sets SðiÞ 2 R

T�K�C. Each of these surro-

gates is randomly drawn from a probability distribution that assumes a priori no structure apart from

that expected from the marginal means and covariances of the original data. Let m, LT , LK , and LC

be the marginal means and covariances of surrogate S. The method computes the probability PðSÞ
over the surrogates that maximizes the entropy function

PðSÞ ¼
yðSÞ

argmax �
Z

S

yðSÞ logyðSÞdS
� �

; with

Z

S

PðSÞdS¼ 1 (29)

subject to the constraints

EP½�� ¼M; EP½LT � ¼ ST ; EP½LK � ¼ SK ; EP½LC� ¼ SC; (30)

where EP½�� denotes the expectation over the probability density P. We used three types of surro-

gate data sets, denoted as T, TK, and TKC. All the three types of surrogates obey to the first con-

straint in Equation (30) on the marginal means. In addition, surrogates of type T obey the constraint

on the time covariances, surrogates of type TK on time and dimension covariance, while surrogates

TKC obey all the three covariance constraints.

Analysis of the transient channels
In this section, we provide details on the analysis of the structure of the transient channels obtained

from fitting the network model to OFF responses to individual stimuli using reduce-rank regression

(Figure 7, see Materials and methods, Section ’Fitting the network model’). Let JFull be the connec-

tivity matrix resulting from fitting the network model to the responses to all stimuli at once, and JðsÞ

the connectivity obtained from fitting the model to the response to stimulus s. Before fitting both

matrices JFull and JðsÞ, we reduced the dimensionality of the responses to the first 100 principal com-

ponents. We set the value of the rank parameter to R ¼ 70 and R ¼ 5 respectively for JFull and JðsÞ

(Figure 5). Using the SVD, we can write the matrices JðsÞ as:

JðsÞ ¼ Û
ðsÞ
SðsÞVðsÞT ; (31)

where Û
ðsÞ

and VðsÞ contain respectively the Rs right and left connectivity vectors as columns (see

Equation (6)), while SðsÞ contains the norms of UðsÞ on the diagonal (see Equation (6)). The transient

dynamics elicited by stimulus s has a strong component along the state-space dimensions specified

by the right connectivity vectors uðr;sÞ (columns of UðsÞ; see also Equation (43)). We therefore define

the overlap between the transient channels (connectivity overlaps) corresponding to pairs of stimuli

s1 and s2 (Figure 7A) as the principal angle between the subspaces defined by Û
ðs1Þ

and Û
ðs2Þ

(see

Equations (15 and 16)). We show that the structure of the connectivity overlaps (Figure 7A)

matched well with the structure of the subspace overlaps (Figure 2D) across pairs of stimuli in

Figure 7B.

To test whether the connectivity fitted on all stimuli at once JFull consisted of the sum of low-rank

transient coding channels, we defined the matrix JSum as the sum of the individual transient channels

for all stimuli (see Equation 6):

JSum ¼ Û
ð1Þ
Sð1ÞVð1ÞT þ Û

ð2Þ
Sð2ÞVð2ÞT þ :::þ Û

ðPÞ
SðPÞVðPÞT (32)
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We then compared the cross-validated goodness of fit of the population OFF responses using

the full matrix JFull and the matrix JSum (Figure 7C).

In Figure 7, when fitting individual stimuli, the ridge and rank hyperparameters have been set

respectively to l ¼ 5, R ¼ 5, which correspond to the values that maximize the agreement (coeffi-

cient of determination) between the connectivity overlaps (Figure 7A) and the subspace overlaps

(Figure 2D). For these values the coefficient of determination between the transient channel over-

laps and the subspace overlaps is >0.7.

Analysis of the network model
In this section we provide a detailed mathematical analysis of the network model given by

Equation (21)

t _ri ¼�riþ
X

N

j¼1

Jijrj:

Specifically, we derive the conditions on the network components (i.e. connectivity spectra, con-

nectivity vectors, and initial conditions) to produce low-dimensional, transiently amplified OFF

responses in networks with low-rank connectivity. We then focus on the specific case of rotational

channels in the connectivity.

Normal and non-normal connectivity matrices
In this section, we summarize the relationship between amplified OFF responses and non-normal

connectivity matrices in linear recurrent networks previously reported in Trefethen and Embree,

2005; Hennequin et al., 2012; Bondanelli and Ostojic, 2020. To characterize the amplification of

OFF responses we focus on the temporal dynamics of the distance from baseline, defined as the

norm of the population activity vector jjrðtÞjj (Hennequin et al., 2014). The network generates an

amplified OFF response to the stimulus associated with the initial condition r0 when the value of

jjrðtÞjj transiently increases before decaying to its asymptotic value jjrðt ! ¥Þjj ¼ 0. Note that having

a transiently increasing value of the distance from baseline implies that the OFF response riðtÞ of at
least one unit displays non-monotonic temporal dynamics. Importantly, the transient behavior of

jjrðtÞjj depends on the stimulus through r0, and on the properties of the connectivity matrix J, in par-

ticular on the relationship between its eigenvectors (Trefethen and Embree, 2005).

Connectivity matrices for which the eigenvectors are orthogonal to each other are called normal

matrices and they are formally defined as matrices J that satisfy JJT ¼ JTJ. In networks with normal

connectivity, any stimulus r0 evokes an OFF response for which the distance from baseline decays

monotonically to zero. Such networks thus cannot produce amplified OFF responses, as defined by

a transiently increasing jjrðtÞjj. Note that any symmetric matrix is normal.

