
Transcription factor and chromatin features predict
genes associated with eQTLs
Dennis Wang1,*, Augusto Rendon1,2 and Lorenz Wernisch1

1MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, UK and 2NIHR
Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0PT, UK

Received June 25, 2012; Revised November 28, 2012; Accepted December 1, 2012

ABSTRACT

Cell type–specific gene expression in humans
involves complex interactions between regulatory
factors and DNA at enhancers and promoters.
Mapping studies for expression quantitative trait
loci (eQTLs), transcription factors (TFs) and chroma-
tin markers have become widely used tools for iden-
tifying gene regulatory elements, but prediction of
target genes remains a major challenge. Here, we
integrate genome-wide data on TF-binding sites,
chromatin markers and functional annotations to
predict genes associated with human eQTLs.
Using the random forest classifier, we found that
genomic proximity plus five TF and chromatin
features are able to predict >90% of target genes
within 1 megabase of eQTLs. Despite being regu-
larly used to map target genes, proximity is not a
good indicator of eQTL targets for genes > 150 kilo-
bases away, but insulators, TF co-occurrence, open
chromatin and functional similarities between TFs
and genes are better indicators. Using all six
features in the classifier achieved an area under
the specificity and sensitivity curve of 0.91, much
better compared with at most 0.75 for using any
single feature. We hope this study will not only
provide validation of eQTL-mapping studies, but
also provide insight into the molecular mechanisms
explaining how genetic variation can influence gene
expression.

INTRODUCTION

Regulation of gene expression in eukaryotes involves
multiple transcription factors (TFs) and cofactors acting
on DNA at specific genomic loci defined as regulatory
elements. Given the complexity of genomes in higher
organisms such as humans, the program for this process

is even more difficult to decipher (1,2). The first steps
toward understanding the regulatory program involve
determining the target specificity of TFs that are
modulated by interactions with other factors and by the
local chromatin structure. Many of these interactions
occur in promoter regions that are in proximity to the
transcription start sites (TSS) of target genes. Yet, in
recent years, experimental evidence has shown that inter-
actions between regulatory elements and target genes can
occur over long genomic distances (3–5).

The importance of distal gene regulatory elements for
coordinating cell type–specific expression of their target
genes has motivated whole-genome surveys of different
human cell types. The ENCODE consortium is an interna-
tional collaborative effort initially set up to build a compre-
hensive list of all functional elements in the human genome
(6). Since then, the consortium has identified cis-regulatory
elements (CREs) in a wide variety of cell types (7). The
identification of these regulatory elements through
mapping protein–DNA interactions has been greatly
accelerated by the advent of high-throughput chromatin
immunoprecipitation assays like ChIP-seq. The majority
of TFs profiled by ChIP-seq have >50% of their binding
sites beyond 2.5 kilobases (kb) of a TSS. By combining
binding site data on multiple TFs across cell types, the re-
lationship between TFs and genomic features can be
revealed (8). However, not all TF-binding sites detected in
a particular cell may localize at active regulatory elements.
To detect activated elements, DNase-seq and FAIRE-seq
(Formaldehyde Assisted Isolation of Regulatory Elements)
are used to map genomic regions of open chromatin. The
co-localization of TF-binding sites with open chromatin
sites gives more confidence to the location of regulatory
elements, where most of the cell type–specific sites are typ-
ically located away from the TSS (9,10).

Despite the vast array of assays to detect regulatory
elements, it remains a challenge to identify their target
genes. To date, the most common approach used in com-
putational and experimental studies of regulatory
elements has been based on genomic distance. A target
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gene is mapped to a regulatory element if it is the nearest
or if it is within a genomic distance threshold. Although it
is often the case that genes in proximity to a regulatory
element are targets (11–14), there are many important
genes regulated by distal elements. One example is the
sonic hedgehog gene (Shh), which is regulated by an
enhancer located 1 megabase (Mb) upstream (15).
Another example is enhancers of c-Myc found in ‘gene
deserts’ located a few hundred kilobases away from the
nearest gene (16). Other genomic features like the
preserved co-localization of genes on chromosomes of dif-
ferent species, or conserved synteny, are also considered,
as it reflects co-evolution between regulatory elements and
target genes (17,18). However, low conserved synteny is
reported between upregulated genes and enhancers
detected by ChIP-seq (19). For these reasons, there
remains a need for a systematic approach of predicting
and validating target genes of regulatory elements.

This area of research is limited by the paucity of in vivo
data describing interactions between regulatory elements,
such as enhancers, and target genes. Reporter assays,
which place the element in question at the promoter of a
reporter gene, allow investigation of enhancer activity
(20,21), but do not capture the chromatin structure,
which allows distal enhancers to interact with target
genes. Because of this, methods to capture chromosome
conformation were developed to provide evidence of
long-range physical interactions (22,23). However,
genome-wide data sets of chromosome conformation
have a resolution on the order of megabases, too large to
screen for interactions between multiple enhancers and
target genes. A more indirect approach is to use
co-variation between gene expression and enhancer-
associated chromatin markers to map enhancers to target
genes (24). It has been suggested to use markers of histone
modification, such as H3K4me1, to identify active enhan-
cers. But because H3K4me1 occurs ubiquitously along the
genome, there are still too many potential enhancers that
can be mapped to a particular gene. This means that such
approaches lack the specificity needed to detect direct inter-
actions between enhancers and targets. Nevertheless,
analysis of histone modification sites has identified
unique chromatin signatures for distal regulatory
elements (24,25). The frequent positioning of disease-
related single nucleotide polymorphisms (SNPs) within
regulatory elements defined by chromatin markers
suggests that integrative modeling of multiple chromatin
features may help decipher the connection between regula-
tory elements and diseases (24).

