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Algorithmic scoring methods are widely used in the finance industry for several decades in
order to prevent risk and to automate and optimize decisions. Regulatory requirements as
given by the Basel Committee on Banking Supervision (BCBS) or the EU data protection
regulations have led to an increasing interest and research activity on understanding black
box machine learning models by means of explainable machine learning. Even though this
is a step into a right direction, such methods are not able to guarantee for a fair scoring as
machine learning models are not necessarily unbiased and may discriminate with respect
to certain subpopulations such as a particular race, gender, or sexual orientation—even if
the variable itself is not used for modeling. This is also true for white box methods like
logistic regression. In this study, a framework is presented that allows analyzing and
developing models with regard to fairness. The proposed methodology is based on
techniques of causal inference and some of the methods can be linked to methods from
explainable machine learning. A definition of counterfactual fairness is given together with
an algorithm that results in a fair scoring model. The concepts are illustrated by means of a
transparent simulation and a popular real-world example, the German Credit data using
traditional scorecard models based on logistic regression and weight of evidence variable
pre-transform. In contrast to previous studies in the field for our study, a corrected version
of the data is presented and used. With the help of the simulation, the trade-off between
fairness and predictive accuracy is analyzed. The results indicate that it is possible to
remove unfairness without a strong performance decrease unless the correlation of the
discriminative attributes on the other predictor variables in the model is not too strong. In
addition, the challenge in explaining the resulting scoring model and the associated
fairness implications to users is discussed.

Keywords: scoring, machine learning, causal inference, German credit data, algorithm fairness, explainable
machine learning

1 INTRODUCTION

The use of algorithmic scoring methods is very common in the finance industry for several decades in
order to prevent risk and to automate and optimize decisions (Crook et al., 2007). Regulatory
requirements as given by the Basel Committee on Banking Supervision (BCBS) (European Banking
Authority, 2017) or the EU data protection regulations (Goodman and Flaxman, 2017) have led to an
increasing interest and research activity on understanding black box machine learning models by
means of explainable machine learning (cf. e.g., Bücker et al., 2021). Even though this is a step into a
right direction, such methods are not able to guarantee for a fair scoring as machine learning models

Edited by:
Jochen Papenbrock,

NVIDIA GmbH, Germany

Reviewed by:
Laura Vana,

Vienna University of Economics and
Business, Austria
Henry Penikas,

National Research University Higher
School of Economics, Russia

*Correspondence:
Gero Szepannek

gero.szepannek@hochschule-
stralsund.de

Specialty section:
This article was submitted to

Artificial Intelligence in Finance,
a section of the journal

Frontiers in Artificial Intelligence

Received: 17 March 2021
Accepted: 02 August 2021

Published: 14 October 2021

Citation:
Szepannek G and Lübke K (2021)

Facing the Challenges of Developing
Fair Risk Scoring Models.

Front. Artif. Intell. 4:681915.
doi: 10.3389/frai.2021.681915

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6819151

METHODS
published: 14 October 2021

doi: 10.3389/frai.2021.681915

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.681915&domain=pdf&date_stamp=2021-10-14
https://www.frontiersin.org/articles/10.3389/frai.2021.681915/full
https://www.frontiersin.org/articles/10.3389/frai.2021.681915/full
http://creativecommons.org/licenses/by/4.0/
mailto:gero.szepannek@hochschule-stralsund.de
mailto:gero.szepannek@hochschule-stralsund.de
https://doi.org/10.3389/frai.2021.681915
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.681915


are not necessarily unbiased andmay discriminate with respect to
certain subpopulations such as a particular race, gender, or sexual
orientation—even if the variable itself is not used for modeling.
This is also true for white box methods like logistic regression.

In the study by O’Neil (2016), several popular examples are
listed as to how algorithmic decisions enter and potentially
negatively impact everyday lives. An expert group on the AI
setup by the European Commission has worked out an
assessment list for trustworthy artificial intelligence (ALTAI),
where one requirement consists in diversity, non-discrimination,
and fairness (EU Expert Group on AI, 2019).