On the other hand, connectivity matrices for which some eigenvectors are not mutually orthogo-

nal are called non-normal (Trefethen and Embree, 2005), and they consist of all connectivity J for

which JJT 6¼ JTJ. It is well known that non-normal networks can lead to transiently increasing values

of jjrðtÞjj, therefore producing amplified OFF responses. However, the non-normality of the network

connectivity J constitutes only a necessary, but not a sufficient condition for the generation of ampli-

fied responses.

Sufficient condition for amplified OFF responses
In this section we identify the necessary and sufficient condition for the generation of amplified OFF

responses in linear recurrent networks. To find the necessary and sufficient condition for amplified

responses, we start by writing the differential equation for the dynamics of the distance from base-

line as (Neubert and Caswell, 1997; Bondanelli and Ostojic, 2020):

1

jjrjj
djjrjj
dt

¼ rTðJS � IÞr
jjrjj2

; JS ¼
Jþ JT

2
; (33)

where JS denotes the symmetric part of the connectivity J. A linear recurrent network exhibits ampli-

fied responses when the rate of change of the distance from baseline, djjrjj=dt, takes positive values

at time t¼ 0. The right-hand side of Equation (33) takes its largest value when the initial condition r0
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is aligned with the eigenvector of JS associated with the largest eigenvalue lmaxðJSÞ. In this case, the

rate of change of the distance from baseline at time t¼ 0 takes the value lmaxðJSÞ� 1. From Equa-

tion (33) it can be shown that the necessary and sufficient condition for the generation of amplified

responses in a recurrent networks with connectivity J is given by

lmaxðJSÞ>1: (34)

This criterion defines two classes of networks based on the properties of the connectivity matrix:

networks in which amplified responses cannot be evoked by any stimulus, and networks able to gen-

erate amplified responses to at least one stimulus.

Low-rank networks
In the following section we examine OFF dynamics in networks with low-rank connectivity of the

form given by Equation (3):

J¼ uð1Þvð1ÞT þuð2Þvð2ÞT þ :::þuðRÞvðRÞT : (35)

We first show that such connectivity directly constraints the network dynamics to a low-dimen-

sional subspace. We then derive the conditions for the stability and amplification of OFF responses.

Finally we apply these results to the specific case of low-rank rotational channels as in Equation (5).

Low-dimensional dynamics
Here we study the dynamics of the population activity vector for a unit-rank network (R ¼ 1) and for

a general network with rank-R connectivity structure. We consider low-rank networks in which the ini-

tial state is set to rð0Þ ¼ r0 and no external input acts on the system at later times t>0. By construc-

tion, the autonomous dynamics generated by low-rank networks are constrained by the rank R of

the connectivity matrix and are therefore low-dimensional when R � N.

We first illustrate the linear dynamics in the case of a unit-rank connectivity (R ¼ 1), given by

J¼ uð1Þvð1ÞT ; (36)

with vð1ÞT of unit norm. The vectors uð1Þ and vð1Þ are respectively the right and left eigenvectors of J,

and in the following analysis we refer to them respectively as the right and left connectivity vectors.

In this case, the dynamics following the initial state r0 can be explicitly computed as the product

between the time-dependent propagator of the dynamics, given by Pt ¼ expðtðJ� IÞÞ, and the initial

condition r0 (Arnold, 1973; Bondanelli and Ostojic, 2020):

rðtÞ ¼ Pt r0 ¼ expðtðuð1Þvð1ÞT � IÞÞr0: (37)

By expanding the exponential matrix expðtðJ� IÞÞ in power series, we can write the propagator

for the unit-rank dynamics as:

expðtðuð1Þvð1ÞT � IÞÞ ¼ e�t
X

¥

k¼0

tðuð1Þvð1ÞTÞ
� �k

k!

¼ e�t Iþuð1Þvð1ÞT

l
1þltþ 1

2
l2t2 þ :::� 1

� �� �

¼ e�t Iþ elt � 1

l
uð1Þvð1ÞT

� �

;

(38)

where l is the only nonzero eigenvalue of J, given by

l¼ jjuð1Þjjcos�; cos�¼ uð1Þ � vð1Þ
jjuð1Þjj : (39)

As a result, the full dynamics in the case of rank-1 connectivity structure can be written as:

rðtÞ ¼ e�t r0 þ e�t uð1Þ aðtÞ; (40)

where
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aðtÞ ¼ ðvð1ÞTr0Þ ðelt � 1Þ=l: (41)

Since uð1Þ is the right eigenvector of J corresponding to l, from Equation (40) we note that, when

r0 is fully aligned with uð1Þ the dynamics are one-dimensional and exhibit a monotonic decay along

the same dimension. Instead, when the initial state is not fully aligned with uð1Þ, the dynamics are

confined to the plane defined by r0 and uð1Þ. In this case, while the component of the dynamics along

r0 decays exponentially as a function of time, the component along the direction of uð1Þ increases ini-

tially in proportion to the value of its norm, jjuð1Þjj (since at time t¼ 0, de�taðtÞ=dt¼ jjuð1Þjj). Eventu-
ally, the activity decays to its asymptotic value given by rðt!¥Þ ¼ 0. Therefore in a unit-rank

network the dynamics draw a neural trajectory that explores at most two-dimensions in the state

space.

These observations can be extended to the general case of rank-R connectivity matrices. For sim-

plicity we rewrite Equation (3) as

J¼UVT ; (42)

where the matrices U and V contain respectively the R right and left connectivity vectors as columns.

Writing the connectivity matrix in this form is always possible by applying the SVD on J. The SVD

allows us to write the connectivity matrix as J¼ ÛSVT , where U¼ ÛS, and ÛT Û¼VTV¼ I. In particu-

lar, this implies the norm of each left connectivity vector vðrÞ is unity, while the right connectivity vec-

tors uðrÞ are not normalized.

