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Abstract

Plants react to pathogen attack via recognition of, and response to, pathogen-specific molecules at the cell surface and
inside the cell. Pathogen effectors (virulence factors) are monitored by intracellular nucleotide-binding leucine-rich repeat
(NB-LRR) sensor proteins in plants and mammals. Here, we study the genetic requirements for defense responses of an
autoactive mutant of ADR1-L2, an Arabidopsis coiled-coil (CC)-NB-LRR protein. ADR1-L2 functions upstream of salicylic acid
(SA) accumulation in several defense contexts, and it can act in this context as a ‘‘helper’’ to transduce specific microbial
activation signals from ‘‘sensor’’ NB-LRRs. This helper activity does not require an intact P-loop. ADR1-L2 and another of two
closely related members of this small NB-LRR family are also required for propagation of unregulated runaway cell death
(rcd) in an lsd1 mutant. We demonstrate here that, in this particular context, ADR1-L2 function is P-loop dependent. We
generated an autoactive missense mutation, ADR1-L2D484V, in a small homology motif termed MHD. Expression of ADR1-
L2D848V leads to dwarfed plants that exhibit increased disease resistance and constitutively high SA levels. The
morphological phenotype also requires an intact P-loop, suggesting that these ADR1-L2D484V phenotypes reflect canonical
activation of this NB-LRR protein. We used ADR1-L2D484V to define genetic requirements for signaling. Signaling from ADR1-
L2D484V does not require NADPH oxidase and is negatively regulated by EDS1 and AtMC1. Transcriptional regulation of
ADR1-L2D484V is correlated with its phenotypic outputs; these outputs are both SA–dependent and –independent. The
genetic requirements for ADR1-L2D484V activity resemble those that regulate an SA–gradient-dependent signal amplification
of defense and cell death signaling initially observed in the absence of LSD1. Importantly, ADR1-L2D484V autoactivation
signaling is controlled by both EDS1 and SA in separable, but linked pathways. These data allows us to propose a genetic
model that provides insight into an SA–dependent feedback regulation loop, which, surprisingly, includes ADR1-L2.
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Introduction

Plants encounter a wide variety of pathogens. To defend against

infection, plants rely on their organ surfaces as pre-formed barriers

to infection. Plants have also evolved an active, two-layered

immune system [1]. The first branch utilizes transmembrane

receptors (PRRs, or pattern recognition receptors) which detect

microbe-associated molecular patterns (MAMPs) of various

pathogens [2]. MAMP detection elicits a rapid, relatively low-

amplitude host transcriptional response resulting in MAMP-

triggered immunity (MTI) which is sufficient to halt growth of

many microbes [1,3]. Successful pathogens can suppress or delay

MTI via delivery of effector molecules into host cells. Effectors are

typically virulence proteins [4]. Gram-negative bacterial patho-

gens deliver effectors via injection into the plant cell by the Type

III Secretion System (TTSS). Plants respond to effectors with the

second tier of recognition, which is dependent on highly

polymorphic intracellular disease resistance (R) proteins of the

NB-LRR family. NB-LRRs are specifically activated by the

presence and/or action of effectors to trigger robust defense

responses termed Effector-Triggered Immunity (ETI), which can

include localized hypersensitive cell death [1].

NB-LRR proteins are members of the signal transduction

ATPases with numerous domains (STAND) superfamily, which

also includes animal innate immune sensors of the nucleotide-

binding domain and leucine-rich repeat-containing (NLR) class

[5,6]. STAND proteins are ATPases that function as molecular

switches: in the ‘‘off’’ position they bind ADP, and in the ‘‘on’’

position they bind ATP, activating nucleotide hydrolysis and

triggering downstream defense responses. This model is proposed
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for plant NB-LRRs, though there is very little experimental data

pertinent to it [7]. Two essential, conserved homology regions

necessary for proper plant NB-LRR activity are the P-loop

(Walker-A) and the thus far plant-specific ‘MHD motif’ located in

the ARC2 sub-domain of the extended NB-ARC domain.

Mutations in the P-loop typically lead to loss of function [8,9].

Conversely, mutation of the Asp (D) in the MHD motif often leads

to autoactivity of the NB-LRR protein [10–15], resulting in either

lethality or a severely dwarfed morphology. These pleiotropic

phenotypes are thought to be the consequence of ectopic

accumulation of SA, a key defense hormone whose synthesis from

chorismate is controlled by the isochorismate synthase gene

(ICS1/SID2) [16], and consequent defense activation [11,13,15].

Additionally, several NB-LRRs, in both plants and animals, work

in pairs: in these cases, one can function as an effector-specific

‘sensor’, and the other as a ‘helper’ protein. This may allow or

drive the formation of higher-order protein complexes necessary

for properly regulated defense activation [17–20].

ADR1-L2 (Activated Disease Resistance 1-like 2) is one of a

small family of NB-LRR proteins that includes ADR1 and ADR1-

L1 [21]. We recently demonstrated that ADR1-L2 functions

downstream of the production of reactive oxygen intermediates

(ROI), and upstream of SA accumulation, in basal defense

(defined as the response that limits the growth and proliferation of

genetically virulent pathogens). ADR1-L2 also functions in

MAMP-triggered SA accumulation, and as a ‘helper’ protein

during some, but not all ETI responses driven by effector-

mediated activation of specific sensor NB-LRR proteins [22].

Surprisingly, none of the ADR1-L2 functions above required an

intact P-loop [22]. In addition to these ‘non-canonical’ activities,

we suggested that ADR1-L2 might have as yet undefined P-loop

dependent, ‘canonical’ functions that, in the absence of the specific

effector required for activation, are difficult to define. ADR1-L2

would not be the first NB-LRR protein to have multiple,

independent functions. The mouse NLR protein NLRC4 has

two separate functions as a ‘helper’ protein in the recognition of

both the MAMP flagellin and PrgJ, a component of the

Salmonella TTSS. These activities are downstream of the

activation of two different sensor NLRs: NAIP5 is necessary for

flagellin perception, and NAIP2 is required for PrgJ recognition

[17,20]. Importantly, NLRC4 ‘helper’ activity is also P-loop

independent [17,20].

Canonical, effector-driven NB-LRR activation typically leads to

an NADPH oxidase-dependent ROI burst [23]. The adr1 family

triple mutant (adr1 adr1-L1 adr1-L2) exhibited normal ROI

production after successful pathogen recognition [22]. Thus, the

ADR1-L2 helper function noted above is downstream or

independent of this oxidative burst. However, adr1 triple mutants

failed to accumulate wild-type levels of SA in this context [22].

Another protein that functions downstream of the effector-driven

oxidative burst and both regulates and responds to SA accumu-

lation is Lesion Simulating Disease resistance 1 (LSD1) [23,24].

Loss of LSD1 leads to improper regulation of runaway cell death,

or rcd [24] that eventually engulfs the affected leaf. The

Arabidopsis NADPH oxidase AtRbohD, which is required for

effector-driven oxidative burst, is not required for lsd1-mediated

cell death [23]. On the other hand, lsd1 rcd is both induced by,

and requires, SA [24,25]. lsd1 rcd is also regulated by Enhanced

Disease Susceptibility 1 (EDS1) and a type I metacaspase, AtMC1;

eds1 lsd1 and atmc1 lsd1 plants do not exhibit rcd [26,27]. EDS1 is a

defense response regulator, required for both basal defense and

Toll/interleukin-1 (TIR)-NB-LRR mediated ETI [28]. EDS1 and

SA act in a regulatory feedback loop, with SA up-regulating EDS1

expression and EDS1 functioning as a potentiator of SA-mediated

signaling [29,30]. AtMC1 is a positive regulator of ETI-mediated

cell death [27].