There are different definitions of algorithm fairness. An
overview is given by Verma and Rubin (2018) and will be
summarized in Section 2. In the remainder of the section, the
framework of counterfactual fairness is introduced as well as an
algorithm that allows developing fair models based on techniques
of causal inference (Pearl et al., 2016). In the study by Kusner and
Loftus (2020), three tests on algorithmic fairness are presented.

Subsequently, in Section 3, fairness is discussed from the usage
context of risk scoring models: as opposed to existing crisp
fairness definitions a group unfairness index is introduced to
quantify the degree of fairness of a given model. This allows for a
fairness comparison of different models. Furthermore, it is shown
how partial dependence profiles (Friedman, 2001) as they are
popular in the field of explainable AI can be adapted in order to
enable a visual fairness analysis of a model.

With the scope of the financial application context the
aforementioned algorithm is applied to real-world data of credit
risk scoring: the German Credit data which is publicly available by
the UCImachine learning data repository (Dua and Graff, 2017). The
data are very popular and have been used in numerous studies (cf. e.g.,
Louzada et al., 2016). In contrast to past publications, we used a
corrected version of the data in our study as it has turned out that the
original data were erroneous (Groemping, 2019). The latter
observation has to be highlighted as the data from the UCI
repository have been frequently used in credit scoring research
during the last decades and thus have strongly influenced research
results during the last years. The data and its correction are described
in Section 4.1. In Section 4.2, the design of a simulation study based
on the corrected German credit data is set up and its results are
presented in Section 5: both a traditional scorecard model using
weights of evidence and logistic regression as well as a fairness-
corrected version of it are compared on the simulated datawith regard
to the trade-off between fairness and predictive accuracy. Finally, a
summary of our results is presented in Section 6.

2 FAIRNESS DEFINITIONS

2.1 Overview
In the literature, different attempts have been made in order to
define fairness. An overview together with a discussion is given in
Verma and Rubin (2018). In this section, a brief summary of
important concepts is given using the following notation:

• Y is the observed outcome of an individual. Credit risk
scoring typically consists in binary classification, that is,

Y � 1 denotes a good and Y � 0 denotes a bad performance
of a credit.

• P is a set of one or more protected attributes. With regard to
these attributes fairness should be ensured.

• X are the remaining attributes used for the model
(X ∩ P � ∅).

• S is the risk score, typically a strictly monotonic function in
the posterior probability Pr(Y � y|X � x, P � p). Without loss
in generality, in the context of this study both are chosen to
be identical.

• Ŷ ∈ {0, 1} is a decision based on the score usually given by
Ŷ � 1{S(Y�1)≥s0} where s0 is cut off.

Typical examples of protected attributes are gender, race,
or sexual orientation. An intuitive requirement of fairness is
as follows: 1) to use only variables of X but no variables of P
for the risk score model (unawareness). Note that while it is
unrealistic that an attribute like sexual orientation directly
enters the credit application process it has been
demonstrated that this information is indirectly available
from our digital footprint such as our Facebook profile
(Youyou et al., 2015) and recent research in credit risk
modeling proposes to extend credit risk modeling by
including such alternative data sources (De Cnudde et al.,
2019). From this it is easy to see the fairness definition of
unawareness is not sufficient.

Many fairness definitions are based on the confusion matrix as
it is given in Table 1: Confusion matrices are computed
depending on P and resulting measures are compared.

Fairness definitions related to the acceptance rate Pr(Ŷ � y)
are as follows: 2) Group fairness Pr(Ŷ � 1 | P) � Pr(Ŷ � 1)
requires the acceptance rate to be independent of the
protected attributes P. In addition, 3) conditional statistical
parity Pr(Ŷ � 1 | X, P) � Pr(Ŷ � 1 | X) requires this
independence to hold for any combination of realizations of a
set of legal predictors X. 4) Equal opportunity Pr(Ŷ � 1 | Y �
1, P) � Pr(Ŷ � 1 | Y � 1) and 5) predictive equality Pr(Ŷ � 0 |
Y � 0, P) � Pr(Ŷ � 0 | Y � 0) are based on the sensitivity and
specificity while balance for the positive and negative class require
the expected scores 6) E (S|Y � 1, P) � E (S|Y � 1) and 7) E (S|Y �
0, P) � E (S|Y � 0) to be independent of the protected attributes.