Following steps similar to Equation (38), the linear dynamics evoked by the initial state r0 can be

written as

rðtÞ ¼ expðtðJ� IÞÞr0 ¼ e�t Iþ
X

¥

m¼1

ðUVTÞm
m!

 !

r0

¼ e�t r0 þ e�tUaðtÞ;
(43)

where we defined the R-dimensional column vector

aðtÞ ¼ VTU
� ��1

expðtVTUÞ� I
� �

VTr0
� �

; (44)

in analogy with Equation (40). Therefore, in the case of rank-R connectivity matrix, the dynamics

evolve in a ðRþ 1Þ-dimensional space determined by the initial state r0 and the R right connectivity

vectors uðrÞ (columns of U). Equation (44) shows that the dynamics of a rank-R system are deter-

mined by the matrix of scalar products between left and right connectivity vectors, which we refer to

as the overlap matrix (Schuessler et al., 2020; Beiran et al., 2020)

Jov ¼VTU: (45)

We conclude that low-rank connectivity matrices of the form given by Equation (3) with R�N

generate low-dimensional dynamics that explore at most Rþ 1 dimensions.

Conditions for stability and amplification of OFF responses in low-rank
networks
In this paragraph we examine the conditions required to generate stable amplified dynamics in net-

works with low-rank connectivity J and initial state r0. Specifically, two sets of conditions need to be

satisfied. The first set of conditions is directly derived by applying the general criterion for stable

amplified dynamics given by Equation (34) to low-rank networks, which effectively constrains the

connectivity J through the relative arrangement of the connectivity vectors uðrÞ and vðrÞ (r ¼ 1; :::;R).

When this criterion is satisfied, amplified dynamics can be generated only if the initial condition r0 is

aligned with specific directions in the state-space. We thus examine a second set of conditions on

the initial state r0 for which amplified trajectories can be evoked, and express these conditions in

terms of relationship between r0 and the modes uðrÞ-vðrÞ. As before, without loss of generality, we

assume that the norm of the vectors vðrÞ is equal to one, while the norm of the vectors uðrÞ can vary.
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Conditions on the modes uðrÞ-vðrÞ

We first consider a network with unit-rank connectivity J ¼ uð1Þvð1ÞT , with vð1Þ of unit norm. In unit-

rank networks, the dynamics is stable only if the nonzero eigenvalue l is smaller than one. From

Equation (39) this yields the stability condition

cos�<
1

jjuð1Þjj : (46)

The condition for the generation of amplified responses given by Equation (34) can be derived in

terms of uð1Þ and vð1Þ by computing the eigenvalues of the symmetric part of the connectivity,

JS ¼ ðuð1Þvð1ÞT þ vð1Þuð1ÞTÞ=2. The matrix JS is of rank two, and has in general two nonzero eigenvalues,

given by:

lmax;minðJSÞ ¼
jjuð1Þjjðcos�� 1Þ

2
(47)

Therefore the condition for amplified OFF responses Equation (34) can be written in terms of the

length of the vector uð1Þ as

jjuð1Þjj> 2

cos�þ 1
: (48)

Previous work has shown that amplification in a unit-rank network can take arbitrarily large values

only if 0� cos�<1=jjuð1Þjj (Bondanelli and Ostojic, 2020). As a result, stable and unbounded ampli-

fied dynamics can be generated in a unit-rank network if and only if the norm of uð1Þ is sufficiently

large (Equation (48)) and the correlation between the connectivity vectors is positive and sufficiently

small (Equation (46)).

The conditions for stability and amplification derived for a rank-1 network can be implicitly gener-

alized to a rank-R network model, using the fact that the nonzero eigenvalues l of the low-rank con-

nectivity matrix J ¼ UVT (where J is a N � N matrix) are equal to the nonzero eigenvalues of its

overlap matrix Jov ¼ VTU (where Jov is a R� R matrix) (Nakatsukasa, 2019):

eigl6¼0 ðJÞ ¼ eigl6¼0 ðJovÞ (49)

Therefore, the condition for stability can be implicitly written in terms of the nonzero eigenvalues

l of Jov as:

detðVTU�lIÞ ¼ 0

l<1:

(

(50)

To derive the conditions for transient amplification, we need that the eigenvalues of the symmet-

ric part of the connectivity be larger than unity, where the symmetric part JS is a matrix of rank 2R

given by:

JS ¼
1

2
ðUVT þVUTÞ ¼ 1

2
U;V½ � VT

UT

" #

(51)

Using Equation (49) (Nakatsukasa, 2019), we can write the nonzero eigenvalues lS of JS as:

eiglS 6¼0 ðJSÞ ¼
1

2
eiglS 6¼0

VT

UT

" #

U;V½ � ¼ 1

2
eiglS 6¼0

VTU I

S2 UTV

 !

; (52)

where we used the fact that VTV¼ I, and defined S2 ¼ diagðjjuð1Þjj; jjuð2Þjj; :::Þ. By definition, the eigen-

values of the symmetric part multiplied by 2, that is, 2lS, should satisfy:

0¼ det VTU� 2lSI
� �

det UTV� 2lSI�S2ðUTV� 2lSIÞ�1

� �

; (53)

where we used the expression of the determinant of a 2� 2 block matrix (Horn and Johnson, 2012).
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Since for two square matrices A and B we have that detðABÞ ¼ detðAÞdetðBÞ, detðATÞ ¼ detðAÞ, and
detðA�1Þ ¼ 1=detðAÞ, we can write:

0 ¼ det VTU� 2lSI
� �

detf ðUTV� 2lSIÞ2 �S2
h i

UTV� 2lSI
� ��1g

¼ det VTU� 2lSI
� �

det ðUTV� 2lSIÞ VTU� 2lSI
� �

�S2
� �

det VTU� 2lSI
� ��1

¼ det ðUTV� 2lSIÞ VTU� 2lSI
� �

�S2
� �

:

(54)

Thus, the condition for amplification becomes:

det BðlSÞBðlSÞT �S2
� �

¼ 0; where BðlSÞ ¼ ðUTV� 2lSIÞ
lS>1

(

(55)

Thus, in the general case of a rank-R network, the condition for stable and amplified dynamics

is given by Equations (50) and (55).

