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Introduction
Transposable element (TE)-related repetitive DNA elements 
occupy significant proportions of eukaryotic genomes: 12% in 
Caenorhabditis elegans, 4% to 17% in Drosophila melanogaster, 
37% in mouse, 46% in human, and ~85% in corn.1,2 Transposable 
elements are thought to play roles in animal physiological pro-
cesses, such as germline and early embryonic and brain devel-
opment,3 as well as aging.4 However, experimental investigations 
through the systematic manipulation of TE activity have rarely 
been performed. Due to the large number of TEs present in 
any given genome, it is necessary to devise new approaches for 
their systematic manipulation.

TEs transpose through enzymes encoded within their own 
regions. Depending on the medium required for transposition, 
TEs are primarily classified into retrotransposons (class I) and 
DNA transposons (class II), and these include both autono-
mously mobile and non-autonomously mobile TEs.5-7 
Autonomously mobile class I and II TEs are further subdi-
vided by the transposition mechanism6 into the 4 retrotranspo-
son orders: the long terminal repeat (LTR) elements, long 
interspersed nuclear elements (LINEs), Dictyostelium interme-
diate repeat sequences (DIRS), and Penelope-like elements 
(PLEs) as well as the 4 DNA transposon orders: the terminal 
inverted repeat (TIR) elements, Helitrons, Maverick/Polintons 
(MP), and Cryptons. Regarding retrotransposons, LTR ele-
ments transpose by generating DNA copies from a RNA 

transcript via reverse transcriptase (RT). Integrase (IN) is 
required to efficiently insert LTR element DNA fragments 
into new genomic loci. Similarly, LINEs transpose by replicat-
ing DNA copies from a transcript via LINE-specific RT. In 
this case, reverse transcription starts at the 3′-end of the nick 
site on the genomic DNA generated via the Endonuclease 
(EN) domain at the N-terminus of the RT. Dictyostelium inter-
mediate repeat sequence transposition occurs when free circu-
lar double-stranded DNAs are generated via reverse 
transcription. The circular double-stranded DNAs are then 
integrated into other loci by Tyrosine-Recombinase (Tyr-
REC).8-11 In PLE transposition, the DNA fragment of PLE is 
reverse-transcribed from the 3′ end of the nick site on the 
genome generated by the GIY-YIG EN activity in the PLE-
specific RT.12 As for DNA transposons, the TIR elements 
transpose via the EN activity of Transposase (TP). The TP rec-
ognizes TIRs at both ends of TIR element and cleaves double-
stranded DNA (dsDNA) to generate a free DNA fragment. 
This fragment is integrated into another genomic locus by the 
EN activity of TP.13-15 Helitron transposition occurs when the 
Helitron DNA element is nicked via the EN activity of the 
REP domain in REP-Helicase (REP-HEL) and is then 
unwound into single-stranded DNA (ssDNA) through HEL 
activity. Although it remains controversial whether the Helitron 
ssDNA is replicated before integration into another genomic 
locus, a free Helitron fragment is integrated into another locus 
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by EN activity of the REP domain.16-20 In MPs, free DNA 
copies are replicated by DNA Polymerase B encoded within 
MP. These MP DNA copies are inserted into other genomic 
loci by MP-encoded INs.21-24 Cryptons transpose after being 
excised as free circular DNAs (circDNAs) by Tyr-REC. The 
free circDNAs are integrated into another genome locus by 
Tyr-REC.11,25

As described above, the transposition of TEs can be concep-
tualized as occurring through 2 DNA processing reactions: (1) 
the production of a free TE DNA and (2) its integration into 
another genomic locus. In retrotransposons LTR element and 
DIRS, and DNA transposon MP, the free TE DNA is gener-
ated and integrated by different enzymes. In retrotransposons 
LINE and PLE, and DNA transposon Helitron, these pro-
cesses are mediated by different enzymatic activities associated 
with each functional domain in the same enzyme. In DNA 
transposons TIR element and Crypton, these processes are 
mediated by the same functional domains in the same enzyme. 
Hereafter, we refer to the genes involved in the production 
and/or integration of free TE DNAs as transposon DNA pro-
cessing genes (TDPGs).