Fairness definitions based on the predicted posterior
probability Pr (Y) are as follows: 8) Predictive parity Pr(Y � 1 |
Ŷ � 1, P) � Pr(Y � 1 | Ŷ � 1) ensures the same precision
independent of the protected attributes. In addition, 9)
conditional use accuracy equality Pr(Y � y | Ŷ � y, P) � Pr(Y �
y | Ŷ � y) extends this definition to all levels of Y. In contrast, 10)
calibration Pr(Y � 1|S � s, P) � Pr(Y � 1|S � s) ensures same
predicted posterior probabilities given a score, independently of
the protected attributes.

An alternative yet intuitive fairness definition is given by 11)
individual fairness: similar individuals i and j should be assigned
similar scores, independently of the protected attributes: d1 (S(xi),
S (xj)) ≤ d2 (xi, xj) where d1 (.,.) and d2 (.,.) are distance metrics in
the space of the scores and the predictor variables, respectively.
12) Causal discrimination requires a credit decision Ŷ(x) for two
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individuals with identical values in the attributes X � x to be
constant independently of the protected attributes P. 13)
Counterfactual fairness additionally requires that Ŷ does not
depend on any descendant of P and will be explained in detail
in Section 2.3. For an in-depth overview and discussion of the
different fairness definitions it is referred to in Verma and Rubin
(2018).

It should be noted that all these criteria can be incompatible so
that it can be impossible to create a model that is fair with respect
to all criteria simultaneously (Chouldechova, 2016).

2.2 Causal Inference
Pearl (2019) distinguishes three levels of causal inference as
follows:

1) Association: Pr (y|x): Seeing: “What is?,” that is, the probability
of Y � y given that we observe X � x.

2) Intervention: Pr (y|do(x)): Manipulation: “What if?,” that is,
the probability of Y � y given that we intervene and set the
value of X to x.

3) Counterfactuals: Pr (yx|x′, y′): Imagining: “What if I had acted
differently?,” that is, the probability of Y � y if X had been x
given that we actually observed x′, y′.

For levels 2 and 3, subject matter knowledge about the causal
mechanism that generates the data is needed. This structural
causal model can be encoded in a directed acyclic graph (DAG).
The basic elements of such a graph reveal if adjustment for
variable C may introduce or remove bias in the causal effect of X
on Y (see e.g., Pearl et al., 2016):

• Chain: X→ C→ Y, where C is a mediator between X and Y
and adjusting for C would mask the causal effect of X on Y.

• Fork: X ← C → Y, where C is a common cause of X and Y
and adjusting for Cwould block the noncausal path between
X and Y.

• Collider: X → C← Y, where C is a common effect of X and Y
and adjusting forCwould open a biasing path betweenX andY.

Luebke et al. (2020) provide easy to follow examples to
illustrate these. In order to calculate the counterfactual (level
3) the assumed structural causal model and observed data is used
in a three-step process as follows:

1) Abduction: Use the evidence, that is, data to determine the
exogeneous variables, for example, error term, in a given
structual causal model. For example assume a causal model
with additive exogeneous Y � f(X) + U and calculate u for a
given observation x′, y′.

2) Action: Substitute in the causal model the values for Xwith the
counterfactual x (instead of x′).

3) Prediction: Calculate Y based on the previous steps.

For a more detailed introduction the reader is referred to Pearl
et al. (2016).

2.3 Counterfactual Fairness
Causal counterfactual thinking enables the notion of
counterfactual fairness as follows:

Pr(Ŷp | X � x, P � p) � Pr(Ŷp′ | X � x, P � p)

“Would the credit decision have been the same if the
protected attribute had taken a different value (e.g. if the
applicant had been male instead of female)?”

Kusner et al. (2017) present a FairLearning algorithm which
can be considered as a preprocessing debiaser in the context of
Agrawal et al. (2020), that is, a transformation of the attributes
before the modeling by means of the subsequent machine learning
algorithm. It consists of three levels as follows:

1) Prediction of Y is only based on non-descendants of P.
2) Use of postulated background variables.
3) Fully deterministic model with latent variables where the error

term can be used as an input for the prediction of Y.