To define the genetic requirements of putative canonical

functions of ADR1-L2 in the absence of an effector known to

activate it, we created an autoactive MHD mutant, ADR1-L2D484V.

This allele displayed the dwarfed morphology that is the hallmark

of MHD mutants [11,13,15]. We demonstrate that this auto-

activity is P-loop dependent, downstream of AtRbohD-mediated

ROI production, partially dependent on SA synthesis, and

negatively regulated by EDS1 and AtMC1. We then present

and validate a model for the interaction of EDS1, LSD1, and

ADR1-L2, showing that these proteins function in both SA-

dependent and SA-independent feedback regulatory loops that are

interconnected.

Results

Members of the ADR1 family of NB-LRRs are required for
runaway cell death in lsd1

ADR1-L2 is a CC-NB-LRR that is a positive regulator of lsd1

rcd [22]. It is part of a small family of NB-LRRs that includes

ADR1 and ADR1-L1 [21,22]. We generated adr1 lsd1-2 and adr1-

L1 lsd1-2 double mutants and sprayed them with the SA analog

benzothiadiazole (BTH) [31] to test whether adr1 and adr1-L1 also

suppress the initiation and propagation of lsd1 rcd. Col-0 wild-type

plants were unaffected by BTH treatment, whereas lsd1-2 plants

sprayed with BTH showed typical rcd [24]. As reported, the adr1-

L2 lsd1-2 double mutants fully suppressed lsd1 rcd [22]. adr1-L1

also fully suppressed lsd1-2 rcd, while adr1 had only a slight effect

(Figure 1A, 1B). We quantified this phenotype by monitoring

cellular ion leakage via changes in media conductivity, an

established proxy for membrane damage associated with cell

death [32]. Col-0 plants did not exhibit significant changes in

media conductivity, but lsd1-2 plants showed increasing conduc-

tivity, with the highest reading at 92 hours post-BTH treatment.

adr1-L1 lsd1-2 and adr1-L2 lsd1-2 both exhibited complete ion

leakage suppression, while adr1 lsd1-2 exhibited a marginal effect

(Figure 1C). Thus, ADR1-L1 and ADR1-L2 are each required for

lsd1 rcd.

Author Summary

Plants possess an active, inducible disease resistance
system, and induction of these responses depends in part
on plant resistance proteins. Present understanding of
these resistance proteins likens them to molecular switch-
es that bind nucleotides to activate disease resistance
responses. Previously it was shown that Activated Disease
Resistance 1-like 2 (ADR1-L2), a plant disease resistance
protein, is important in the immune response, but can
function in the contexts analysed independently of what is
currently considered the canonical nucleotide switch
activation. Here, we show that, in addition to these
previously reported functions, ADR1-L2 also works as a
typical, activated disease resistance protein. We use an
autoactive mutant form of the protein and show that it
promotes disease resistance. We find that ADR1-L2 works
in an EDS1-dependent feedback loop with salicylic acid, a
hormone known to be essential for plant disease
resistance. This work allows us to broaden the under-
standing of how plant disease resistance proteins function
to generate defense against pathogens.

Autoactive Plant NB-LRR Regulatory Circuit
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We noted that adr1-L1 and adr1-L2 exhibited non-allelic non-

complementation (NANC), a rare genetic condition where plants

that are heterozygous at both loci phenotypically resemble either

homozygous single mutant. Thus, plants homozygous for lsd1-2

and heterozygous for both ADR1-L1 and ADR1-L2 exhibited full

suppression of lsd1 rcd (Figure 1D). We also found that adr1-L2

was fully recessive, whereas adr1-L1 appeared to be semi-dominant

(Figure 1D). NANC frequently indicates that the two genes act

Figure 1. A family of CC-NB-LRR proteins is required for lsd1 runaway cell death. (A) Four-week-old plants were sprayed with 300 mM BTH
or water. Pictures of plants were taken 5 days post-inoculation (dpi). (B) Leaves from plants in (A) were stained with trypan blue to visualize cell death.
Leaves on the left are water-treated controls, leaves on the right are sprayed with 300 mM BTH. (C) Ion leakage measurements from (A), 5 days post-
BTH treatment. Values are means 626SE (n = 5). (D) Ion leakage measurements for NANC. adr1-L1 lsd1-26lsd1-2, adr1-L2 lsd1-26lsd1-2, adr1-L1 lsd1-
26adr1-L2 lsd1-2 represent F1 plants of the indicated crosses, and are thus lsd1 homozygous and heterozygous for the indicated adr mutations. (E)
Quantitative real time PCR for the transcript amounts of the three members of the ADR family in wild-type Col-0 plants, normalized to UBQ5.
doi:10.1371/journal.pgen.1003465.g001

Autoactive Plant NB-LRR Regulatory Circuit
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closely together or that the two proteins physically interact or are a

part of the same protein complex, and that their overall dose is

important for their shared function [33]. Because all three ADR1

proteins share significant amino acid identity, we speculated that

lowering of the overall ADR1 dose might be sufficient to suppress

lsd1 rcd. Thus, the weak adr1 rcd suppression phenotype might

simply reflect low expression of ADR1 relative to ADR1-L1 and

ADR1-L2. Quantitative RT-PCR analysis of gene specific mRNA

levels confirmed that ADR1 is expressed at lower levels than ADR1-

L1 and ADR1-L2 under our growth conditions, consistent with this

model (Figure 1E).

ADR1-L2 is required at the specific site undergoing cell
death

ADR1-L2 is a positive regulator of lsd1-mediated cell death. This

could be due either to (i) a requirement for ADR1-L2 activation in

cells destined to die, followed by its continued activation in

neighboring cells, as the SA-dependent signal for rcd spreads in

the absence of LSD1 [23,34]; or (ii) a requirement for ADR1-L2

activation in cells initially triggered to die, with this activation

contributing to the spread of an ADR1-L2-independent cell death

signal beyond the primary cell death site. To distinguish between

these two hypotheses, we generated an estradiol-driven (Est)

conditional expression system, which induces local target gene

expression [35]. adr1-L2 lsd1-2 plants expressing an estradiol-

induced, HA epitope-tagged ADR1-L2 transgene were constructed

(Materials and Methods). Expression of ADR1-L2 was activated by

local application of estradiol on only part of a leaf, thus creating an

artificial chimera containing both adr1-L2 lsd1-2 and ADR1-L2 lsd1-

2 sectors (Figure 2A). ADR1-L2 expression was limited to the area

of estradiol application as measured via Western blot (Figure 2B).

BTH treatment was then used to induce lsd1-mediated rcd. We

observed that cell death was limited to the zone of estradiol

treatment and did not expand into the adr1-L2 lsd1-2 sector

(Figure 2C). This result supports our first hypothesis: ADR1-L2

expression is continuously required in cells undergoing lsd1-

mediated rcd.