Detailed analyses of the open reading frame (ORF) struc-
ture and amino acid sequence of TDPGs have been primarily 
focused on individual TE orders.26-33 These sequence analyses 
alone offer limited insights into their roles in TE mobile activ-
ity. For instance, a TDPG containing numerous mutations or 
deletions may still retain enough catalytic activity to facilitate 
transposition in vivo. In this study, we have cataloged poten-
tially functional TDPGs, which maintain the ORF structure 
and the conserved amino acids at the catalytic core across all 
representative TE orders in a single species, C. elegans. This 
work provides a foundation for systematically investigating the 
physiological roles of TE mobility in C. elegans, paving the way 
to seek conserved mechanisms across different organisms.

Methods
Bioinformatic analysis

The VC2010 genome assembly was downloaded from https://
www.ebi.ac.uk/ena/browser/view/UNSB01. To identify TEs, 
RepeatMasker version 4.1.0 (http://www.repeatmasker.org/) 
was used with options -no_is for skipping bacterial insertion 
element check, -s: slow search for more sensitivity, and -pa 8 for 
sequencing batch jobs to run in parallel. For RepeatMasker 
analysis, we used Dfam_3.1 library.34 To identify ORFs, SNAP 
(Semi-HMM-based Nucleic Acid Parser), version 2006-07-
28,35 was used to analyze a FASTA file containing all the repeat 
sequences identified by RepeatMasker. The command used was 
snap HMM/C.elegans.hmm TEgenomeseq.fasta. Here, 
C.elegans.hmm contained parameters optimized for the  
C. elegans genome, and TEgenomeseq.fasta contained all the 
repeat sequences identified by RepeatMasker. To infer the func-
tion of proteins encoded in ORFs, DIAMOND (Double Index 
AlignMent Of Next-generation sequencing Data) (v2.0.2.140)36 

blastx tool was used to compare our ORF sequences identified 
by SNAP against the UniRef50 protein database. Default 
parameters were employed, with no additional sequence mask-
ing or complexity adjustments. The search sensitivity was set to 
the default “fast” mode. The following command line was used 
for the search: diamond blastx –db uniref50.fasta –query 
TDPGsORF.fasta –out blastx.txt –outfmt 6 qseqid sseqid 
pident length mismatch gapopen qstart qend sstart send evalue 
bitscore qlen slen. Here, TDPGsORF.fasta contained ORF 
sequences identified by SNAP. No specific e-value threshold 
was set; hence, the default cutoff of 0.001 was applied. UniRef50 
protein ID produced by DIAMOND was translated into func-
tional protein IDs using the website Uniprot (https://www.uni-
prot.org/uploadlists/). To align amino acid sequences, MAFFT 
v7.45337,38 was used. A sequence alignment viewer was down-
loaded from https://github.com/dmnfarrell/teaching/blob/
master/pyviz/bokeh_sequence_align.ipynb.

Results
Bioinformatic identif ication of TDPGs in  
the C. elegans genome

We first applied RepeatMasker, an algorithm that identifies 
TEs (https://www.repeatmasker.org/), to the latest C. elegans 
VC2010 genome assembly (for the detail, see Materials and 
Methods). The VC2010 genome assembly was constructed 
using long-read sequencing technology.39 Long-read sequenc-
ing helps to accurately determine the genomic locations of 
repeat elements, such as TEs, and thereby results in more accu-
rate estimates of the copy numbers of TEs in the genome, 
which is challenging for short-read sequencing. Our 
RepeatMasker analysis showed that repeat elements occupy 
13.86% of the C. elegans genome (Supplementary Table 1). 
This result is consistent with previous reports that repetitive 
elements comprise 12% to 17% of the C. elegans genome.28,40,41 
After excluding simple, satellite, and low-complexity repeat 
elements, we identified 52 519 TE loci (Supplementary Table 
1). To identify protein-coding elements among these 52 519 
TE copies, we used an ab initio gene finder, SNAP.35 The 
SNAP analysis identified 808 potential gene-coding regions. 
Among them, 428 genes conserved the complete ORF struc-
ture. To infer the function of genes encoded in these complete 
ORFs, we used DIAMOND, an algorithm for fast and sensi-
tive protein alignment.36 DIAMOND identified 80 RT, 11 IN, 
189 TP, and 5 REP-HEL genes, for a total of 285 TDPGs (for 
the detail, see Materials and Methods). In following sections, 
we systematically dissected these genes to create a curated list 
of potentially functional genes.