It should be noted that in general causal modeling is non-
parametric and therefore any machine learning method may be
employed. In order to illustrate the concept we utilize a (simple)
linear model with a least squares regression of the attributes X (e.g.,
status in the example below) on the protected attributes P (e.g.,
gender) assuming an independent error. The resulting residuals (E)
are subsequently used to model the Y (e.g., default) instead of the
original attributes X which may depend on the protected attributes
P. Our algorithm can be summarized as follows:

1) Regress X on P.
2) Calculate residuals E � X − X̂.
3) Model Y by E.

3 ANALYZING FAIRNESS OF CREDIT RISK
SCORING MODELS

3.1 Quantifying Fairness
The definitions as presented in the previous subsection are crisp
in the sense that a model can be either fair or not. It might be

TABLE 1 | Confusion matrix and measures derived from it.

Y = 1 Y = 0

Ŷ � 1 True positives False positives Precision: Pr(Y � 1 | Ŷ � 1)

Ŷ � 0 False negatives True negatives

Sensitivity: Pr(Ŷ � 1 | Y � 1) Specificity: Pr(Ŷ � 0 | Y � 0)
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desirable to quantify the degree of fairness of a model. In Section
2 different competing definitions of fairness are presented. It can be
shown that sometimes they are even mutually exclusive, for example,
in Chouldechova (2016) it is shown that for a calibrated model
(i.e., Pr(Y � 1|S � s, P) � Pr(Y � 1|S � s), cf. above) not both equal
opportunity (i.e., Pr(Ŷ � 1 | Y � 1, P) � Pr(Ŷ � 1 | Y � 1)) and
predictive equality (i.e., Pr(Ŷ � 0 | Y � 0, P) � Pr(Ŷ � 0 | Y � 0))
can be given as long as there are different prior probabilities Pr(Y � 1|
P � p) with respect to the protected attributes. Although each of the
definitions can bemotivated for the credit scoring business context the
group fairness which takes into account for the acceptance rates seems
to be of major relevance. For this reason we concentrate on group
fairness in order to quantify fairness of credit scoring models: By
Pr(Ŷ � 1 | P) the distribution of Ŷ with regard to the protected
attributes are given. If P ∈ {0, 1} is binary, like gender, a popular
measure from scorecard development can be adapted, the population
stability index (PSI, cf. e.g., Szepannek, 2020). Moreover, there are
thumb rules available from literature that allows for an interpretation:
PSI > 0.25 is considered as unstable (Siddiqi, 2006). For our purpose, a
group unfairness index (GUI) is defined as follows:

GUI � ∑1
Ŷ�0

(Pr(Ŷ | P � 1) − Pr(Ŷ | P � 0)) log Pr(Ŷ | P � 1)
Pr(Ŷ | P � 0)( ).

(1)

Analogously a similar index can be defined for other fairness
definitions based on the acceptance rate Pr(Ŷ � y) such as equal
opportunity (cf. Section 2.1). Nonetheless for the purpose of this
study and the application context of credit application risk
scoring we restrict to group fairness.

3.2 Visual Analysis of Fairness
A risk score SdPr(Y � y|X � x, P � p) that is independent of P
necessarily results in group fairness as Ŷ � 1{S(Y�1)≥s0}. From the field
of explainable machine learning partial dependence profile (PDP)
plots (Friedman, 2001) are known to be one of the most popular
model-agnostic approaches for the purpose of understanding feature
effects. The idea of PDPs can be adapted to visualize a model’s partial
profile with respect to the protected attributes P even if they are not
necessarily among the predictors X:

PDP(P) � ∫ S(Y � 1 | X, P)dFX, (2)

that is, average prediction given the protected attributes P take the value
p. For our purpose, for a data set with n observations (xi, pi) a protected
attribute dependence profile can be estimated by the conditional average

P̂DP(p) � 1
np

∑
pi�p

S(Y � 1 | pi, xi). (3)

In case of a fair model the protected attribute dependence
profile should be constant.