The requirement for ADR1-L2 in lsd1 rcd is P-loop
dependent

We previously noted that ADR1-L2 is required for SA

accumulation following effector and MAMP recognition, and that

this does not require an intact P-loop motif [22]. However, these

results do not preclude additional, canonical P-loop-dependent

functions for ADR1-L2. Thus, we tested whether or not the positive

regulatory function of ADR1-L2 in lsd1 rcd is P-loop dependent. We

generated adr1-L2 lsd1-2 plants expressing ADR1-L2AAA, a mutated

allele of ADR1-L2 which carries alanine (A) substitutions in the

three consecutive conserved residues within the P-loop motif which

are essential for nucleotide binding [22]. Interestingly, ADR1-

L2AAA fails to complement for lsd1 rcd following BTH treatment

(Figure 3A), even though this construct retains wild type BTH-

induced ADR1-L2 protein accumulation (Figure 3B). Despite

repeated attempts, we could not recover adr1-L2 plants over-

expressing ADR1-L2, presumably due to lethality of ectopic over-

expression as noted for other sensor NB-LRR proteins (data not

shown). Together these results suggest that ADR1-L2 activation in

lsd1 rcd proceeds in a canonical, P-loop dependent manner.

An autoactive version of ADR1-L2 exhibits P-loop-
dependent, ectopically activated immune responses

Mutations of the aspartic acid (D) in the conserved MHD motif

in plant NB-LRRs typically lead to autoactivity [10–14].

Mechanistically, this is thought to reflect either a preference for

ATP binding or a lack of ATPase activity, either of which would

favor the ‘‘on’’ state, according to current models of NB-LRR

activation [7,19]. Thus, a similar mutation in the MHD motif of

ADR1-L2 should result in a permanent ‘on’ state, resulting in

ectopic autoactivity. In the cases where it has been examined, NB-

LRR autoactivity via MHD mutation has been shown to require

an intact P-loop [10–14]. Thus, given the P-loop dependent

function of ADR1-L2 in lsd1 rcd, we speculated that ADR1-L2

activity in additional defense contexts might also require an intact

P-loop.

We generated adr1-L2 plants expressing ADR1-L2 with a Val (V)

for Asp (D) substitution at amino acid 484 (Figure 4A; hereafter

ADR1-L2D484V). As expected, ADR1-L2D484V transgenics exhibited

a dwarfed, cpr (Constitutive PR expression)-like phenotype [36] with

short hypocotyls, pointed leaves (Figure 4B), and a bushy

appearance after bolting. In contrast, adr1-L2 plants expressing

wild-type ADR1-L2 appeared morphologically similar to wild-type

Col-0 plants (Figure 4B). Both transgenes were expressed from the

native ADR1-L2 promoter, with C-terminal HA epitope tags

(Figure 4C). We note that the majority of ADR1-L2D484V

Figure 2. ADR1-L2 is required at the site undergoing cell death.
(A) Schematic of the chimera. adr1-L2 lsd1-2 expressing an estradiol
inducible C-terminal HA-tagged ADR1-L2 were infiltrated in the
indicated area with 20 mM estradiol, making that portion of the leaf
ADR1-L2 lsd1-2. (B) Western blot to confirm expression of ADR1-L2 was
limited to the estradiol-induced area. Estradiol + and 2 leaf areas were
cored and protein was extracted from these cores. Protein extracts were
run on SDS-Page gels and immunoblotted with anti-HA antibody.
Coomassie stained blot confirms equal loading control (bottom). C,
samples from un-infiltrated leaves; +, estradiol-infiltrated plant tissue;
2, un-infiltrated tissue from the same leaf. In all samples, the entire leaf
was treated with 300 mM BTH. (C) Trypan blue staining (top) of
representative leaves (bottom) to show cell death in lsd1 control and
tissue chimera plants. Leaves from four-week-old plants were treated as
indicated in (A). Plants were sprayed with BTH 16 hours after estradiol
treatment, and leaves were stained with trypan blue 5 days after BTH
treatment.
doi:10.1371/journal.pgen.1003465.g002

Autoactive Plant NB-LRR Regulatory Circuit
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transgenic lines accumulated higher protein levels than those

expressing the wild-type ADR1-L2 allele. We selected ADR1-L2

and ADR1-L2D484V lines expressing similar levels of protein to

show that the cpr-like phenotype is not simply a result of higher

protein levels in the autoactive mutant (Figure 4C); the differences

in morphology persist. Additional ADR1-L2D484V lines expressing

less ADR1-L2D484V protein were also recovered; these did not

exhibit strong cpr-like phenotypes, suggesting that there is a

threshold amount of ADR1-L2D484V required for the associated

phenotypes (data not shown).

The ADR1 family members work additively to limit pathogen

growth, with adr1 triple mutant plants exhibiting increased

susceptibility to virulent pathogens [22]. We therefore tested the

ability of autoactive ADR1-L2D484V to confer enhanced basal

defense against otherwise virulent pathogens. ADR1-L2D484V plants

displayed increased resistance to both Hyaloperonospora arabidopsidis

(Hpa) Emco5 and Pseudomonas syringae pv tomato (Pto) DC3000

(Figure 4D, 4E). Trypan blue staining of cotyledons after

inoculation with Hpa Emco5 revealed predominantly free hyphal

growth in the wild-type Col-0 control and adr1-L2, which was

enhanced in the fully susceptible control, eds1 (Figure 4F). ADR1-

L2D484V plants, on the other hand, exhibited only localized

hypersensitive cell death (HR) as well as a basal level of cell death

(Figure 4F, top row) not seen in the other genotypes. Thus, ADR1-

L2D484V constitutively triggers downstream signaling and in-

creased immune function.

We examined the dependence of the ADR1-L2D484V cpr-like

phenotype on the P-loop. The triple missense P-loop dead

mutation, ADR1-L2AAA [22], and the autoactive ADR1-L2D484V

mutation were combined in cis (Figure 4A) and transformed into

adr1-L2 plants. ADR1-L2AAA D484V plants did not exhibit the cpr-like

phenotype (Figure 5A) despite the fact that they expressed levels of

ADR1-L2AAA D484V protein that are similar to ADR1-L2D484V

levels sufficient to cause the dwarfed phenotype (Figure 5B). Thus,

an intact P-loop domain is required for ADR1-L2D484V auto-

activity. We infer that ADR1-L2D484V is an activated version of

this NB-LRR which can be used to study the canonical, P-loop

dependent functions of ADR1-L2.

ADR1-L2D484V autoactivity is regulated by lsd1
suppressors

ADR1-L2 was identified as a positive regulator of lsd1 rcd ([34],

above). LSD1 and ADR1-L2 both function downstream of the

NADPH oxidase-dependent ROI burst driven by NB-LRR sensor

activation, but upstream of SA accumulation [22,25,26]. Addi-

tionally, ADR1-L2 is locally required for lsd1-mediated rcd and its

function in this context is P-loop dependent (Figure 2, Figure 5).

Thus, we hypothesized that genetic components known to regulate

lsd1 rcd might also be required for ADR1-L2D484V activity. We

generated double mutants between ADR1-L2D484V and the lsd1

suppressors sid2, eds1, and atmc1 to define genetic interactions

required for the ADR1-L2D484V phenotypes. We also generated

ADR1-L2D484V atrbohD double mutants to define whether an

oxidative burst is required for the ADR1-L2D484V phenotypes. We

examined these double mutants for ADR1-L2D484V protein

accumulation, alterations in the ADR1-L2D484V cpr-like morphol-

ogy, enhanced resistance to the virulent Hpa isolate Emco5, and

steady-state SA levels.