Another approach for finding associations between
target genes and regulatory elements relies on analyzing
SNPs. The decreased cost of genome sequencing has
resulted in the identification of genetic variants in different
individuals and cell types. Genome-wide association
studies that compared genetic variants with the occurrence
of disease have implicated numerous enhancer regions
(26,27). This information on genotypes can also be
analyzed together with gene expression data to find asso-
ciations between specific genetic variants and gene expres-
sion levels as determined through expression quantitative
trait loci (eQTL) studies (28–30). Numerous validated

regulatory elements have been identified using eQTL
data, progressing the field of functional genomics (31).
Because many SNPs in linkage disequilibrium could be
associated with the expression of target genes, prediction
of target genes using eQTL data suffers from the same low
specificity as using chromatin markers. Efforts to integrate
eQTL data with other genomic features have provided
better estimates of the regulatory effect on target genes
(32,33). In particular, Gaffney et al. (33) have shown
that TF-binding sites and chromatin markers are
enriched in regions with causal eQTL SNPs.
Nevertheless, there exists no systematic study of how
well associations found in eQTL studies agree with
results from previously mentioned studies on TF binding
and chromatin structure.
Addressing this question, we looked for putative regu-

latory elements defined by co-localization of TF-binding,
chromatin signatures and eQTL signals. Using these
elements, we present a method to predict their target
genes. The method uses a combination of features as
predictors, including genomic proximity, TF binding,
gene expression, open chromatin, Gene Ontology (GO)
similarities and insulators. We evaluated the performance
of the target gene predictions using eQTL data from
lymphoblastoid cell lines (LCL), fibroblasts and T-cells
(30). Our tests showed substantially higher accuracy for
predictions made using a combination of features
compared with using any single feature in isolation.
Our method is particularly useful for finding additional
target genes when eQTL studies are underpowered to do
so. In addition, the features we use describe cis-inter-
actions between regulatory elements and target genes.
This is especially useful when trying to identify genes
that are directly regulated by eQTLs rather than indirectly
regulated through trans-interactions.

MATERIALS AND METHODS

TF-binding sites

We obtained ChIP-Seq data on the binding sites of 29 TFs
plus ‘‘insulator associated DNA-binding protein,’’ CTCF
in the GM12878 cell line from the ENCODE consortium
(Additional file 1, Supplementary Table S1). Each data set
contains a signal map of ChIP DNA fragments, where the
signal height is the number of overlapping fragments at
each nucleotide position in the genome (UCSC hg18).
ChIP-seq signals mapped to hg19 were converted to hg18
coordinates using the UCSC liftover tool. Enrichment of
genomic regions for protein binding was tested against a
set of input DNA control (P � 0:01). Peaks indicating
regions with sufficient signal above peak-height threshold
(false discovery rate <0.05) were identified using the
PeakSeq algorithm (34). After conducting a genome-wide
scan for peaks, we examined tracks of putative binding
sites for each of the TFs. The position of each binding
site was defined by the center of each ChIP-Seq peak.
Adjacent binding sites that are within 500 bp of each
other were grouped to form non-overlapping regions of
TF-binding sites. The boundaries of each region are
defined by the left-most and right-most binding sites.
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Chromatin marker data

A multivariate hidden Markov model was applied to the
combinatorial patterns of nine histone modification
markers to distinguish 15 chromatin states (24). The
states were learned de novo on the basis of the patterns
of chromatin marks and their spatial relationships in the
GM12878 genome. Six broad classes of chromatin states
were defined as promoter, enhancer, insulator, tran-
scribed, repressed and inactive states. Within each class,
active, weak and poised promoters (states 1–3) differ in
expression level; strong and weak candidate enhancers
(states 4–7) differ in expression of proximal genes;
strongly and weakly transcribed regions (states 9–11)
also differ in their positional enrichments along tran-
scripts; and repressed, heterochromic and repetitive
states (states 13–15) are enriched in H3K9me3. Regions
with state annotations vary in length from 500 bp on
average for promoter and enhancer states to 10 kb on
average for inactive states. Open chromatin sites in
GM12878 cell lines were profiled using FAIRE, and the
data were downloaded from ENCODE. Enrichment of
sequence fragments from FAIRE was identified using a
feature density estimator, F-Seq (35). For each enriched
region, the maximum F-Seq density signal value has been
calculated, and P-values for peaks were determined by
fitting the data to a gamma distribution. A P-value thresh-
old of 0.01 was considered to be significant.

Gene expression data

The gene expression profiles of 38 distinct populations of
human hematopoietic cells were downloaded from the
Broad Institute DMap Project (36). Quantile normaliza-
tion was applied across expression arrays, and the log ex-
pression intensities for each gene was mean centered.
Probe sets were mapped to a gene’s TSS via transcript
identifiers and probe set annotations provided by the
Ensembl database (release 54). For cases where there
were more than one probe set mapping to a gene’s TSS,
we filtered for the probe set with the highest variance in
log intensity values across cell samples. In total, 8968
genes were profiled in the data set.

eQTL data

Gene expression profiling and association testing with
genetic variants was performed on primary fibroblasts,
LCLs (Epstein–Barr virus–immortalized B cells) and T-
cells from umbilical cords of 75 individuals of Western
European origin (30). Dimas et al. (30) conducted associ-
ation testing between genotypes and gene expression
values using the Spearman rank correlation on all SNPs
within a 2-Mb window centered on the TSS of each gene.
After filtering for significance at the 0.001 threshold, there
are 427, 442 and 430 genes with significant cis associations
in fibroblasts, LCLs and T-cells, respectively. We extended
the list of associated eQTL SNPs based on linkage disequi-
librium with SNPs in CEU HapMap panels detected from
the low-coverage sequencing pilot (Pilot 1) of the 1000
Genomes Project. The SNAP tool was used to find the
additional SNPs that are above the correlation coefficient
r2 threshold of 0.8 (37).