Dynamics of a low-rank rotational channel
In this section we describe the structure of the low-rank connectivity obtained by fitting the network

model to the OFF responses to individual stimuli (Figure 5B,C) and analyze the resulting dynamics.

When fitting a low-rank network model to the OFF responses to individual stimuli, we observed a

specific structure in the pattern of correlations between right and left connectivity vectors uðiÞ and

vðjÞ of the fitted connectivity J. This pattern exhibited low values of the correlation for almost all pairs

of connectivity vectors, except for pairs of left and right vectors coupled across nearby modes, e.g.

uð1Þ-vð2Þ, uð2Þ-vð1Þ, uð3Þ-vð4Þ, uð4Þ-vð3Þ, and so forth. This structures gives rise to independent rank-2 chan-

nels grouping pairs of modes of the form J1 ¼ uð1Þvð1ÞT þ uð2Þvð2ÞT . Within a single channel, the values

of the correlation was high, and opposite in sign, for different pairs of vectors, that is, ûð1Þ � vð2Þ » 1
and ûð2Þ � vð1Þ » � 1. As a result, each of these channels can be cast in the form:

J2 ¼ D1v
ð2Þvð1ÞT �D2v

ð1Þvð2ÞT ; (56)

where we set

uð1Þ ¼ D1v
ð2Þ

uð2Þ ¼�D2v
ð1Þ (57)

with D1, D2 two positive scalars, and the vectors v’s are of unit norm. Scheme 1 illustrates the struc-

ture of the rank-2 channel in terms of the left and right connectivity vectors, and the dynamics

evoked by an initial condition along vð1Þ.
For a rank-2 connectivity as in Equation (5), the 2x2 overlap matrix Jov is therefore given by

Jov ¼VTU¼ 0 �D2

D1 0

� �

¼VTJ2V� ~J2: (58)

Note that the overlap matrix also corresponds

to the connectivity matrix J2 projected on the

basis of the left connectivity vectors ½vð1Þ;vð2Þ�
(third equality in Equation (58)).

To derive the necessary and sufficient condi-

tions for the channel to exhibit stable and ampli-

fied dynamics in response to at least one initial

condition r0, we need to compute the nonzero

eigenvalues of the connectivity matrix and of its

symmetric part (equal to the eigenvalues of ~J2

and of its symmetric part). The eigenvalues of ~J2
are purely imaginary for all values of D1 and D2

and are given by l1;2 ¼ �i
ffiffiffiffiffiffiffiffiffiffi

D1D2

p � �i!. The

dynamics are therefore always stable. Next, we

v
(1)

û
(1)

v
(2)

û
(2)

r(t)

Scheme 1. Schematics of the rank-2 rotational channel.
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compute the eigenvalues of the symmetric part of the connectivity, which reads:

~J2;S ¼
1

2
ð~J2 þ ~JT

2
Þ ¼ 0 ðD1 �D2Þ=2

ðD1�D2Þ=2 0

� �

: (59)

The eigenvalues of ~J2;S are �jD2�D1j=2, so that the dynamics are amplified when

jD2�D1j>2 (60)

We next derive the full dynamics of the rank-2 connectivity matrix J2 in Equation (56). To this

end, we use the general expression of the propagator for a rank-R network given by Equations (43),

(44) in terms of the overlap matrix Jov (Equation (58)). To compute the inverse and the exponential

of the overlap matrix, we start by diagonalizing Jov. Its eigenvalues are given by l1;2 ¼�i!, while the

corresponding eigenvectors are specified in the columns of the matrix E, where E and E�1 read:

E¼ 1

C

1 1

�i

ffiffiffiffi

D1

D2

q

i

ffiffiffiffi

D1

D2

q

 !

; E�1 ¼C
1 i

ffiffiffiffi

D2

D1

q

1 �i

ffiffiffiffi

D2

D1

q

0

B

@

1

C

A
; C¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þD1=D2

p

(61)

The inverse and exponential of the overlap matrix can be therefore computed as:

ðVTUÞ�1 ¼E
� i

! 0

0
i
!

 !

E�1

expðVTUÞ ¼E
expði!Þ 0

0 expð�i!Þ

� �

E�1;

(62)

so that we obtain the term aðtÞ in Equation (44) as:

aðtÞ ¼
1

!sin!t
1

D1

ðcos!t� 1Þ
� 1

D2

ðcos!t� 1Þ 1

!sin!t

 !

ðVTr0Þ: (63)

From Equations (43), (44), (57), and (63), we can write the expression for the dynamics of the

transient channel J2 with initial condition given by r0 ¼ a1v
ð1Þþa2v

ð2Þþbzð?Þ (with zð?Þ a vector

orthogonal to both vð1Þ and vð2Þ) as:

rðtÞ ¼ e�tbzð?Þþ e�t vð1Þ a1 cos!t�
ffiffiffiffiffi

D2

D1

r

a2 sin!t

� �

þ vð2Þ a2 cos!tþ
ffiffiffiffiffi

D1

D2

r

a1 sin!t

� �� �

: (64)

Therefore, the squared distance from baseline of the trajectory reads:

jjrðtÞjj2 ¼ e�2tb2 þe�2t a2

1
cos2!tþD2

D1

a2

2
sin2!t� 2a1a2

D2

D1

cos!t sin!t

�

a2

2
cos2!tþD1

D2

a2

1
sin2!tþ 2a1a2

D1

D2

cos!t sin!t

�

:

(65)

Note that when D2 ¼ D1, the connectivity matrix is purely anti-symmetric (and therefore normal)

and cannot produce amplified dynamics. In fact, in this case, the evolution of the distance from base-

line results in an exponential decay jjrðtÞjj ¼ e�t. Amplification therefore requires that D1 6¼ D2 and

specifically that Equation (60) holds.