AtRbohD is generally required for effector-driven, NB-LRR-

dependent superoxide production, but not for lsd1 rcd [23]. In

fact, lsd1-2 atrbohD plants exhibit increased rcd compared to lsd1-2

single mutants, a phenotype that depends on SA accumulation

[25]. This result suggests that the NADPH oxidase can down-

regulate the spread of cell death as SA-dependent signals emanate

from an infection site [23]. atrbohD ADR1-L2D484V plants morpho-

logically resembled the ADR1-L2D484V parent (Figure 6A, Figure

S1) and expressed a similar level of ADR1-L2D484V protein

(Figure 6B). Like the ADR1-L2D484V parent, atrbohD ADR1-L2D484V

plants were significantly more resistant to Hpa Emco5 (Figure 6C),

and had extremely high steady-state levels of SA (Figure 6D). We

Figure 3. The requirement for ADR1-L2 in lsd1 rcd is P-loop
dependent. (A) Four-week-old plants of the indicated genotypes were
sprayed with BTH or water. ADR1-L2 and AAA indicate adr1-L2 lsd1
plants expressing C-terminally HA-tagged wild-type ADR1-L2 or the
mutated P-loop allele ADR1-L2AAA, respectively. In both transgenics
expression is driven by the native ADR1-L2 promoter. Pictures of plants
were taken 5 dpi. (B) Protein from the indicated genotypes was
extracted before or after BTH treatment, run on a denaturing gel, and
probed with anti-HA antibody. Ponceau-stained blot shows relative
loading.
doi:10.1371/journal.pgen.1003465.g003

Autoactive Plant NB-LRR Regulatory Circuit
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conclude that ADR1-L2D484V autoactivity, unlike effector-driven

NB-LRR activation, is downstream, or independent, of AtRbohD.

SA is required for lsd1 rcd [25] and mediates basal defense in

plants [37]. Additionally, SA levels are reduced in adr1-family

triple mutant plants, corresponding to diminished basal defense

and an increase in disease susceptibility [22]. Thus, it seemed likely

that the increased basal defense in ADR1-L2D484V plants could be

due to the massive increase in SA observed in this line (Figure 6D).

We tested this hypothesis using the sid2 mutant, which is unable to

synthesize SA due to a mutation in the biosynthetic isochorismate

synthase gene, ICS1 [16]. sid2 ADR1-L2D484V plants morpholog-

ically resembled the ADR1-L2D484V parent (Figure 6A, Figure S1)

and accumulated similar amounts of ADR1-L2D484V protein

(Figure 6B). sid2 ADR1-L2D484V plants exhibited enhanced basal

defense to Hpa Emco5, though not to the same extent as ADR1-

L2D484V (Figure 6C). As expected, sid2 ADR1-L2D484V plants did

not accumulate SA (Figure 6D). These observations indicate that

the defense cpr-like phenotypes of ADR1-L2D484V consist of both

Figure 4. ADR1-L2D484V ectopically activates basal defense. (A) Schematic representation of ADR1-L2 showing the P-loop and MHD mutations
used in this study. (B) Morphology of five-week-old adr1-L2, and adr1-L2 complemented with pADR1-L2::ADR1-L2-HA or pADR1-L2::ADR1-L2D484V-HA,
showing relative size. White bar is 2 cm. (C) Western blot of HA-tagged protein from the indicated genotypes before and after BTH application.
Protein was extracted from plants, run on a denaturing gel and probed with anti-HA antibody. Ponceau-stained blot shows relative loading. (D) Ten-
day-old seedlings were inoculated with 56104 sporangia/mL Hpa Emco5 via spray inoculation. Sporangiophores per cotyledon were counted 4 dpi,
with an average of 80 cotyledons per genotype counted. Sporangiophore counts were classified into: no sporulation (0 sporangiophores/cotyledon),
light sporulation (1–5), medium sporulation (6–10), heavy sporulation (11–15), or very heavy sporulation (.15). Means of sporangiophore per
cotyledon are listed below the graph. (E) Twenty-day-old seedlings were dip-inoculated with Pto DC3000(EV). Bacterial growth was assayed at 0 and
3 dpi. Values are mean cfu/mg 626SE, n = 4. Asterisk indicates significant difference (Post Hoc test, p,0.0001). (F) Trypan blue stained leaves from
(D) and magnified sites (206). Leaves were collected and stained 4 dpi. Red arrows indicate HR sites.
doi:10.1371/journal.pgen.1003465.g004
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SA-dependent and SA-independent components, whereas the cpr-

like growth phenotype is SA-independent.

EDS1 is required for lsd1-mediated rcd [26] and is an essential

regulator of both basal defense against virulent pathogens [38,39]

and TIR-NB-LRR dependent ETI [40–42]. Exogenous SA

rescues eds1 basal defense phenotypes, suggesting that EDS1 acts

upstream of ICS1, at least for the phenotypes assayed [42,43].

Importantly, eds1 ADR1-L2D484V plants were significantly more

dwarfed than ADR1-L2D484V (Figure 6A, Figure S1), though these

two lines expressed similar levels of ADR1-L2D484V protein

(Figure 6B). eds1 ADR1-L2D484V double mutants were completely

resistant to Hpa Emco5 (Figure 6C), and had steady-state SA levels

that were higher than the ADR1-L2D484V single mutant (Figure 6D).

These surprising results demonstrate that EDS1 is a negative

regulator of the SA-accumulation observed in ADR1-L2D484V.

AtMC1 is a metacaspase required for lsd1 rcd; AtMC1 also

contributes significantly to ETI-dependent HR [27]. atmc1 ADR1-

L2D484V plants were extremely dwarfed (Figure 6A, Figure S1).

However, these plants were not sterile; they produced small

amounts of seed and had a very long life cycle compared to wild-

type Col-0 or ADR1-L2D484V plants (data not shown). They also

accumulated more ADR1-L2D484V protein than the ADR1-

L2D484V parent (Figure 6B). Cotyledons of the atmc1 ADR1-

L2D484V plants were similar in size to those of ADR1-L2D484V

plants, and we were thus able to perform Hpa infection assays. We

determined that atmc1 ADR1-L2D484V cotyledons are completely

resistant to Hpa Emco5 (Figure 6C). Due to the extremely small

size of the atmc1 ADR1-L2D484V double mutant, we were unable to

perform SA analysis on this line. Collectively, these data indicate

that AtMC1 negatively regulates ADR1-L2D484V protein accu-

mulation, and likely subsequent SA accumulation leading to a

hyper-cpr phenotype.

lsd1 ADR1-L2D484V is lethal, and this lethality requires
EDS1

ADR1-L2 is required for lsd1-mediated rcd [22]. We therefore

examined whether ADR1-L2D484V affects the lsd1 phenotype. We

crossed lsd1-2 and ADR1-L2D484V plants, and in the F3 generation

homozygous ADR1-L2D484V plants were selected via Basta

resistance markers on the transgene (Materials and Methods).