Identifying candidate regulatory elements

Regions with chromatin state annotation were mapped to
non-overlapping regions of TF-binding sites if they share
any base pair. If two different chromatin state regions
overlap with one TF-binding region, the chromatin state
with the greater number of overlapping base pairs is
mapped. All regions with co-localization of TF-binding
sites and having chromatin state annotations were
referred to as CREs (Supplementary Figure S1). The
boundary of a CRE is defined by the left-most and right-
most centers of TF binding peaks in a non-overlapping
region. Because the width of a TF’s binding signal peak
is estimated to be 200 bp, we assumed an eQTL SNP is
likely to affect TF binding if it is within 100 bp from the
center of the signal peak. We filtered for CREs with eQTL
SNPs within 100 bases from the CREs’ boundaries, and
used those to test for target gene prediction. CREs can be
linked to multiple target genes if the co-localized eQTL
SNPs are associated with different genes.

Genomic distances between regulatory element and
target gene

For each gene within 1Mb from the center of each CRE,
we calculated the genomic distance between the gene’s
TSS and the nearest associated eQTL SNP in the CRE.
The positions of gene TSS are the same as those used in
the mapping microarray probe sets to genes.

Modeling gene co-expression

We used a generalized additive model (GAM) to describe
the relationship between potential target genes and the
expression of TFs that occupy CREs (38). The GAM im-
plementation in the R package ‘mgcv’ provides the option
of smoothing spline functions for each predictor term,
which gave us the flexibility of incorporating non-linear
relationships between TFs and genes. For each gene–CRE
pair, we considered a model with one or more additive
functions:

EðyiÞ ¼ �0+
Xn

j¼1

sjðxijÞ+
X

1�j<k�n

sjkðxij,xikÞ ð1Þ

where EðyiÞ is the expected log expression of the target
gene in cell type i, �0 is the mean expression set to zero,
xij is the log expression of TF j in cell type i, n is the
number of TFs in the CRE and sj is a spline function,
where the degree of smoothing is chosen by cross-valid-
ation in the mgcv package. As opposed to using linear
predictors, the estimated non-parametric function can
reveal non-linearities in the effect of TF on target gene.
In this model, we also allow for second-order interactions
where sjkðxij,xikÞ is a set of unknown partial bidimensional
smoothing functions.

We modeled gene co-expression for every gene within
1Mb of each CRE. For each CRE–gene pair, we inferred
the parameters �0, sj and sjk for the aforementioned
equation using the expression profiles xij of the
co-localized TFs j and yi of the gene across samples
i 2 ST from the training set ST. We then predicted gene
expression across the samples i 2 SP in the test set SP
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using the TF expression xij in those samples as predictors.
The prediction step gave us a predicted gene expression
value ŷi for each target gene in a sample i 2 SP. The pre-
diction accuracy was then measured by calculating the
square of the Pearson correlation coefficient (denoted by
r2) between the predicted expression ŷi and the observed
expression yi for all samples in SP. We also calculated the
adjusted R2 for the model to estimate the proportion of
gene expression variation in the training set ST explained
by TF expression, while taking into account the number of
predictors. The closer the R2 is to 1, the better the model
fit to the data. Whenever the regression line fits worse
than the horizontal mean line, R2 is negative. This can
easily happen for non-linear regressions. Five-fold
cross-validation was performed to assess how well predic-
tions would generalize to new sample data sets. The r2 and
R2 values reported were averaged over the cross-
validations. We used the R2 value as a feature in the pre-
diction of eQTL targets.

TF co-occurrence

When we examined the non-overlapping regions of TF-
binding sites, we counted the different pairs of TFs
co-localized to the same region. The co-occurrence
between pairs of TFs i and j is measured by the log-odds
score of the observed number of regions containing the
binding site pairs bij over the expected number b̂ij.

cij :¼ logðbij=b̂ijÞ ð2Þ

To estimate the expected number of pairs, we repeatedly
permuted (nperm ¼ 1000) the TF labels for each TF-
binding site and then recounted the pairs of TFs. The
average number of pairs from all recounts after permuta-
tions is the expected number of pairs.

b̂ij ¼
Xnperm

p¼1

bij,p=nperm ð3Þ

We use the co-occurrence score for different pairs of
TFs to measure the co-occurrence between TFs binding
in a CRE and TFs binding to the promoter region (±1kb
from TSS) of a gene. Calculating the overall co-occurrence
score between the two sets of TFs, Y and Z, is analogous
to maximum weighted matching for bipartite graphs.
If we define an indicator variable xy,z for each edge
between a TF y 2 Y and a TF z 2 Z, the weights are the
co-occurrence score for TF pairs cy,z.

CY,Z ¼ max½
X

y2Y,z2Z

xy,zcy,z� ð4Þ

This sum is used as a feature for classifying whether
the gene is a target or non-target. Genes without any
TF-binding sites in the promoter region is assigned
the minimum overall score recorded for genes with
TF-binding sites.

Regions of open chromatin

Identified FAIRE peaks were mapped to a gene’s
promoter if the center of the FAIRE peak is within 1 kb

of the gene’s TSS. The FAIRE signal value was used as a
feature for eQTL target prediction. A higher signal
indicated that chromatin is open in the promoter region
and the gene is more likely to be a target. Genes without a
detected FAIRE peak at the promoter region were
assigned a signal value of 0.