We observe that while an anti-symmetric matrix (therefore normal, and with purely imaginary

eigenvalues) cannot produce amplified dynamics, nonetheless a matrix with purely imaginary eigen-

values is not necessarily normal, and can thus produce amplified dynamics. Qualitatively, this is

reflected in the dynamics tracing elliptical rotations (as opposed to circular rotations in the case of

an anti-symmetric matrix) which determine oscillations (and therefore rising and decaying phases) in

the distance from baseline. This analysis can be extended to the case of a superposition of K rank-2

mutually orthogonal channels with connectivity matrix given by:
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J2K ¼
X

K

k¼1

D
ðkÞ
1
vð2;kÞvð1;kÞT �D

ðkÞ
2
vð1;kÞvð2;kÞT ; (66)

where each channel k is defined by the connectivity vectors vð1;kÞ, vð2;kÞ (Figure 5B), defining together

a rank-2K rotational channel. If we write the initial condition along the connectivity vectors of the dif-

ferent K channels as

r0 ¼
X

K

k¼1

a
ðkÞ
1
vð1;kÞþa

ðkÞ
2
vð2;kÞ

� �

þbzð?Þ ¼
X

K

k¼1

r
ðkÞ
0

þbzð?Þ (67)

with
PK

k¼1
a
ðkÞ2
1

þa
ðkÞ2
2

� �

þb2 ¼ 1, we can write the resulting dynamics as the sum of the dynamics

within each channel as:

r2KðtÞ ¼
X

K

k¼1

rðt;rðkÞ
0
Þþ e�tbzð?Þ; (68)

where the terms rðt;rðkÞ
0
Þ have the same form of the second term of the right-hand side of

Equation (64).

Conditions on the initial state r0
In this paragraph we consider the rotational channel examined in Section ’Dynamics of a low-rank

rotational channel’ and study the conditions on the relationship between the initial condition r0 and

the connectivity vectors that ensure that the evoked dynamics be amplified. We first examine the

case of a rank-2 rotational channel, and then generalize to a superposition of orthogonal rank-2

channels.

We consider the equation for the distance from baseline of the dynamics for a rank-2 channel

(Equation (65)) and assume, without loss of generality, that D2>D1. We observe that when D2>D1, an

initial condition along vð1Þ does not evoke amplified dynamics. On the other hand, an initial condition

along vð2Þ can evoke amplified dynamics, depending on the values of D1 and D2. In fact, we have:

jjrðt;r0 ¼ vð1ÞÞjj2 ¼ e�2t
1þ D1

D2

� 1

� �

sin2!t

� �

<e�2t 8t

jjrðt;r0 ¼ vð2ÞÞjj2 ¼ e�2t
1þ D2

D1

� 1

� �

sin2!t

� � (69)

Therefore, when D2>D1 (resp. D1>D2), the initial condition r0 needs to have a substantial compo-

nent along the vector vð2Þ (resp. vð1Þ). To formalize this observation, we compute the peak time t�

when jjrðt;r0 ¼ vð2ÞÞjj2 takes the largest value. If Equation (60) holds and D2 � D1, the peak time can

be approximated by !t� »p=2.

We then examine the value of the distance from baseline jjrðt�; r0Þjj2 when the initial condition r0

is a linear combination of the vectors vð1Þ, vð2Þ and a vector orthogonal to both v’s, that is,

r0 ¼ a1 v
ð1Þ þ a2 v

ð2Þ þ b zð?Þ, with a2

1
þ a2

2
þ b2 ¼ 1. At the peak time we can write the distance from

baseline as:

jjrðt�;r0Þjj2 ¼ e�2t� D1

D2

a2

1
þD2

D1

a2

2
þb2

� �

: (70)

By requiring that, at the peak time, the distance from baseline is larger than unity we can derive

the following sufficient conditions on the component of the initial conditions along the vectors vð1Þ,

vð2Þ and zð?Þ:

D1

D2

a2

1
þD2

D1

a2

2
þb2>e2t

�
: (71)

When the component of the initial condition along zð?Þ is zero (b¼ 0), Equation (71) is satisfied

when
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a2

2
>

D2

D1

e2t
� � 1

� �

=
D2

2

D2

1

� 1

 !

: (72)

Equation (71) shows that in an amplified rotational channel the initial state r0 may have a signifi-

cant component orthogonal to the vector vð2Þ and yet be able to generate amplified dynamics. How-

ever, from Equation (70) we observe that, for a fixed value of D1 and D2 (with D2>D1), the

amplification decreases when the component along vð2Þ, that is, a2, decreases. Therefore, to have

amplification the component of r0 along vð2Þ should be sufficiently strong.

The above condition Equation (71) can be generalized to the case of a superposition of orthogo-

nal rank-2 rotational channels (see Equation (68)) if we assume that the peak time is approximately

the same when considering separately the dynamics within each rank-2 channel. Under these

assumptions, the distance from baseline at the peak time can be written as

jjrðt�;r0Þjj2 ¼ e�2t�
X

K

k¼1

D
ðkÞ
1

D
ðkÞ
2

a
ðkÞ2
1

þD
ðkÞ
2

D
ðkÞ
1

a
ðkÞ2
2

" #

þ e�2t�b2; (73)

and the condition for the relationship between initial condition and connectivity vectors in a rank-2K

channel becomes:

X

K

k¼1

D
ðkÞ
1

D
ðkÞ
2

a
ðkÞ2
1

þD
ðkÞ
2

D
ðkÞ
1

a
ðkÞ2
2

þb2>e2t
�
: (74)

When the component of the initial condition along zð?Þ is zero (b¼ 0) and the D
ðkÞ
i do not depend

on the channel k, Equation (74) is satisfied when

X

K

k¼1

a
ðkÞ2
2

>
D2

D1

e2t
� � 1

� �

=
D2

2

D2

1

� 1

 !