ADR1-L2D484V homozygotes were genotyped for lsd1-2; none were

lsd1-2 homozygous (Table S1). Additionally, we carried lsd1-2

homozygous, ADR1-L2D484V heterozygous plants forward an

additional generation, and again used the Basta resistance marker

to identify homozygous ADR1-L2D484V plants. None were recov-

ered. Next, we attempted to transform lsd1-2 mutant plants with

the same ADR1-L2D484V construct used in the adr1-L2 transfor-

mation. No lines were recovered that expressed detectable levels of

ADR1-L2D484V protein, and no plants that were recovered

displayed the dwarfed phenotype (data not shown). We concluded

that lsd1-2 ADR1-L2D484V is lethal.

We therefore looked for genetic determinants required for lsd1

ADR1-L2D484V lethality. As stated above, eds1 and atmc1 are both

suppressors of lsd1 rcd. We therefore crossed atmc1 lsd1-2 or eds1

lsd1-2 plants, which express wild-type growth, to ADR1-L2D484V.

atmc1 lsd1-2 ADR1-L2D484V plants could not be recovered (data not

shown), indicating that AtMC1 is not required for lethality of lsd1-2

ADR1-L2D484V. However, we did recover eds1 lsd1-2 ADR1-

L2D484V plants. These plants surprisingly exhibited wild-type

morphology (Figure 7A), resembling eds1 lsd1 [26]. The suppres-

sion of the ADR1-L2D484V cpr-like phenotype is likely due to a

much lower level of steady state ADR1-L2D484V accumulation in

the eds1 lsd1-2 ADR1-L2D484V plants compared to parental plants

(Figure 7B). Despite examining many eds1 lsd1-2 ADR1-L2D484V

plants from 4 independent progenies, no plant with ADR1-L2D484V

parental expression levels was recovered. Additionally, eds1 lsd1-2

ADR1-L2D484V plants did not accumulate the high levels of SA

observed in ADR1-L2D484V (Figure 7C).

In light of the surprising result that eds1 lsd1-2 ADR1-L2D484V

plants are essentially wild-type, we re-confirmed the genotypes and

phenotypes of eds1 ADR1-L2D484V and eds1 lsd1-2 ADR1-L2D484V.

For this, we used a line that was homozygous for eds1 and ADR1-

L2D484V but heterozygous for LSD1 and expressed the wild-type

morphology. In the next generation, both dwarfed and wild-type

size plants were identified (Figure S2A). These plants were

genotyped for LSD1, and all dwarfed plants were found to be

LSD1 homozygotes (Figure S2B, 20 of 70 plants were LSD1

homozygotes). Wild-type size plants were either LSD1/lsd1

heterozygotes (34 of 70 plants) or lsd1 mutants (16 of 70 plants),

suggesting that the dominant wild-type phenotype in this context is

the result of LSD1 haploinsufficiency. We therefore conclude that

the difference in the phenotypes between eds1 lsd1-2 ADR1-

L2D484V (wild-type) and both eds1 ADR1-L2D484V (nearly lethal) and

lsd1 ADR1-L2D484V (lethal) is genuine. Further, in the presence of

autoactive ADR1-L2D484V, the combined absence of EDS1 and the

loss, or reduction, of LSD1 leads to down-regulation of ADR1-

L2D484V protein accumulation and restoration of wild-type

morphology.

We addressed whether the lowered accumulation of ADR1-

L2D484V protein in eds1 lsd1-2 ADR1-L2D484V was due to

transcriptional regulation. We performed quantitative RT-PCR,

and discovered that the ADR1-L2D484V transcript levels in eds1 lsd1-

2 ADR1-L2D484V plants were lower than in ADR1-L2D484V

(Figure 7D), generally consistent with the diminution of ADR1-

L2D484V protein in eds1 lsd1-2 ADR1-L2D484V (Figure 7B). LSD1

and EDS1 are known to work together in an SA regulatory

feedback loop [26]. Given that eds1 lsd1-2 ADR1-L2D484V plants

are morphologically normal, express lower levels of SA than

ADR1-L2D484V, and accumulate lower levels of ADR1-L2 transcript

and protein than ADR1-L2D484V (Figure 7), and that ADR1-L2

accumulation is up-regulated by BTH application (Figure 4C), we

Figure 5. An intact P-loop catalytic domain is required for the
ADR1-L2D484V morphological phenotype. (A) Pictures of five-week-
old Col-0, ADR1-L2D484V, and ADR1-L2AAA D484V plants show relative
morphology. (B) Western blot of Col-0 and HA-tagged ADR1-L2D484V

and ADR1-L2AAA D484V protein from plants in (A). Relative loading
indicated by Ponceau stained blot.
doi:10.1371/journal.pgen.1003465.g005
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Figure 6. lsd1 suppressors are regulators of ADR1-L2D484V autoactivity. (A) Pictures of five-week-old Col-0, ADR1-L2D484V, atrbohD ADR1-
L2D484V, sid2-1 ADR1-L2D484V, eds1-2 ADR1-L2D484V, or atmc1-1 ADR1-L2D484V plants, showing morphological differences between the genotypes. White
bar is 2 cm. (B) Western blots of HA-tagged ADR1-L2D484V proteins from plants in (A). Ponceau staining shows relative loading. (C) Ten-day-old
seedlings of the indicated genotypes were inoculated with 56104 sporangia/mL Hpa Emco5. At 4 dpi, sporangiophores were counted and classified
as in Figure 4. Means per cotyledon are listed below the graph. (D) Steady-state total SA levels were measured from leaves of the indicated
genotypes. Values are average mg of total SA from 4 replicates, 626 SE.
doi:10.1371/journal.pgen.1003465.g006
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speculate that this loop also regulates ADR1-L2 expression. In

support of this hypothesis, we also noted that ADR1-L2D484V

transcript accumulated to significantly higher levels than the

endogenous ADR1-L2 transcript in wild-type Col-0 plants

(Figure 7D), indicating that plants expressing the activated

ADR1-L2 allele constitutively up-regulate ADR1-L2 transcrip-

tion.

ADR1-L2D484V autoactivity is synergistically regulated by
EDS1 function and SA accumulation

The phenotypic suppression of lsd1 lethality and of eds1

ADR1-L2D484V morphological defects in eds1 lsd1 ADR1-L2D484V

plants suggests that ADR1-L2D484V autoactivity signals via two

parallel pathways leading to SA accumulation, one EDS1- and

one LSD1-dependent. These converge through mutual negative

regulation exerted by EDS1 on the LSD1-dependent pathway

and vice versa. LSD1 dampens an SA regulatory feed-forward

loop that requires EDS1 [26]. EDS1 dampens an LSD1-

dependent SA-accumulation (Figure 7). Thus it is plausible that

eds1 lsd1 ADR1-L2D484V resembles a wild-type plant because the

SA levels cannot be feed-forward amplified. To test this

hypothesis, we generated sid2 eds1 ADR1-L2D484V plants by

crossing sid2 ADR1-L2D484V to eds1 ADR1-L2D484V. Similar to

eds1 lsd1 ADR1-L2D484V, these plants exhibited complete

suppression of the nearly lethal eds1 ADR1-L2D484V phenotype

(Figure 8A). Additionally, the steady state accumulation of the

transgene was lowered compared to either parental line

(Figure 8B). We noted that the reduced protein accumulation

was not caused by transgene silencing, as F2 progeny from sid2

ADR1-L2D484V6eds1 ADR1-L2D484V segregated the SID2 eds1

ADR1-L2D484V morphological phenotype (Figure 8A). Quanti-

tative RT-PCR on ADR1-L2 transcript suggested that, similar to

eds1 lsd1 ADR1-L2D484V, the reduced transgene accumulation is

transcriptional (Figure 8C). As noted above, an additional

hallmark of ADR1-L2D484V autoactivity is enhanced immune

function. We thus tested whether the enhanced basal defense

response of ADR1-L2D484V is affected in the eds1 sid2 mutant

background. Strikingly, sid2 eds1 ADR1-L2D484V plants were

extremely susceptible to Hpa Emco5, more so than either single

sid2 or eds1 mutants (Figure 8D). A model consistent with these

observations and previous publications is presented in Figure 9

and discussed below.