GO similarity

The information content (IC) of a GO term t is defined by
ICðtÞ ¼ � log pt, where pt is the probability of GO term t
occurring. The GO database provides an association table
mapping genes to GO terms. We compute pt as the
number of genes annotated by GO term t divided by the
total number of annotated genes. The pairwise similarity
between GO terms t and t0 was calculated as the IC of
their most informative common ancestor from the set of
all common ancestors Paðt,t0Þ.

simðt,t0Þ ¼ max
t2Paðt,t0Þ

½ICðtÞ� ð5Þ

We then searched the GO database to find GO terms
t1,::,tn mapped to the gene g within 1Mb of a CRE, and
GO terms t01,::,t

0
m mapped to the gene g0 encoding a TF

that binds to the CRE. As previously proposed (39), we
assigned each GO term ti occurring in gene g to its best
matching partner tj

0 in gene g0 to calculate the GO simi-
larity measure simðg,g0Þ.

simðg,g0Þ ¼ avg½
X

i¼1,::,n

max
j¼1,::,m

½simðti,tj
0Þ�� ð6Þ

When theTFand the target genehave anunequal number
of GO terms, multiple terms in gene g can be assigned to
one term from TF g0, and the result may be different
for simðg0,gÞ. Therefore, we take max½simðg0, gÞ,simðg,g0Þ�
as the symmetric version of GO similarity. For CREs with
multiple TFs, the average similarity between the gene and
TFs was used for target prediction.

Insulators as enhancer-blocking elements

We used CTCF-binding sites as markers for the position
of insulators that prevent interaction between a CRE and
a gene. For each gene, we examined the genomic region
in between the TSS and the nearest TF-binding site of a
CRE. The CTCF binding peaks were called from the
GM12878 ChIP-Seq data provided by ENCODE, and
we averaged the signal values across all peaks within the
region. If no CTCF binding peaks were found, the signal
value was set to zero. The average signal value was used as
a feature for target gene prediction.

Prediction of target genes

For each gene whose TSS is 1Mb upstream or down-
stream from either side of a CRE, we predicted whether
that gene is a target of a eQTL SNP within the CRE.
Some or all the features used for prediction were
combined by a random forest classifier to decide
whether a single gene is a target of an eQTL SNP
(Figure 1). We used the implementation of random
forests in the R package ‘randomForest’ (version 4.6-6)
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and trained a random forest of 500 randomly generated
decision trees. At each node of a decision tree, the classi-
fier splits the data using a randomly chosen subset of
m=3
� �

features, where m is the total number of features
given to the classifier. The classifier uses the Gini index to
determine the best split at each node. The classifier learns
to classify each gene as either ‘target’ or ‘non-target’ and
outputs the ratio of trees voting ‘target’ for each gene. The
same cutoff ratio � was applied to all genes when making
final predictions. Implementation of random forest classi-
fier for eQTL target prediction can be found at http://
sysbio.mrc-bsu.cam.ac.uk/eqtlPredictor.

Evaluating prediction performance

To evaluate the classification of genes using a specified
cutoff �, we calculated three performance statistics:

sensitivity ¼ sensitivity=sensitivity

specificity ¼ specificity=specificity

precision ¼ precision=precision

Sensitivity, also known as recall, indicates the propor-
tion of target genes that are predicted correctly, and pre-
cision denotes the probability that a prediction for a target
gene is correct. Because both sensitivity and precision only
evaluate classification of target genes, we also assess spe-
cificity, which measures the proportion of non-targets that
are predicted correctly. To evaluate the overall perform-
ance of each classifier for various � values, we used the
area under the receiver operating characteristic (ROC)
curve, AUC, as the probability that a classifier will
assign a higher target probability score to a randomly
chosen target gene than to a randomly chosen non-target

gene. Alternatively, the F measure combines precision and
recall by representing the harmonic mean of the two
measures: F ¼ 2 � ðprecisionÞ=ðprecision+recallÞ

To control for overfitting and test the classifier on new
data, we partitioned the CREs into 10 subsets. Of the
10 subsets, 9 were used for training, and the remaining
was used for testing. The cross-validation process was
repeated 10 times, where each of the 10 subsets was used
only once for testing. The values presented for sensitivity,
specificity, precision and AUC are the means over the
10-fold cross-validations. Only for the case of predicting
eQTL targets in fibroblasts and T-cells did we not cross-
validate, as we trained only on LCL data and tested on
other cell types.

RESULTS

TF and histone modifications co-localize with eQTLs

Analysis of binding sites for 29 different TFs (Additional
file 1, Supplementary Table S1) from the GM12878
(lymphoblastoid) cell line revealed 221 926 non-
overlapping regions with one or more distinct TF-
binding sites. Of those, 221 653 regions are annotated to
have distinct chromatin states as defined by histone modi-
fications. These regions with both histone modification
markers and TFs positioned near the same site, which
we call candidate CREs, are quite common throughout
the genome (10,25,40). However, it is unclear as to what
extent eQTLs are co-localized with these regions. We
examined the locations of 551 eQTL SNPs significantly
associated with the expression of genes in LCL cells
(30). Figure 2A shows the densities of TF-binding sites,
histone modifications and open chromatin signals relative

Figure 1. An ensemble framework based on random forests that integrates diverse data sets in the context of TF and chromatin features. After
pre-processing the data, we identified CREs using TF binding and histone modification data. The classifier combined models based on six features
of gene, TF and chromatin structure to make predictions of whether genes 1Mb upstream and downstream of each CRE are targets or non-targets.
The binary classification is validated by genes associated with eQTLs that are within the CREs.
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to genomic distance from the eQTL SNPs. Regions closer
to eQTLs seem to have a higher occurrence of TF and
chromatin marks. Since the eQTL data set was published,
additional genotyping data became available through the
1000 Genomes Project (41). Therefore, we expanded the
list of eQTL SNPs to 10 719 by adding proxy SNPs based
on linkage disequilibrium. Analysis of CRE locations in
relation to eQTL SNPs showed 1303 CREs positioned
within 1000 bases of eQTL SNPs, 971 CREs within 500
bases and 369 CREs within 100 bases. Similar across all
three cell types is the distribution of eQTL SNPs around
CREs (Figure 2B).