4 SIMULATION EXPERIMENT

4.1 From German Credit Data to South
German Credit Data
Traditionally, credit scoring research has suffered from a lack of
available real-world data for a long time as credit institutes are
typically not willing to share their internal data. The German credit
data have been collected by the StatLog project (Henery and Taylor,
1992) and go back to Hoffmann (1990). They are freely available
from the UCI machine learning repository (Dua and Graff, 2017)
and consist of 21 variables: 7 numeric as well as 13 categorical
predictors and a binary target variable where the predicted event
denotes the default of a loan. The default rate on the data is has been
oversampled to 0.3 on the available UCI data while the original
sources report a prevalence of bad credits around 0.05.

In the recent past, a few data sets have been made publicly
available, for example, by the peer-to-peer lending company
LendingClub1 or FICO2 but a still a huge number of studies rely
on the German credit data (Louzada et al., 2016). This is even more
notable as in Groemping (2019) it has been figured out that the data
available in the UCI machine learning repository are erroneous, for
example, the percentage of foreign workers in the UCI data is 0.963
(instead of 0.037) because the labels have been swapped. In total,
eleven of the 20 predictor variables had to be corrected. For seven of
them (A1: Status of existing checking account, A3: Credit history, A6:
Savings account/bonds, A12: Property, A15: Housing, and A20:
Foreign worker) the label assignments were wrong and for one of
them (A9: Personal status and sex) even two of the levels (female non-
singles and male singles) had to be merged as they can’t be
distinguished anymore. In addition, four other variables (A8:
Installment rate in percentage of disposable income, A11: Present
residence since, A16: Number of existing credits at this bank, and
A18: Number of people being liable to provide maintenance for)
which originally represent numeric attributes that are only available
after binning such that their numeric values represent nothing but
group indexes. For this reason the values of these variables are

TABLE 2 | Information values of the scorecard variables and the removed variable
personal status and sex.

Variable Status Credit history Duration Purpose Savings

IV 0.672 0.298 0.254 0.238 0.154

TABLE 3 | Construction of the variable gender for the training data.

Status Female Male Default rate

No checking account 0 197 0.452
. . . < 0 DM 0 184 0.397
0 < � . . . < 200 DM 44 0 0.205
. . . > � 200 DM/salary for at least 1 year 275 0 0.105

Note that the model does not use the ethically critical variables Personal status and sex
and Foreign worker nor the new simulated protected variable Gender (cf. Section 5) and
thus fulfills the definition of fairness through unawareness. But as it can be seen in the
results of the next Section simply preventing protected variables from entering the model
is not sufficient to obtain a fair scoring model (cf. also Kusner et al., 2017).

1https://www.lendingclub.com/.
2https://community.fico.com/s/explainable-machine-learning-challenge.
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replaced by the corresponding bin labels. A table of all the changes
can be found in the Supplementary Table S1. The corrected data set
has been made publicly available on the UCI machine learning
repository under the name south German credit data3

(Groemping, 2019).
For further modeling in this study the data have been

randomly split into 70% training and 30% test data. Note that
the size of the data is pretty small but as traditional scorecard
development requires a manual plausibility check of the binning
cross validation is not an option here (cf. also Szepannek, 2020).

4.2 Simulation of the Protected Attribute
A simulation study is conducted in order to compare both a
traditional and a fair scoring model under different degrees of
influence of the protected attributes. Note that the original

variable personal status and sex (A9) does not allow for a
unique distinction between men and women (cf. previous
subsection) and cannot be used for this purpose. For this
reason this variable has been removed from the data.

In traditional scorecard modeling information values (IVs,
Siddiqi, 2006) are often considered to assess the ability of single
variables to discriminate good and bad customers. Table 2 shows the
IVs for the scorecard variables. In order to analyze the impact of
building fair scoring models the data have been extended by an
artificial protected variable Gender to mimic A9. For this purpose the
variable Status with largest IV has been selected to construct the new
protected variable. As it is shown inTable 3, in thefirst step two of the
status-levels are assigned to women and the other two variables are
assigned to men, respectively. In consequence, women take the lower
risk compared to men from their corresponding status levels in the
artificial data. The resulting graph is

Gender→ Status→Y.

As Lemma 1 of Kusner et al. (2017) states Ŷ can only be
counterfactually fair if it is function of the non-descendants of P
we illustrate the concept by using a chain where by construction
the attribute X (Status) is a descendant of the protected attribute
P. The idea can be generalized for larger sets of X, P.