RAR1 is dispensable for accumulation of ADR1-L2
The autoactive phenotypes of ADR1-L2D484V plants require

ADR1-L2D484V protein accumulation above a threshold. This

indicates that the expression level of wild-type ADR1-L2 may also

be under exquisite control. The co-chaperone RAR1, while not

necessary for the function of all NB-LRRs, is required for the

steady state accumulation of all NB-LRRs tested to date [44–47].

We thus crossed adr1-L2 pADR1-L2:ADR1-L2-HA to rar1-21 [46].

Plants genotyped as homozygous rar1-21 and homozygous RAR1

exhibited similar levels of ADR1-L2-HA protein (Figure S3A),

indicating that RAR1 is not required for ADR1-L2 accumulation.

The rar1 genotype was confirmed by Western blot for RAR1

protein (Figure S3B). ADR1-L2 expression can be up-regulated

with BTH [22]. We therefore also tested whether RAR1 is

required for the high levels of ADR1-L2 accumulating after BTH

treatment. BTH induced ADR1-L2 protein in rar-21 ADR1-L2-HA

plants accumulated to levels at least as high as those in RAR1

ADR1-L2-HA plants (Figure S3A). Therefore, RAR1 is dispensable

for both steady-state ADR1-L2 accumulation, in contrast to other

assayed NB-LRR proteins [44–47], and for its BTH-induced up-

regulation.

Discussion

We recently demonstrated that the plant NB-LRR immune

receptor ADR1-L2 can have non-canonical, P-loop independent

‘helper’ functions in plant defense [22]. Here, we sought first to

define canonical, P-loop dependent function(s) for ADR1-L2, and

then to understand the genetic requirements for these functions.

We demonstrated that wild-type ADR1-L2 is required locally at

the site of BTH-driven cell death activation in the lsd1 cell death

control mutant. This activity requires an intact P-loop and is thus

canonical. In this context, ADR1-L2 genetically interacts with

ADR1-L1 to control runaway cell death, as shown by NANC,

further suggesting that members of the ADR1 family function

together in cell death signaling. ADR1-L2 does not require RAR1

for either its steady state accumulation, nor for its induced

accumulation following BTH treatment. This is the first report of

either steady state or inducible NB-LRR accumulation that is not

RAR1-dependent. This result may differentiate ‘helper’ NB-LRRs

from ‘sensor’ NB-LRRs. We propose that levels of the former

might be dictated by the signaling partners with which they

function in specific stoichiometries, while the latter, acting as

effector-sensors, are threshold-regulated by the NB-LRR co-

chaperone complex [48].

Given the canonical P-loop-dependent function of ADR1-L2 as

a positive regulator of lsd1 cell death, we inferred that ADR1-L2,

like other NB-LRRs studied to date, retains the ability to undergo

a nucleotide-dependent conformational switch to regulate its

activation. Thus, we sought a context in which we could analyze

canonical ADR1-L2 P-loop dependent functions, despite the

absence of an effector to trigger it. We created an autoactive allele,

ADR1-L2D484V. ADR1-L2D484V plants exhibit the dwarfed mor-

phology and constitutively active defense responses observed in

other autoactive NB-LRR mutants. We showed that this

autoactivity requires an intact P-loop. We then used this allele as

a proxy for canonical activation of ADR1-L2 in a series of epistasis

experiments. We present a model consistent with our new findings

and previous genetic analyses [22,23,25,26,30] (Figure 9).

Canonical, P-loop dependent, ‘sensor’ NB-LRR functions

typically drive both the AtrbohD NADPH oxidase-dependent

oxidative burst following effector perception and SID2-dependent

SA accumulation [23]. By contrast, ADR1-L2D484V autoactivity is

downstream, or independent, of AtrbohD, yet still drives SID2-

dependent SA accumulation. This is consistent with the previously

defined, P-loop-independent ‘helper’ activity of ADR1-L2 [22].

Plants expressing ADR1-L2D484V exhibited increased disease

resistance and very high steady-state levels of SA. sid2 ADR1-

L2D484V plants expressed, as expected, very low levels of SA, but

these plants did not completely revert to wild-type morphology,

and they maintained an increased level of enhanced disease

resistance. Thus, there must be SA-independent regulation of

activated ADR1-L2. Redundant functions of EDS1 and SA in

plant defense mediated by ‘sensor’ NB-LRR functions have been

reported [30]. In that work, sid2 or eds1 mutants were insufficient

to disrupt CC-NB-LRR-mediated disease resistance, while com-

bined loss of both gene products led to loss of resistance [30]. Our

results support this model, since the constitutive activation of

ADR1-L2D484V results in both SA-dependent and SA-indepen-

dent phenotypes (Figure 9). Given these data, as well as the fact

that eds1 lsd1 ADR1-L2D484V phenocopies sid2 eds1 ADR1-L2D484V

we conclude that the SA-independent pathway we describe here

requires EDS1 (Figure 9, left).

One of our most surprising observations is the phenotypic

rescue of both the lethal lsd1 ADR1-L2D484V phenotype and the

nearly lethal eds1 ADR1-L2D484V phenotype in eds1 lsd1 ADR1-
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Figure 7. eds1 lsd1 ADR1-L2D484V plants lose ectopic activation phenotypes. (A) Pictures of five-week-old plants of the indicated genotypes
show suppression of the eds1-2 ADR1-L2D484V phenotype in an lsd1-2 background. (B) Western blot of HA-tagged ADR1-L2D484V protein from the
indicated genotypes. Ponceau stain shows relative loading. (C) Total SA amounts (mean 626 SE) were measured from plants of the indicated
genotypes. Values are average mg of total SA from 4 replicates. Error bar represents 626SE. Controls here are from same experiment as data shown
in Figure 6D. (D) Quantitative real time PCR for the transcript amounts of ADR1-L2 in the indicated genotypes. Error bars represent 626 SE.
doi:10.1371/journal.pgen.1003465.g007
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L2D484V plants. It is important to recall that either adr1-L2 or eds1

suppresses lsd1 rcd [22,26]. Recall also that the P-loop indepen-

dent function of ADR1-L2 as a ‘helper’ is downstream of

AtRbohD, but upstream of SA accumulation [22]. This is in

agreement with the autoactive ADR1-L2D484V phenotype, which

bypasses AtRbohD but still drives enhanced SA levels. Notably,

loss of LSD1 in the eds1 ADR1-L2D484V context functionally

resembles loss of SID2. Since SID2-dependent SA accumulation is

regulated by LSD1, we conclude that both SA and EDS1 are

required for ADR1-L2D484V autoactivity. Loss of either genetic

component destroys the fine-tuned equilibrium between EDS1-

dependent and SA-dependent processes in this autoactivity.

P-loop-dependent activation of ADR1-L2 results in SID2-

dependent SA accumulation via two separate pathways (Figure 9).