Gene co-expression is a weak predictor of distal genes

Reconstruction of gene regulatory networks often made
the assumption that the regulatory potential of a TF on a
gene decreases the further away it is from the gene (42,43).
Network edges were inferred using the expression of TFs
to find associations with the expression of target genes,
which we refer to as co-expression. Therefore, we
examined the expression of 29 TFs binding to CREs to
see whether this assumption holds and to see whether
there is potential in predicting target genes based on
co-expression. The expression profiles of TFs across 38
distinct hematopeitic cell types were compared with the
expression profiles of potential target genes near CREs.
Regression analysis was used to fit TF expression to target
gene expression, and then the expressions of target genes
were predicted for different conditions. We applied GAMs
to the gene expression data, as it is well suited for
describing non-linear relationships between the expression
profiles of TFs and target genes (44).

We examined the model fit for each CRE–target gene
pair to see how the proportion of expression explained by
TFs varies according to the distance between the CRE and
the gene’s TSS. In Figure 3, we show that the average
proportion of gene expression explained by our regression
models, as measured by the R2 statistic, decreases as we

considered CREs positioned further from the TSS.
However, we could not detect any significant difference
in model fit for CREs within 150 kb of the TSS
compared with more distal CREs. For CREs containing
eQTL SNPs, the R2 statistic also does not differ signifi-
cantly depending on distance between the CRE and the
eQTL’s target gene. Another way to assess co-expression
is to assess how well the expression of TFs predicts the
expression of target genes. The square of the Pearson cor-
relation between observed and predicted expression also
does not seem to be strongly affected by genomic distance.
However, a look at expression prediction at a higher reso-
lution (Supplementary Figure S3) reveals that models
generated from CREs, which lie within 1 kb of the TSS,
explain significantly more expression variation
(P< 2.2� 10�16) than more distal CREs that are beyond
1 kb. The average R2 for models using CREs that lie
within the 1 kb promoter region of target genes is 0.221.
Beyond 1 kb, the expression prediction models that are
generated from the distal CREs have an average R2 of
0.179. Another interesting feature is that there is also a
significant drop in prediction accuracy (P < 2:2� 10�16)
beyond 1 kb even if the CRE is the closest CRE to a target
gene (Supplementary Figure S3). Overall, the accuracy of
the expression prediction models does not improve even if
we choose only the closest CREs. This suggests that some-
times more distal CREs may control gene expression over
regulatory elements that are positioned closer to the gene.
Consideration of the chromatin structure might clarify the
relationship of CREs and regulated genes further.

Other weak predictors may help distinguish target genes

Because we believed that gene co-expression is a weak
predictor of target genes, we explored other features of
genes, which may predict targets better. For each of the
369 CREs that contain eQTL SNPs, we examined all
genes within 1Mb. A gene is considered a target of a
CRE if it is significantly associated (P < 0:001) with the

Figure 2. (A) Distribution of TF and chromatin features around eQTL SNPs in the LCL cell. Chromatin states, as defined by histone modification
markers, also co-localize with TF-binding sites and sites of open chromatin. (B) Number of CREs detected from GM12878 data that co-localize with
eQTL SNPs in three different cell types. The level of co-localization depends on the distance between the SNP and the nearest TF in the CRE.
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eQTL SNP located within the CRE. All other genes were
classified as non-targets. We identified 20 CREs that are
associated with two different target genes, while the rest
are each associated with a single target gene. A total of
3638 genes were classified as non-targets, but they are not
evenly distributed across CREs, as some CREs are located
in gene deserts (Supplementary Figure S4).
CREs, such as enhancers, can interact with gene pro-

moters by bringing activator proteins to the promoter
(3,5); therefore, the likelihood of co-occurrence between
TFs bound to the enhancer and TFs bound to the pro-
moter may help determine regulatory potential. We used
the ChIP-seq data from the GM12878 cell line to calculate
the co-occurrence score for TFs bound at the promoters
of each gene, and hypothesized that this feature may help
identify genes targeted for regulation. Another feature
of gene promoters that may help determine regulatory
activity is the presence of open chromatin (9,45). Signal
from the FAIRE assay on GM12878 is used to measure

open chromatin at each gene’s promoter region. It has
been shown that functional similarities between p300
factors and target genes are greater for upregulated
genes (19). Therefore, for each of the TFs bound to a
CRE, we measured the amount of overlap their GO an-
notations have with those of target and non-target genes.
It has also been shown that CTCF insulator sites block
enhancers from interacting with gene promoters (46,47);
therefore, we tested to see whether there are more CTCF
markers located between CREs and non-target genes than
between CREs and targets.

In Figure 4, we compare target and non-target genes
in terms of these four features in addition to genomic
distance and gene co-expression. Besides genomic
distance, we do not see an obvious difference between
target and non-target genes based on the features.
Nevertheless, we do detect a significantly higher average
co-occurrence score and open chromatin signal for target
genes (t-test P< 1� 10�2). There is also a significantly

Figure 3. (A and B) R2 and r2 of regression models describing co-expression between TFs and all genes relative to distance between CREs and TSS.
Hazes indicate a higher density of CREs. (C and D) R2 and r2 of regression models describing co-expression between TFs and target genes for only
CREs with an eQTL SNP. Lines show vertical averaging of the statistics.
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lower signal for CTCF markers between target genes and
CREs (t-test P< 1� 10�6). It is unlikely that each feature
by itself would accurately predict target genes, but the
slight difference between the two classes of genes can be
exploited if we can combine the features to increase their
predictive power.