In a second step the strength effect of gender on the status is
varied by randomly switching between 0% and 50% of themales into
females and vice versa. As a result, the designed effect of gender on
status is disturbed to some extent and only holds for the remaining
observations. The degree of dependence between both categorical
variables is measured using Cramer’s V (Cramér, 1946, 282).

5 RESULTS AND DISCUSSION

Logistic regression still represents the gold standard for credit risk
scorecard modeling (Crook et al., 2007; Szepannek, 2020) even if in
the recent past many studies have demonstrated potential benefits
from using modern machine learning algorithms (cf. e.g., Lessmann

FIGURE 1 | Automatically created bins (A) for the variable duration and manual update (B): a plausible trend of increasing risk with increading duration.

TABLE 4 | Default rates of the variable property on the training data.

Property Non-default Default

Unknown/no property 0.79 0.21
Car or other 0.72 0.28
Building soc. savings agr./life insurance 0.73 0.27
Real estate 0.54 0.46

TABLE 5 | Coefficients of the logistic regression model.

Variable β̂j

Intercept −0.910
WOE (Status) 0.830
WOE (Duration) 1.063
WOE (Purpose) 1.098
WOE (Credit history) 0.838
WOE (Savings) 0.758

3https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
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et al., 2015; Bischl et al., 2016; Louzada et al., 2016). For this reason, a
traditional scorecard using logistic regression is created as a
baseline model for the simulation study. The model is built
using preliminary automatic binning (based on the χ2 statistic
and a maximum set to six bins per variable) with subsequent
assignment of weights of evidence (WOE(x) � log(f(x|y�1)f(x|y�0))) to the
bins (Xie, 2020). For plausibility reasons the bins of four of the

variables (Duration, Employment duration, Amount, as well as
Age) are manually updated where only one of them (Duration) did
enter the final model after BIC based stepward forward variable
selection (cf. Figure 1).

For plausibility reasons (i.e., the observed default rates for the
different levels) the variable property has been removed from the data
as from a business point of view there is no plausible reason for the
observed increase in risk for owners of cars, life insurance or real estate
(cf.Table 4). After forward variable selection using BICon the training
data the resulting scorecard model uses five input variables as they are
listed in Table 2. The equation of the resulting logistic regression
model is given in Table 5. The corresponding scorecard model with
frequencies and default rates for all classes can be found in Table 6.

In addition to the traditional scorecard baseline model fair
models are developed according to the algorithm presented in
Section 2.3 by regressing WOE (Status) on the protected
attribute Gender and using the residuals instead of the original
variable Status as a new input variable, a level 3 assumption for a
causal model in Kusner et al. (2017).

Figure 2 shows the results of the simulation study for different
levels of dependence (measured by Cramer’s V) between protected
variable Gender and Status in terms of both: performance of the
model (in terms of the Gini coefficient) as well as the group
unfairness index calculated on the training data. Note that for
companies depending on the business strategy and corresponding
acceptance rates it can be more suitable to put more emphasis on
other performance measures such as the partial AUC (Robin et al.,
2011) or the expected maximum profit (Verbraken et al., 2014).
Nonetheless, for the purpose of this study we decided to use the Gini

TABLE 6 | Resulting scorecard model. In practice it is usual to assign scorecard points to the posterior probabilities as given by the score. Here, a calibration with 500 points
at odds of 1/19 and 20 points to double the odds is used.

Variable Bin Points Default rate Distribution #Good #Bad

Basepoints — 441 — — — —

Status No checking account –17 0.45 0.28 108 89
Status . . . < 0 DM –12 0.40 0.26 111 73
Status 0 < � . . . < 200 DM 11 0.20 0.06 35 9
Status . . . > � 200 DM/salary for at least 1 year 29 0.11 0.39 246 29

Duration (−Inf, 8) 32 0.12 0.09 57 8
Duration (8, 18) 10 0.22 0.35 189 54
Duration (18, 44) –5 0.32 0.49 233 109
Duration (44, Inf) –38 0.58 0.07 21 29

Purpose Repairs –25 0.47 0.05 19 17
Purpose Domestic appliances, business, others, radio/television –16 0.40 0.29 124 81
Purpose Retraining –2 0.30 0.10 49 21
Purpose Car (used) 2 0.27 0.17 89 33
Purpose Furniture/equipment 17 0.19 0.27 151 35
Purpose Car (new), vacation 23 0.16 0.12 68 13