In the first pathway, ADR1-L2D484V constitutively signals to

EDS1, which in turn positively regulates SID2, increasing SA

levels. ADR1-L2D484V also triggers additional SA production in a

parallel pathway that requires LSD1 and is antagonized by EDS1.

In support of our model, SA regulates EDS1 transcription [29],

which in turn regulates SID2 [49]. Once activated, ADR1-L2

causes cell death, which drives more AtRbohD-dependent ROI

[34] and SA accumulation in surrounding cells [34,50]. In both

pathways, SA is part of a feedback loop that further potentiates the

P-loop dependent activity of ADR1-L2, as indicated by the fact

that ADR1-L2 is BTH inducible. Thus, ADR1-L2 is also both

upstream and downstream of SA accumulation (Figure 9).

Our data are consistent with ADR1-L2 transcriptional regula-

tion by both SA-dependent and -independent pathways (Figure 9).

In an otherwise wild-type plant expressing activated ADR1-L2,

the antagonism between EDS1 and LSD1 maintains SA

production below toxic levels. In an lsd1 plant, the level of SA

surpasses this level via ectopic ADR1-L2 activation and conse-

quent SA production. This increased SA in turn drives higher

ADR1-L2 expression, and the cycle repeats. This is exacerbated,

and lethal, in lsd1 ADR1-L2D484V. eds1 and sid2 suppress lsd1

because feed forward regulation of the SA accumulation cycle is

blocked. The surprising eds1 lsd1 ADR1-L2D484V and sid2 eds1

ADR1-L2D484V phenotypes are consistent with the low level of SA

in these lines being insufficient to up-regulate ADR1-L2 expression.

Thus, even though there is chronic signaling feeding the cycle in

ADR1-L2D484V, the EDS1-dependent, SA-independent pathway is

interrupted in eds1 lsd1 ADR1-L2D484V and sid2 eds1 ADR1-L2D484V.

How LSD1 and EDS1 negatively regulate each other has yet to be

determined, although our data suggest that LSD1 might regulate

EDS1 function through transcriptional control, as EDS1 tran-

scription levels are increased in an lsd1 mutant (Figure S4). In

support of this hypothesis, a role for LSD1 as a cytosolic retention

factor for the AtbZIP10 transcription factor [51] may provide a

mechanism for LSD1 control of EDS1 expression.

Our model (Figure 9) supports a scenario in which in wild-type,

P-loop dependent NB-LRR activation leads to local increased

levels of SA via an AtRbohD-dependent ROI burst and SID2-

dependent SA accumulation. The spread of this SA accumulation

is spatially down-regulated through a combined action of EDS1

and LSD1 at increasing distance from the infection site. As stated

above, our model also implies that SA functions both up- and

down-stream of ADR1-L2. This may readily reconciled with our

previous finding that ADR1-L2 helper function is required for SA

accumulation and cell death, since ARD1-L2 is SA-up-regulated

[22].

Overall, we present a general approach to characterize

canonical, P-loop dependent functions of NB-LRR proteins in

the absence of a specific effector. We applied this to a recently

characterized ‘helper’ NB-LRR protein, ADR1-L2. We identified

genetic components that regulate its P-loop-dependent, canonical

functions, and found that they, in turn, are regulated by

suppressors of the lsd1 rcd phenotype. Our work suggests that

the genetic requirements for ‘helper’ NB-LRR function may differ

from the effector-driven activation of canonical ‘sensor’ NB-LRRs.

Given that ADR1-L2, unlike other NB-LRRs, is required for lsd1

rcd, we note that our results may be mainly relevant to the

dissection of the functions of ADR1-L2 and its paralogues, rather

than being broadly applicable to understanding of ‘sensor’ NB-

LRRs. Nevertheless, in agreement with previous reports on

Figure 8. ADR1-L2D484V autoactivity signaling requires both SA and EDS1. A) Pictures of five-week-old plants representative of the
indicated genotypes. SID2 eds1 ADR1-L2D484V is a segregating F2 derived from the eds1 ADR1-L2D484V6sid2 ADR1-L2D484V cross. (B) Western blot of HA-
tagged ADR1-L2D484V protein from plants in (A). Coomassie stain shows relative loading. (C) Quantitative real-time PCR for the transcript amounts of
ADR1-L2 in the indicated genotypes. Error bar represents 626SE. (D) Ten-day-old seedlings were inoculated with 56104 sporangia/mL Hpa Emco5. At
4 dpi, sporangiophores were counted and classified as in Figure 4. Means per cotyledon are listed below the graph.
doi:10.1371/journal.pgen.1003465.g008

Figure 9. A model for the regulation of ADR1-L2D484V activity.
ETI activates both an AtRbohD-dependent ROI burst and SID2-
dependent SA accumulation via ADR1-L2. Activated ADR1-L2 initiates
cell death and disease resistance via SA-dependent and -independent
pathways. EDS1 functions downstream of activated ADR1-L2 as a
positive regulator of both SA accumulation and of the SA-independent
pathway. ADR1-L2 also triggers SA via a pathway that is controlled by
LSD1 and antagonized by EDS1. Therefore, the spread of this SA
accumulation is spatially down-regulated through a combined action of
EDS1 and LSD1. Due to its position in these feedback loops, SA
functions both up- and down-stream of ADR1-L2.
doi:10.1371/journal.pgen.1003465.g009
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‘sensor’ NB-LRR function [30], we conclude that the P-loop-

dependent autoactivity of ADR1-L2 relies on signaling pathways

that differ in their requirement for SA accumulation, but which

are both regulated by EDS1. Thus, though the requirements for

‘sensor’ and ‘helper’ NB-LRR functions may be separable, they

could still share some overlapping features.

A significant challenge remains to address the sub-cellular

localization of these regulatory circuits [52]. Resting state NB-

LRRs are localized to diverse sub-cellular compartments, and

dynamic re-localization may accompany effector-driven activation

of some [19]. Defining any dynamics of protein localization

associated with the differential ADR1-L2 canonical and non-

canonical functions will be ultimately important for understanding

the genetic network that we describe.

Materials and Methods

Plant lines and pathogen strains
All Arabidopsis lines are in the Columbia (Col-0) ecotype. adr1-1

[22], adr1-L1-1 [22], adr1-L2-4 [22], eds1-2 [49], sid2-1, atrbohD

[23], lsd1-2 [24], atmc1 [27], and rar1-21 [46] are described

elsewhere; primers used to genotype these lines are in Table S2.

For generation of adr1-L2 plants expressing ADR1-L2-HA, ADR1-

L2D484V-HA, and ADR1-L2AAA D484V-HA lines, the C-terminal HA-

tagged coding sequence of wild-type ADR1-L2 or the mutated

alleles were fused to its native promoter (500 bp) and cloned in the

pBAR (Basta resistant) Gateway vector [53]. For generation of

adr1-L2 lsd1-2 plants expressing an estradiol inducible ADR1-L2-

HA, the coding sequence of ADR1-L2 was cloned into a modified

pMDC7 (hygromicin resistant) Gateway vector carrying a C-

terminal HA tag. Arabidopsis transgenics were generated using

Agrobacterium (GV3101)-mediated floral dip transformation [54].

Basta selection of transgenic plants was performed by spraying 10-

day-old seedlings. Plants were grown under short day conditions

(9 hrs light, 21uC; 15 hrs dark, 18uC).