Integration of TF and chromatin features accurately
predict target genes

Recent advances in ‘ensemble learning’, methods that
generate many classifiers and aggregate their results,
have resulted in better predictive models. One of these
new approaches proposed by Leo Breiman is called
random forests (48). The random forests algorithm gener-
ates a collection of decision trees, where the node in each
tree is split using the best split among a subset of pre-
dictors randomly chosen at that node. Each fully grown
tree will have a classification for every gene as either target
or non-target. The probability of a gene being a target is
the ratio of trees that classified the gene as a target. The
final prediction of a gene’s class depends on the cutoff we
choose for this probability, which we refer to as the target
probability cutoff �. The ROC curves allow us to visual-
ize the different sensitivity and specificity measurements
achieved at various cutoffs.

We evaluated prediction of target genes using random
forests for 369 CREs that contain eQTL SNPs. The
method classified each gene within 1Mb of a CRE as a
target or non-target based on the genomic distance plus
five TF and chromatin features that describe the relation-
ship between the gene and the CRE. We compared the pre-
dicted target genes with the list of genes associated with
eQTL SNPs that are within the CREs. The specificity and
sensitivity of the predictions are shown in Figure 5. For
� ¼ 0:5, the classifier achieves 70% sensitivity, 97%

specificity and 69% precision for its predictions.
Decreasing � will allow the classifier to achieve>90% sen-
sitivity while still maintaining 90% specificity. Another
measure of prediction performance, which can be used to
compare classifiers, is the area under the ROC curve
(AUC). The classifier that used all six of the features
achieved an AUC of 0.96, while the classifier that used
only the genomic distance feature achieved an AUC of

Figure 4. Features of genes located within 1Mb of CREs that contain eQTLs. In total, 389 genes are classified as targets of CREs, because they are
associated with eQTLs in the CREs. The other 3638 genes are classified as non-targets. We examined six features of genes to see how well they
discriminate between targets and non-targets of eQTLs. T-test was used to assess differences between target and non-target genes based on
(A) genomic distance between genes and CREs (P< 1� 10�15), (B) gene co-expression (P=0.825), (C) TF co-occurrence (target genes have
a higher TF co-occurrence score compared with non-targets; P=8.57� 10�3), (D) open chromatin signal at the promoter (P=5.05� 10�5),
(E) TF–gene GO functional similarity (P ¼ 0:519) and (F) insulator signal between eQTL and gene (P=9.83� 10�7).

Figure 5. Performance of the random forest classifier for predicting
target genes of CREs. The average ROC curve for predictions using
all six features is higher compared to the ROC curve for predictions
using only genomic distance. The ROC curve for each fold of the
cross-validation (grey and pale green) is shown. This is also
compared with the random prediction of target genes (diagonal line).
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0.90. This may seem like a small decrease in performance
for the classifier using only genomic distance, but at
� ¼ 0:5, it achieves only 52% sensitivity and 43% preci-
sion. The specificity remains high at 93%, as there aremany
more genes that are non-targets than genes that are targets.

Prediction of eQTL targets in other cell types

To test whether the target gene classifier might be applic-
able in other cell types, we analyzed eQTL data from
T-cells and fibroblasts (30). In total, 9053 eQTL SNPs
were identified in the fibroblast cells, and 307 of the
CREs identified using ChIP-Seq data from the
GM12878 cell were found to co-localize within 100 bases
of the eQTL SNPs. Similarly, 8464 eQTL SNPs were
identified in T-cells, and 273 CREs were found to
co-localize with eQTL SNPs. We trained the classifiers
using the LCL data set of 369 CREs and eQTL SNPs,
and then predicted target genes of the 307 eQTL SNPs
in fibroblasts and 273 eQTL SNPs in T-cells. Forty-three
CREs are common between fibroblasts and LCLs, 33
CREs are common between T-cells and LCLs and 14
CREs are common to all three cell types. The classifiers
performed less accurately for T-cells (AUC=0.83) and
fibroblasts (AUC=0.90) compared with the prediction
of LCL eQTL targets (Figure 6). This was expected
given that the TF and chromatin features were identified
using only data from GM12878, a LCL. Despite this, the
prediction of fibroblast and T-cell eQTL targets using only
genomic distance still had a lower AUC (0.83 and 0.80,
respectively) than prediction using all six features. The
decrease in prediction accuracy for target genes in fibro-
blasts and T-cells may be due to the LCL eQTL data used
to train the classifier. As shown in Supplementary
Figure S10, when we trained the classifier on cell type–

specific eQTL data, prediction accuracy improved for T-
cells (AUC=0.95) and fibroblasts (AUC=0.91).

We further compared the associations between CREs
and target genes in T-cells with chromatin interactions
detected by the ChIA-PET assay. CREs that overlap
with H3K4me2 regions were identified in CD4+ T-cells.
Chromatin interactions detected between these regions
and gene promoters were compared with the location of
target genes predicted for the CREs (49). Of the 33 CREs
that were profiled by ChIA-PET, chromatin interactions
are found between 10 CREs and their predicted target
genes (Supplementary Table S2). This evidence suggests
that our method predicts eQTL–target relationships that
are cis-regulatory and may be mediated by chromatin
structure.