Credit history Delay in paying off in the past, critical account/other credits elsewhere –32 0.60 0.08 22 33
Credit history No credits taken/all credits paid back duly –3 0.31 0.54 261 116
Credit history Existing credits paid back duly till now 0 0.29 0.09 45 18
Credit history All credits at this bank paid back duly 18 0.16 0.29 172 33

Savings Unknown/no savings account –5 0.34 0.60 276 141
Savings . . . < 100 DM –3 0.32 0.11 52 24
Savings 100 < � . . . < 500 DM 13 0.18 0.06 37 8
Savings 500 < � . . . < 1000 DM, . . . > � 1000 DM 15 0.17 0.23 135 27

FIGURE 2 | Fairness-performance trade-off: performance (solid) and
unfairness (dashed) for traditional (blue) and fairness-corrected (green) model
for different levels of correlation between the protected variable gender and
the prediction variable status. The red dotted line indicates the thumb
rule for unfairness.
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coefficient � 2(AUC − 1
2) as it represents the most commonly

used performance measure in credit scoring. In order to
compute the GUI a cut off s0 for the score S has to be
defined: For the scope of the simulation study within this
study the cut off has been set to the portfolio default rate 0.3,
that is, an application is rejected if P̂(Y)> 0.3. In practice,
rejecting all customers with a risk above average will lead to an
unrealistically high rejection rate. Therefore also the GUI is
computed for a second cut off value of s0 � 0.5. Both results are
given in Table 7.

The solid lines indicate performance on the test data for the
traditional (blue) and the fairmodel (green). The traditionalmodel is
unaffected by the protected variable and thus of constant
performance with a Gini coefficient of 0.554. Remarkably, for
some of the simulated data sets the fair model even slightly
outperforms the traditional one which might be explained by the
small number of observations in the data resulting in a large 95%
(bootstrap) confidence interval (Robin et al., 2011) of (0.437,0.667)
and only small performance decrease due to the fairness correction.
The corresponding dashed lines show the group unfairness index of

TABLE 7 | Results of the simulation study: Group unfairness index (GUI) of both the traditional as well as the fair model and performance on the test data of the fair model for
different levels of dependence (Cramer’s V) between the protected attribute and the variable status.

Cramer’s V GUItrad.(0.3) GUIfair (0.3) GUItrad.(0.5) GUIfair (0.5) Ginifair, test

1.00 2.620 0.141 1.477 0.078 0.491
0.90 2.014 0.145 1.130 0.120 0.500
0.80 1.160 0.112 0.837 0.057 0.538
0.67 0.732 0.053 0.384 0.005 0.563
0.57 0.530 0.050 0.271 0.002 0.557
0.47 0.321 0.040 0.149 0.001 0.560
0.38 0.243 0.037 0.128 0.000 0.559
0.26 0.158 0.049 0.063 0.003 0.560
0.17 0.030 0.014 0.018 0.003 0.561
0.09 0.000 0.001 0.005 0.001 0.560
0.07 0.011 0.000 0.000 0.015 0.548

FIGURE 3 | Protected attribute dependence plot of the traditional scorecard (A) vs. the fairness-corrected scorecard (B). Note that the calibrated versions of the
scores are used with 500 points at odds of 1/19 and 20 points to double the odds.

TABLE 8 | Comparison of the variable Status for the traditional model (left) and female (center) and male (right) gender in the fair model.

Bin Dist %Bad Woe Points Dist|f %Bad|f Woe|f Points|f Dist|m %Bad|m Woe|m Points|m

No checking account 0.281 0.452 0.723 −17 0.142 0.467 1.343 −34 0.397 0.447 0.527 −13
. . . < 0 DM 0.263 0.397 0.497 −12 0.145 0.522 1.117 −28 0.360 0.355 0.301 −8
0 < � . . . < 200 DM 0.063 0.205 −0.442 11 0.098 0.194 0.178 −4 0.034 0.231 −0.638 16
. . . > � 200 DM/salary 0.393 0.105 −1.222 29 0.615 0.103 -0.602 15 0.209 0.112 −1.418 36
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both models where the additional dotted red line represents the
thumb rule threshold of 0.25 indicating unfairness. For the
traditional model the threshold is already exceeded for
dependencies as small as Cramer’s V � 0.3 while for the fair
model it always stays below the threshold. Even more interesting
for small and moderate levels of dependence (Cramer’s V ≤ 0.6)
there is no performance decrease observed while at the same time
fairness can be increased.