Immunoblot analysis
Leaves from 4-week-old plants were harvested and total

proteins were extracted by grinding frozen tissue in a buffer

containing 20 mM Tris-HCl (pH 7.0), 150 mM NaCl, 1 mM

EDTA (pH 8.0), 1% Triton X-100, 0.1% SDS, 10 mM DTT,

and plant protein protease inhibitor cocktail (Sigma-Aldrich).

Samples were centrifuged at 14,000 rpm for 15 min at 4uC to

pellet debris. Proteins were separated on 7.5% (ADR1-HA) or

12% (RAR1) SDS-PAGE gels and were transferred to poly-

vinylidene difluoride membrane. Western blots were performed

using standard methods. Anti-HA (Santa Cruz Biotechnology)

antibody was used at a 1:3000 dilution; anti-RAR1 (custom anti-

RAR1 polyclonal antibody was made against the full length

RAR1 with C-terminus GST tag by Cocalico Biologicals, Inc.)

was used at a 1:2000 dilution. Signals were detected by

enhanced chemiluminescence using ECL Plus (Amersham

Biosciences). For BTH induction experiments (300 mM), plants

were collected 24 hpi.

SA measurement
SA and SAG measurements were performed as described

[55]. Briefly, 100 mg of leaves were collected from 4-week-old

plants and frozen in liquid nitrogen. Samples were ground and

tissue was homogenized in 200 ml 0.1M acetate buffer pH 5.6.

Samples were centrifuged for 15 min at 16,000 g at 4uC.

100 ml of supernatant was transferred to a new tube for free SA

measurement, and 10 ml was incubated with 1 ml 0.5 U/ml b-

glucosidase for 90 min at 37uC for total SA measurement.

After incubation, plant extracts were diluted 5-fold with 44 ml

acetate buffer for free SA measurement. 60 ml of LB, 5 ml of

plant extract (treated or not with b-glucosidase), and 50 ml of

Acinetobacter sp. ADPWH-lux (OD = 0.4) were added to each

well of a black 96-well plate (BD Falcon). The plate was

incubated at 37uC for 60 min and luminescence was read with

Spectra Max L (Molecular Devices) microplate reader. For the

standard curve, 1 ml of a known amount of SA (Sigma; from 0

to 1000 mg/ml) was diluted 10-fold in sid2-1 plant extract, and

5 ml of each standard (undiluted for free SA measurement, or

5-fold diluted for total SA) was added to the wells of the

plate containing 60 ml of LB and 50 ml of Acinetobacter. SA

standards were read in parallel with the experimental

samples. For BTH induction experiments (300 mM), plants

were collected 24 hpi.

Pathogen strains and growth quantification
Ten-day-old seedlings were spray-inoculated with 50,000

spores/ml of Hyaloperonospora arabidopsidis isolate Emco5. Pots were

covered with a lid to increase humidity during inoculation and

pathogen growth. Sporangiophores were counted at 4 dpi as

described [56]. Pto DC3000(EV) was resuspended in 10 mM

MgCl2 to a final concentration of 2.56105 cfu/ml

(OD600 = 0.0005). Twenty-day-old seedlings were dipped in the

bacterial solution and growth was assessed as described [57].

Cell death assays
4-week-old plants were sprayed with 300 mM BTH, or 10-

day-old plants were inoculated with Hpa Emco5 as described

above. Leaves were harvested and stained with lactophenol

Trypan Blue (TB) to visualize dead cells as described [58]. For

the conductivity measurements, 4-week-old plants were sprayed

with 300 mM BTH. Plants were harvested and 4 leaf discs

(7 mm) were cored and then floated in water for 30 min. These

leaf discs were transferred to tubes containing 6 ml distilled

water. Conductivity of the solution (mSiemens/cm) was deter-

mined with an Orion Conductivity Meter at the indicated time

points [59].

Creation of an artificial chimera
The central portion of the right halves of leaves from 4-week-old

transgenic adr1-L2 lsd1-2 plants expressing an estradiol inducible

allele of ADR1-L2 were hand-infiltrated with Est (20 mM) using a

needleless syringe. 300 mM BTH was sprayed on the whole plant

24 h post-Est application. 20 mM Est was then hand-infiltrated on

the same portion of the leaves 2 dpi to ensure expression of

ADR1-L2. Leaves were collected 5 dpi from the first Est

infiltration.

Quantitative RT–PCR
Leaves from 4-week-old plants were collected, frozen into liquid

nitrogen and ground into powder with a mortar and pestle. RNA

was extracted using TRIzol (Invitrogen), DNased (Ambion Turbo

DNase), and cleaned up with Qiagen RNeasy Mini kit. Reverse

transcription was performed (Ambion RETROscript) using 1 mg

total RNA, and cDNA was analyzed with SYBR green (Applied

Biosystem) using an Applied Biosystems ViiA7. Primers used are

listed in Table S2.

Selection of segregating plants
Pots of sibling plants fixed for eds1 and segregating lsd1-2 (LSD1

heterzygotes) were Basta sprayed to check for segregation of

ADR1-L2D484V. Those found to be eds1 ADR1-L2D484V were
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transplanted individually into pots, monitored for size, and

genotyped for the T-DNA insertion of the lsd1-2 mutation.

Supporting Information

Figure S1 Quantification of plant growth based on fresh weight

measurement. Five-week-old rosettes of the indicated genotypes

were weighed. Means are representative of 10 plants for each

genotype. Error bars indicate 626 SE.

(TIF)

Figure S2 eds1 ADR1-L2D484V plants segregating LSD1 show

both wild-type and extreme cpr phenotypes. (A) Pictures of plants

homozygous for eds1 and ADR1-L2D484V and segregating lsd1. (B)

PCR genotyping of the indicated genotypes confirms that only

LSD1 homozygous eds1 ADR1-L2D484V (#5) plants have the

severely stunted growth phenotype. #1 and 2 indicate the Col-0

and lsd1-2 controls respectively, #3–5 represent the genotypes

from (A).

(TIF)

Figure S3 RAR1 is not required for either steady state ADR1-

L2 accumulation or BTH-mediated induction. (A) ADR1-L2-HA

and rar1-21 ADR1-L2-HA plants were sprayed with 300 mM BTH.

Plants were collected for protein extraction 24 hpi. Protein from

Col-0, rar1-21, and ADR1-L2-HA and rar1-21 ADR1-L2-HA plants

+ and -BTH were run on denaturing gels and probed with anti-

HA antibody. (B) Protein from plants in (A) was also used in an

anti-RAR1 Western blot to confirm the rar1-21 genotype. Ponceau

stained blots in (A) and (B) show relative loading.

(TIF)

Figure S4 LSD1 negatively regulates EDS1 transcript. Quanti-

tative real time PCR for the transcript amounts of EDS1 in Col-0,

eds1-2, and lsd1-2.

(TIF)

Table S1 ADR1-L2D484V is lethal in an lsd1-2 background. Table

of actual and expected genotypes of F3 progeny from a cross

between lsd1-2 and ADR1-L2D484V shows that no lsd1-2 homozy-

gous plants were recovered from plants that were homozygous for

ADR1-L2D484V. ADR1-L2D484V was also transformed into lsd1-2,

but no plants with a detectable amount of ADR1-L2D484V protein

were recovered.

(DOCX)

Table S2 Primer sequences used in this work.

(DOCX)
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