Accuracy of target prediction is robust for distal genes

Combining genomic distance with five TF and chromatin
features helped our random forest classifiers achieve a
moderate increase in performance compared with using
genomic distance alone. As shown in Figure 4A and
Supplementary Figure S2, the majority of target genes
are located in proximity to CREs, whereas non-targets
are more uniformly distributed across the genome. This
characteristic of target genes allows the classifier to
achieve high accuracy using genomic distance alone. The
real challenge as mentioned earlier is to accurately predict
the few target genes that are distal from CREs and eQTLs.
The performance of our random forest classifier using all
six features remains high (AUC > 0:91), even for classify-
ing genes located at least 150 kb away from a CRE
(Figure 7). In contrast, classification of these distal genes
using only genomic distance or any other feature alone
achieves an AUC of no greater than 0.75. As shown in
Figure 7, the performance of genomic distance as a

Figure 6. Comparison of prediction performance for targets of eQTLs
in different cell types. For prediction of fibroblast and T-cell targets, we
also trained the classifiers on LCL eQTLs and used features generated
from GM12878 ChIP-seq and FAIRE data. Because LCL data were
used to train the model, it is not surprising to see that the prediction of
targets for LCLs achieved a better ROC curve. The performance of
predictions using all six features (solid lines) is compared with the per-
formance of predictions using only genomic distance (dotted line).

Figure 7. Performance of random forests at classifying genes of a
minimum distance away from the CRE. The performance of using all
six features (ensemble) is compared with classifiers using only single
features.

1458 Nucleic Acids Research, 2013, Vol. 41, No. 3

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1339/-/DC1


predictor also drops more than any other predictor for
distal genes. At a distance of >150 kb, the presence of
insulator markers between the gene and CRE seems to
accurately distinguish target genes from non-targets. The
feature is able to predict 58% of distal target genes while
maintaining >80% specificity (Figure 8). With additional
features, we are able to further increase sensitivity without
sacrificing much specificity. However, adding the gene
co-expression feature actually decreased the performance
of a classifier already using four features. This supports
the argument that gene co-expression is a weak predictor
of target genes.

Chromatin state of regulatory elements affects prediction
of eQTL targets

At the beginning of our analysis, we noted that CREs may
have different functionalities as independently classified
by the chromatin signatures at those regions (24). The
CREs can therefore be divided into groups based on
their chromatin state annotation. Regions of the
GM12878 genome classified as strong enhancer or active
promoter elements had chromatin markers associated
with high levels of gene transcription. The promoter
elements were also confirmed by the enrichment of
RNAPII-binding sites, and luciferase reporter assays
were used to validate the functionality of predicted enhan-
cers. We examined the performance of target gene predic-
tion for each chromatin state group using � ¼ 0:5. As
expected, target prediction for CREs annotated as
strong enhancers or active promoters had high sensitivity,
specificity and precision (Figure 9). Also as expected, the
classifier failed to recall or precisely predict many of the
target genes of weak promoters, weak enhancers and in-
sulators. The performance of classifiers seems to reflect the
chromatin state predictions of likely and unlikely regula-
tory elements. Yet, CREs annotated as inactive states of
heterochromatin have relatively high target prediction
accuracy. The heterochromatin regions, which are
characterized by low chromatin marker signal, have
been previously found to be associated with a subset of
transcribed genes (50). It would be interesting to further
investigate the regulatory effect that TF binding has on
regions thought to be inactive.

Prediction of long-range intra-chromosomal interactions

For longer-range interactions between eQTLs and target
genes, the structure of chromosomes may play a role.
Regulatory elements may directly interact with distal
target genes if the chromosome conformation is such
that distant genomic regions are in contact. To identify
intra-chromosomal interactions between CREs and pre-
dicted target genes in LCLs, we analyzed a HiC data set
in the GM06690 cell line (23). In the HiC assay,

Figure 9. CREs have distinct chromatin states based on the histone modification patterns in those regions of the genome. We grouped CREs based
on their chromatin state, and examined the performance of predicting eQTL target genes for each group. Genes predicted by random forest at
greater than � ¼ 0:5 were classified as targets. Mean values and standard errors after 10-fold cross-validation are shown.

Figure 8. Different subgroups of features were tested using the random
forest classifier. Distal target genes (>150 kb from CREs) are predicted
using classifiers with increasing number of features: insulators
(Model1), insulators+GO similarity (Model2), insulators+GO similar-
ity+open chromatin (Model3), insulators+GO similarity+open
chromatin+TF co-occurrence (Model4), insulators+GO similar-
ity+open chromatin+TF co-occurrence+gene co-expression
(Model5) and insulators+GO similarity+open chromatin+TF
co-occurrence+gene co-expression+genomic distance (Model6).
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intra-chromosomal interactions between two loci are
estimated by the number of ligation products containing
the two loci. A significantly higher (P< 2.2� 10�16)
number of ligation products have loci containing CREs
and target genes compared with non-targets
(Supplementary Figure S7). Target genes that were pre-
dicted by the classifier, but not associated with a eQTL
SNP, also had significantly higher (P=7.23� 10�7) signal
for intra-chromosomal interaction. We further examined
how the features used in the random forest classifier
relate to the frequency of intra-chromosomal interactions.
For each CRE, we examined all genes in the same
chromosome and compared their features with the inter-
action frequency between loci containing the CRE and the
genes (Supplementary Figure S8). A total of 143 498
CRE–gene interactions were examined. There seems to
be higher interaction frequency when there is higher
gene co-expression, TF co-occurrence, open chromatin
and insulators between CRE and gene. The relationships
are weak, as genic regions only cover a small portion of
each chromosome. Also because each ligation product
covers approximately 100 kb, the assay does not have
good resolution to detect interactions for specific genes.
Despite this, we predicted intra-chromosomal interactions
using the six CRE–gene features and the random forest
classifier trained on HiC data. The predicted interaction
frequencies across 10 cross-validations for all CRE-gene
pairs achieved an average r2 of 0.78 when compared with
observed interaction frequencies (Supplementary Figure
S9). This shows that the features can help predict not
only statistical associations between genes and eQTLs
but also direct interactions between genomic loci.