(75)

where the left-hand side represents the component of the initial condition on all the vectors vð2;kÞ’s.

From Equation (73) we note that, for fixed values of the D
ðkÞ
1

and D
ðkÞ
2

(assuming D
ðkÞ
2
>D

ðkÞ
1

for all k),

amplification decreases by decreasing the components of the initial condition on the vectors vð2;kÞ’s.

Therefore, to generate amplified dynamics, the components of the initial condition r0 on the vectors

vð2;kÞ’s should be sufficiently strong.

Correlation between initial and peak state
In this section we derive the expression for the correlation between the initial state r0 and the state

at the peak of the transient dynamics, for a rank-2K rotational channel consisting of K rotational

rank-2 channels (see Section ’Dynamics of a low-rank rotational channel’). We set the initial condition

to r0 ¼
PK

k¼1
a
ðkÞ
1
vð1;kÞ þPK

k¼1
a
ðkÞ
2
vð2;kÞ þ bzð?Þ and evaluate the state at the peak at time t� (corre-

sponding to the peak time when r0 has a strong component on the vð2;kÞ’s and D
ðkÞ
2

� D
ðkÞ
1
). The initial

condition and the peak state are therefore given by:

rð0Þ ¼
X

K

k¼1

a
ðkÞ
1
vð1;kÞþ

X

K

k¼1

a
ðkÞ
2
vð2;kÞþbzð?Þ

rðt�Þ ¼ 1

et
�

X

K

k¼1

�vð1;kÞ

ffiffiffiffiffiffiffiffi

D
ðkÞ
2

D
ðkÞ
1

v

u

u

t a
ðkÞ
2

þ vð2;kÞ

ffiffiffiffiffiffiffiffi

D
ðkÞ
1

D
ðkÞ
2

v

u

u

t a
ðkÞ
1

2

4

3

5þ 1

et
� bz

ð?Þ:

(76)

From the mutual orthogonality between vð1;kÞ, vð2;kÞ, and zð?Þ it follows that
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jjrð0Þjj2 ¼ 1

jjrðt�Þjj2 ¼ 1

e2t
�

X

K

k¼1

D
ðkÞ
2

D
ðkÞ
1

a
ðkÞ2
2

þD
ðkÞ
1

D
ðkÞ
2

a
ðkÞ2
1

" #

þ 1

e2t
� b

2:
(77)

Thus, we can write the correlation between the initial condition and the peak state as

rð0Þ � rðt�Þ
jjrð0Þjj jjrðt�Þjj ¼

PK
k¼1

ffiffiffiffiffiffi

D
ðkÞ
1

D
ðkÞ
2

r

�
ffiffiffiffiffiffi

D
ðkÞ
2

D
ðkÞ
1

r� �

a
ðkÞ
1
a
ðkÞ
2

þbzð?Þ

et
� jjrðt�Þjj : (78)

If the initial condition has a strong component on the vectors vð2Þ’s (and the component on zð?Þ

can be neglected, that is, b¼ 0), so that a
ðkÞ2
1

¼ �2 and a
ðkÞ2
2

¼ 1� �2, then the correlation between ini-

tial and peak state satisfies

rð0Þ � rðt�Þ
jjrð0Þjj jjrðt�Þjj /

X

K

k¼1

a
ðkÞ
1
a
ðkÞ
2

¼K�; (79)

and equal to zero when the initial condition is a linear combination of the vectors vð2Þ’s.

Single-trial analysis of population OFF responses
In this section we focus on the single-trial structure of the dynamics generated by the network and

single-cell models. In particular, we consider a setting where dynamics are amplified and examine

the amount of single-trial variability along specific directions in the state space: the direction corre-

sponding to the maximum amplification of the dynamics, denoted by rampl, and a random direction

rrand. Variability along a given direction z0 at time t can be written as a function of the covariance

matrix CðtÞ of the population activity at time t as:

varðz0; tÞ ¼ zT
0
CðtÞz0: (80)

In particular, for a given direction z0, we examine the ratio between the variability at the time of

maximum amplification t¼ t� and the variability at time t¼ 0 (corresponding to the end of stimulus

presentation), which we termed variability amplification (VA), defined as:

VAðz0Þ ¼
varðz0; t�Þ
varðz0;0Þ

(81)

We show that the network model predicts that the variability should increase from t¼ 0 to t¼ t�

along the amplified direction rampl, but not along a random direction rrand, resulting in the relation-

ship VAðramplÞ>VAðrrandÞ. In contrast, in the single-cell model the presence of VA depends on the

shapes of the single-cell responses. Further, we show that changes in VA between the amplified and

random directions are due to distinct mechanisms in the network and single-cell models: in the net-

work model they are due to the inter-neuron correlations generated by network recurrency; in the

single-cell model they directly stem from changes in the variance of single neurons in the

population.

Structure of single-trial responses in the network model
In the following we examine the structure of single-trial population OFF responses generated by a

general linear network model. We show that the network model is able to reproduce the experimen-

tal observations on VA under the minimal assumption that the variability in the single-trial responses

is due to the noise in the initial condition r0 at stimulus offset. The analysis can nevertheless be

extended to the case where external input noise is fed into the network without affecting the key

results.