Figure 3 shows an example of the partial dependence profiles (cf.
Section 3.2) for the traditional and the fairness-corrected model on
one of the simulated data sets (Cramer’s V � 0.47, cf. Table 7). For
these data no strong differences in performance are observed (0.554 vs.
0.560) but the GUI of 0.321 of the traditional model indicates
unfairness. This is also reflected by the profile plots where a shift
in the score point distributions can be noticed for the traditionalmodel
(Pointsfemale � 463.96 vs. Pointsmale � 438.32) in contrast to the fair
model (Pointsfemale � 453.57 vs. Pointsmale � 447.01) while at the
same time the standard deviation of the points for bothmodels, which
is often and indicator for the predictive power of the model, remains
pretty similar: σ̂(Points)trad � 39.28 vs. σ̂(Points)fair � 38.68.

Along with these promising results another side effect can be
noticed: As a consequence of gender-wise fairness correction there are
different WOEs for both genders in all bins and consequently also
different scorecard points for each gender as it can be seen in Table 8.
Thus, the price of having a fair scoring model is different points with
respect to the protected attributes (here: Gender). This can be difficult
to explain to technically less familiar users or moreover, this can be
even critical under the regulation constraints of the customers’ right to
explanation of algorithmic decisions (Goodman and Flaxman, 2017).
Not enough, a traditional plausibility check during the scorecard
modeling process concernsmonotonicity of theWOEswith respect to
the default rates (Szepannek, 2020) which now has to be done for all
levels of the protected attribute and is not necessarily given anymore
after fairness correction. Note that also in our example the order of the
default rates of the two bins with the highest risk of the variable Status
has changed for the female customers.

Although in general the presentedmethodology can be applied to
arbitrary machine learning models the changes in the data as
induced by the fairness correction put even more emphasis on a
deep understanding of the resulting model and corresponding
methodology of interpretable machine learning to achieve this
goal (cf. e.g., Bücker et al., 2021 for an overview in the credit risk
scoring context). Further note that as it is demonstrated in
Szepannek (2019) the obtained interpretations bear the risk to be
misleading. For this reason other authors such as Rudin (2019)
suggest restricting interpretable models and in summary a proper
analysis of the benefits of using more complex models should be
done in any specific situation (Szepannek, 2017).

For the simulations in this study only one protected attribute has
been created which impacts only one of the predictor variables in a
comparatively simple graph structure (Gender → Status → Y). For
more complex data situations causal search algorithms can be used to
identify potential causal relationships between the variables that are in
line with the observed data (Hauser and Bühlmann, 2012; Kalisch
et al., 2012). Then all descendants of the protected attributes must be
corrected accordingly.

6 SUMMARY

In this study, different definitions of fairness are presented from the
credit risk scoring point of view as well as a fairness correction
algorithm based on the concept of counterfactual fairness.
Furthermore, the idea of population stability is transferred into
a new group unfairness index which allows quantifying and
comparing the degree of group fairness of different scoring
models. In addition, partial dependence plots are proposed to
visualize the fairness of a model with respect to some protected
attribute. Based on these measures, a simulation study has been set
up which makes use of a corrected version of the well-known
German credit data. The results of the study are quite promising:
Up to some degree fairness corrections are possible without strong
loss in predictive accuracy as measured by the Gini coefficient on
independent test data. Nonetheless, as inherent consequence
traditional scores of fairness corrected models will typically
differ with respect to protected attributes which may result in a
new kind of problem under the perspective of the customer’s
regulatory right for an explanation of algorithmic decisions. The
explanation of algorithmic decisions gets even more complicated
and future work has to be done in order to investigate the observed
effects of our study for other classes of machine learning models
such as random forests, gradient boosting, support vector
machines, or neural networks.
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