DISCUSSION

The influx in data on gene regulators has enabled re-
searchers to identify regulatory elements by examining
histone modification markers and TF-binding hot spots
(25,40). Previous studies have also shown that detection
of co-localization sites between chromatin features and
genetic variants in humans is useful for identifying regu-
latory elements (24,51). They postulated that the SNPs
that influence gene expression may also affect the local
chromatin structure. For instance, Degner et al. (51)
defined dsQTLs as loci with SNPs significantly correlated
with DNase I sensitivity sites. Fifty-five percent of the
detected dsQTLs are also eQTLs in LCLs, suggesting
that genetic variation may influence both chromatin acces-
sibility and phenotypic variation. The enrichment of TF-
binding sites in those dsQTLs suggested possible mechan-
isms for the elements to act as repressors or enhancers
(51), whereas the presence of CTCF insulator elements
between the dsQTL and the gene’s TSS was observed to
reduce the probability that a dsQTL is an eQTL. This is
consistent with observations that CTCF insulators block
interactions between regulatory elements and genes
(46,47). The analysis of dsQTL and eQTL interactions
with genes was restricted to only the closest genes, and
knowledge about long-range interactions is still limited.

Because the majority of identified interactions with
eQTLs are with nearby genes, most studies ignore
long-range interactions. Gene regulatory networks based
on co-expression could be used to identify relationships
between the TFs bound to eQTL regions and target
genes, but inference of the networks is difficult for com-
binatorial regulation involving many TFs (52).
Rdelsperger et al. (19) suggested using evidence of
protein–protein interactions between enhancer TFs and
TFs binding to the gene’s promoter to identify targets.
We considered including protein–protein interactions as
a feature, but 11 of the 29 TFs that were profiled did
not have any experimental evidence of physical inter-
actions according to the STRING database (53).
Instead, we used functional similarity and co-occurrence
of TFs as proxies for physical interaction. Detection of
shared functional similarity through GO terms is able to
recover as much as 88% of known protein–protein inter-
actions across multiple species and identify novel inter-
actions in humans (54,55). Although co-occurrence of
TFs has been shown to be a good predictor of protein–
protein interactions in yeast (56), until now, there was not
enough data on TF-binding sites in humans to exploit this
feature.

We are able to use the random forest classifier to inte-
grate the different TF and chromatin features without
introducing a complex parametric model. Using multiple
features not only allows us to predict 70% of the genes
associated with genetic variants, but also we have the pos-
sibility of identifying novel gene regulatory interactions.
This is especially useful when most eQTL data in human
LCLs are underpowered for identifying the genetic
pathways involved in complex traits (57). For the
purposes of this study, we only examined CREs
co-localized with eQTLs, but there are thousands of
other CREs without eQTLs that can associated with
genes using our classifier. It is also important to note
that the CRE–target gene associations provided by the
eQTL data are based on correlations and may describe
some indirect regulatory interactions (58). The random
forest classifier, which is trained on eQTL data, may not
be predicting only direct targets of CREs, but it also does
help identify TF and chromatin signals that link
non-coding SNPs to nearby genes. Without better experi-
mental evidence of direct regulatory relationships, we
are limited when validating our predictions. Our hope is
that new experimental approaches, such as chromatin
interaction analysis by paired-end tag sequencing
(ChIA-PET), can one day be conducted in a high-
throughput manner to validate interactions between pro-
moters and enhancers (49). Our results also show that the
quality of these features for inference is limited by cell
specificity. This represents a limitation in our method,
where features detected in the GM12878 cell type were
not as useful for predicting target genes of eQTLs in fibro-
blasts and T-cells. The dynamic nature of TF occupancy
results in dramatically different TF-binding site profiles
detected across different cell types (7,59), and in turn
causes differential gene expression.

For each gene, the random forest classifier outputs
the ratio of trees in the forest voting for the target
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classification. This ratio could represent a prioritized list
of candidate CRE–target gene interactions to be validated
experimentally. Alternatively, we could predict a target by
selecting the gene within 1Mb of a CRE that has the
highest ratio. This would make target gene predictions
more precise, but we would also have to make the assump-
tion that each element can only regulate one target gene.
Making such a strong assumption would hinder the pos-
sibility of discovering novel targets. To gain further insight
into gene regulatory mechanisms, we could examine the
measures for variable importance returned by the classifier
(48). However, correlations between TF-binding sites and
chromatin markers mean that multicollinearity exists in
models combining multiple features (43). This does not
reduce the predictive power of the random forest classi-
fier, but makes it difficult to evaluate the contribution of
individual features toward the prediction of target genes.
To account for correlations between predictor variable
when assessing their relative importance, we can permute
the values of each feature in the random forests while
conditioning on the other features (60). When we did
this, we found that the genomic distance feature has the
highest conditional importance score, which is consistent
with empirical results showing that it is the best predictor
of gene–eQTL associations. The ranking of features based
on importance scores, shown in Supplementary Figure S5,
further suggests that the insulator, TF co-occurrence and
GO similarity have some impact on the prediction
of target genes, especially for those that are distal
(Figure 7). Finding a reduced model based on these
features may allow us to identify specific factors
influencing long-range regulatory interactions. This will
be especially important when more experimental data
sets become publicly available, increasing the number of
features to consider for integrative analysis.

In summary, we have examined TF and chromatin
features that co-localize along the genome. Specifically,
we proposed using genomic distance, gene co-expression,
open chromatin, TF co-occurrence, GO similarity and in-
sulator marks as possible features for predicting genes
associated with eQTLs. Although all the features are
weak predictors for distal genes, we have shown that an
ensemble of these features can significantly improve eQTL
target prediction. It is, however, crucial for these features
to be obtained from the same cell population, owing to the
cell type specificity of these features. Through this
approach, we can propose mechanistic explanations for
how genetic variants influence target genes through chro-
matin state and TF binding dynamics.
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