We consider a linear network model with connectivity J and a single stimulus s modeled by the

trial-averaged initial condition r0. We assume that the trial-to-trial noise in the initial condition is

Gaussian, so that for trial n the corresponding initial condition r
ðnÞ
0

is given by
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r
ðnÞ
0

¼ r0þhðnÞ; (82)

where hhðnÞ
i i ¼ 0 and hhðnÞ

i h
ðnÞ
j i ¼ s2dij, so that hrðnÞ

0
i ¼ r0. The solution of the linear system can thus be

analytically expressed as:

rðnÞðtÞ ¼ Pt r
ðnÞ
0

¼ exp t ðJ� IÞð Þ ðr0þhðnÞÞ;
(83)

where the time-dependent matrix Pt is the propagator of the system (Arnold, 1973).

We start by computing the covariance matrix of the population activity at an arbitrary time t as

defined by:

CðtÞ ¼ h rðnÞðtÞ� hrðnÞðtÞi
� �

rðnÞðtÞ� hrðnÞðtÞi
� �T

i: (84)

Using Equations (83) and (84), we can write the covariance matrix as (Farrell and Ioannou,

1996; Farrell and Ioannou, 2001):

CðtÞ ¼ hPth
ðnÞhðnÞTPT

t i ¼ PthhðnÞhðnÞTiPT
t

¼ s2PtP
T
t ;

(85)

so that Cð0Þ ¼ s2I.

At a given time t ¼ t�, let the SVD of the propagator is given by

Pt� ¼
X

N

i¼1

sim
ðiÞnðiÞT ¼MSNT ; (86)

where the singular values si are positive numbers. If none of the singular values si is larger than

unity, no initial condition r0 can lead to amplified dynamics at time t�, meaning that for all initial con-

ditions jjrðt�Þjj<1(Bondanelli and Ostojic, 2020). Instead, suppose that the first K singular values

fskgKk¼1
are larger than unity, while the remaining N�K singular values are smaller than one (with

arbitrary K). Under this condition, any initial condition r0 consisting of a linear combination of the

first K vectors nðkÞ (i.e. r0 ¼
PK

k¼1
akn

ðkÞ) will be amplified, so that the norm of the population vector

at time t� is larger than one (Bondanelli and Ostojic, 2020):

rðt�Þ ¼ Pt�r0 ¼
X

K

k¼1

akskm
ðkÞ

jjrðt�Þjj>1
(87)

In the following analysis, we explore this last scenario, where the first K singular values are larger

than unity. We make the following two assumptions. First, we assume that the initial condition is a

linear combination of the first K vectors nðkÞ’s, so that the amplified direction is given by

rampl ¼ rðt�Þ=jjrðt�Þjj (see Equation (87)). Notably, for any specified initial condition r0 defined in this

way, the following analysis holds for all times t� for which jjrðt�Þjj>1, including the peak time where

the distance from baseline is maximum. Second, we assume that averages of the first or second

powers of the singular values are of order (at most) one, that is,
PM

i¼1
si=M;

PM
i¼1

s2

i =M ¼Oð1Þ for any
integer M. This assumption holds for typically studied network topologies (e.g. Gaussian random,

low-rank networks), where a few amplified dimensions (corresponding to si>1) coexist with many

non-amplified ones (corresponding to si<1) (see Bondanelli and Ostojic, 2020).

Using Equation (84) and the SVD of the propagator Pt� (Equation (86)), we can write the covari-

ance matrix at time t� as

Cðt�Þ ¼ s2MS2MT (88)

Thus, we can compute the amount of variability along the amplified direction rampl (Equation (87))

and a random direction rrand (with rrand ¼
PN

i¼1
bim

ðiÞ, with bi ~Nð0;1=NÞ), using Equation (80) as:
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varðrampl;0Þ ¼ s2

varðrrand;0Þ ¼ s2

varðrampl; t
�Þ ¼ s2

X

K

k¼1

a2

ks
4

k

�

X

K

k¼1

a2

ks
2

k � s2

½varðrrand; t�Þ�rrand ¼ s2
h

X

N

i¼1

b2

i s
2

i

i

¼ s2
X

N

i¼1

½b2

i �s2

i ¼
s2

N

X

N

i¼1

s2

i ¼Oðs2Þ;

(89)

where in the third equation the sum runs only over the singular values larger than one, while in the

fourth equation the sum runs over all singular values (both larger and smaller than unity), and brack-

ets denote average over realizations of rrand. Equation (89) shows that in a linear network model the

variability along the amplified direction rampl increases from the initial time t¼ 0 to the peak time

t¼ t�, while the variability along a random direction does not, and instead decreases. We quantified

these observations by computing the VA, defined in Equation (81) (Figure 8). Using Equation (89)

we obtain:

VAðrrandÞ ¼Oð1Þ
VAðramplÞ� 1;

(90)

thus showing that, for a linear network model, VA is larger when computed for the amplified direc-

tion than a random direction.

Shuffled responses
In the following we compare the VA of the original responses with the VA obtained from the

responses where the trial labels have been shuffled independently for each cell. The covariance

matrix of the shuffled responses CðshÞðtÞ is obtained by retaining only the diagonal elements of the

real covariance matrix CðtÞ:

Csh
ij ðtÞ ¼CijðtÞdij ¼

X

N

l¼1

m
ðlÞ
i s2

l m
ðlÞ
j dij: (91)

The first two quantities in Equation (89) computed using Csh instead of C do not change, since

Cð0Þ is already diagonal. Instead, for shuffled responses the variability along both directions at the

peak time t� is of order Oðs2Þ, since:

½varðrrand; t�; shuffledÞ�rrand;fmðkÞgk ¼ s2
X

N

i;j;l¼1

rrand;im
ðlÞ
i s2

l m
ðlÞ
j dijrrand;j

" #

¼ s2
X

N

i;j;l¼1

s2

l dij½rrand;irrand;j�½m
ðlÞ
i m

ðlÞ
j � ¼ s2

N2

X

N

i;j;l¼1

s2

l dij ¼
s2

N

X

N

l¼1

s2

l ¼Oðs2Þ:
(92)

Following the same steps it is possible to show that ½varðrampl; t
�; shuffledÞ�rampl;fmðkÞgk ¼Oðs2Þ. In fact

if we set, according to Equation (87), rampl ¼
PK

k¼1
akskm

ðkÞ=C, where C¼PK
k¼1

a2

ks
2

k ¼Oð1Þ, we

have:

½varðrampl; t
�; shuffledÞ�rampl ;fmðkÞgk ¼ s2

C2

X

N

i;j;l¼1

X

K

k1 ;k2¼1

sk1sk2s
2

l ½ak1ak2 �½mðk1Þ
i m

ðk1Þ
j m

ðlÞ
i m

ðlÞ
i �dij

¼ s2

C2

X

N

i;l¼1

X

K

k1 ;k2¼1

sk1sk2s
2

l ½ak1ak2 � dlk1dk1k2
1

N2
þ dk1k2

1

N2

� �

¼ s2

C2
ðOð1=NÞþOð1ÞÞ ¼Oðs2Þ;

(93)

where in the last equality we assumed that ½a2

k �»1=K if ak ~Nð0;1=KÞ. To summarize, for shuffled

responses we have:
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varðrampl;0; shuffledÞ ¼ s2

varðrrand;0; shuffledÞ ¼ s2;
(94)

so that the VA along both directions is given by:

VAðrrandÞ ¼Oð1Þ
VAðramplÞ ¼Oð1Þ; (95)

implying a weaker modulation of the VA between random and amplified direction for shuffled

responses with respect to the original responses. These analyses show that in the network model,

the difference in the VA between the amplified and random directions is a result of the recurrent

interactions within the network, reflected in the off-diagonal elements of the covariance matrix CðtÞ,
and it therefore cannot be explained solely by changes in the variability of single units.

Structure of single-trial responses in the single-cell model
Here we examine the structure of the single-trial population responses generated by the single-cell

model (Equation (1)). We consider single-trial responses rðnÞðtÞ to a single stimulus generated by

perturbing the initial state of the trial averaged responses r0, yielding

r
ðnÞ
i ðtÞ ¼ r

ðnÞ
0;i LiðtÞ

¼ ðr0;i þh
ðnÞ
i ÞLiðtÞ;

(96)

where hðnÞ has zero mean and variance equal to s2 (hhðnÞ
i i ¼ 0 and hhðnÞ

i h
ðnÞ
j i ¼ s2dij). From Equa-

tion (96) we can compute the covariance matrix of the population response for the single-cell model

as:

CijðtÞ ¼ LiðtÞhhðnÞ
i h

ðnÞ
j iLjðtÞ

¼ s2 L2i ðtÞdij:
(97)

We can obtain the variability along a given direction z0 as:

varðz0; tÞ ¼ s2
X

N

i¼1

z2
0;iL

2

i ðtÞ: (98)

Notably, the term on the right-hand side is proportional to the norm of the dynamics that would

be evoked by the initial condition z0. In the single-cell model, the variability is maximally amplified

along the initial condition that leads to largest amplification of the trial averaged dynamics. In con-

trast, in the network model, the variability is maximally amplified along the amplified direction of the

trial-averaged dynamics, which is in general orthogonal to the corresponding initial condition

(see Materials and methods, Section ’Conditions on the initial state r0’; Figure 6C,E). In general, the

relationship between the modulation of the variability along the amplified direction and modulation

along a random direction depends on the specific shape of the temporal filters LiðtÞ, and we used

simulations of the fitted model to determine it. We can however contrast the single-trial structure

generated by the single-cell model with the structure generated by the recurrent model by noting

that the covariance matrix given by Equation (97) is diagonal, and is therefore equal to the covari-

ance matrix of the shuffled responses, CijðtÞ ¼Csh
ij ðtÞ. This implies that no difference is observed

when computing the VA for the amplified and random directions for the real and shuffled responses

(i.e. VAðrrandÞ ¼VAðrrand; shuffledÞ and VAðramplÞ ¼VAðrampl; shuffledÞ), indicating that changes in the

trial-to-trial variability can be fully explained in terms of changes in the variability of single units.

In Figure 8E,G,F,H, for both network and single-cell models, single-trial population responses

were generated by drawing the single-trial initial conditions from a random distribution with mean r0

and covariance matrix computed from the single-trials initial conditions of the original data (across

neurons for the single-cell model, across PC dimensions for the network model). The results do not

substantially change if we draw the single-trial initial conditions from a random distribution with
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mean r0 and isotropic covariance matrix (r
ðnÞ
0

~N r0;Cð0Þð Þ, with Cð0Þ ¼ s2 I), as assumed in the analy-

sis above (not shown).

Software
Numerical simulations and data analyses were done using Python 3.6 (using NumPy [Harris et al.,

2020], SciPy [Virtanen et al., 2020], and the scikit-learn package [Pedregosa et al., 2011]). Code is

available at https://github.com/gbondanelli/OffResponses; Bondanelli, 2021; copy archived at swh:

1:rev:2438e688ad719eb9870af8c032803a7367fe1140. Surrogate data sets for model validation (see

Materials and methods, Section ’Control data sets’, Figure 3, Figure 3—figure supplement 2, Fig-

ure 3—figure supplement 3) were generated using the Matlab code provided by Elsayed and Cun-

ningham, 2017 available at https://github.com/gamaleldin/TME.
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