TDPGs in LTR elements in C. elegans

Among the 80 RT genes, 19 genes were encoded in LTR ele-
ments (rtz_LTRs) and 61 genes were encoded in LINEs (rtz_
LINEs) (Supplementary Tables 2 and 4). Reverse transcriptases, 
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ie, RNA-dependent DNA polymerases, have 5 evolutionarily 
conserved motifs (A, B′, C, D, and E).42,43 Asp residues in 
Motifs A and C are widely conserved in all RNA/DNA-
dependent DNA polymerases and DNA/RNA-dependent 
RNA polymerases.44 Previous crystal structure analyses showed 
that 1 Asp in Motif A and 2 Asp residues in Motif C form a 
catalytic triad for holding 2 bivalent metal ions for conjugating 
the alpha phosphate of a new dNTP to the OH group to the 3′ 
end of the DNA strand.45-47 Mutations in Asp residues of 
Motifs A or C reportedly abolish RT activity.48-51 By aligning 
RTZ_LTRs with the reference RTs, we identified 8 RTZ_
LTRs with conserved Asp residues in Motifs A and C (red 
asterisks in Figure 1A and Table 1). In addition, these 8 RTZ_
LTRs preserved (1) the conserved Gly residue in Motif B′,52 
which interacts with the incoming nucleotide and template 
strand,53 and (2) the Leu and Gly residues in Motif E, which 
fixes the primer strand and positions it toward the active site53 
(Figure 1C and Table 1).

In RTZ_LTR-11, RTZ_LTR-17, and RTZ_LTR-19, the 
second Asp residue in Motif C was substituted with Asn (black 
asterisk in Figure 1A and Table 1). As described earlier, the 
second Asp residue is involved in a catalytic triad. Site-directed 
mutagenesis at the second Asp residue, including mutagenesis 
to Asn as found in RTZ_LTR-11, RTZ_LTR-17, and RTZ_
LTR-19, significantly reduces RT activity in human immuno-
deficiency virus (HIV).48-51 However, amino acid substitution 
at the second Asp to Asn has been found in functional  
RNA-dependent RNA polymerases in negative-strand RNA 
viruses.42,44,54 Therefore, we considered the possibility that 
RTZ_LTR-11, RTZ_LTR-17, and RTZ_LTR-19 might still 
be functional.

In RTZ_LTR-11 and RTZ_LTR-19, the conserved Gly 
and Lys in Motif D were substituted. In RTZ_LTR-3, RTZ_
LTR-8, and RTZ_LTR-17, the conserved Gly in Motif D was 
substituted. Amino acid substitutions at Gly in Motif D are 
often observed in RNA-dependent RNA polymerases in neg-
ative-strand RNA viruses.42 Therefore, we considered the pos-
sibility that RTZ_LTR-3, RTZ_LTR-8, and RTZ_LTR-17 
might still be functional. On the other hand, Lys in Motif D is 
highly conserved throughout polymerases.42,43 Motif D func-
tions for forming a phosphodiester bond with dNTPs with the 
3′-OH (hydroxyl) of the primer.55,56 Motif D in RTZ_LTR-11 
and RTZ_LTR-19 may be nonfunctional. Nevertheless, given 
the conservation of the 2 critical amino acids holding 2 biva-
lent metal ions, and the fact that we did not perform functional 
testing, we include RTZ_LTR-11 and RTZ_LTR-19 as 
potentially functional TDPGs. Taken together, these results 
led us to classify all 8 rtz_LTRs as potentially functional genes 
(Table 1 and Supplementary Table 2).

Next, we identified 11 IN genes encoded in LTR elements 
(inz_LTRs) (Supplementary Table 3). The catalytic core 
domain of IN has an evolutionarily conserved DD35E motif 
that is required for EN activity.57-59 DD35E holds 2 metal ions 

required for the catalysis involved in integrating a free DNA 
fragment into the genome.60,61 Amino acid substitution at the 
3 critical amino acid residues in the DD35E motif abolishes 
EN activity of INs in Rous sarcoma virus (RSV) and HIV.57-

59,62 By aligning the 11 INZ_LTRs with the reference INs, we 
identified 7 INZ_LTRs with conserved DD35E triads (Figure 
1B, Table 1 and Supplementary Table 3). Therefore, we consid-
ered these 7 inz_LTRs as potentially functional genes. 
Potentially functional RT and IN genes generally co-occurred 
in LTR element loci, except for the loci encoding rtz_LTR-11 
and rtz_LTR-17, which lacked the corresponding inz_LTR, 
and the locus encoding inz_LTR-10, which lacked the corre-
sponding rtz_LTR (Figure 1C and Table 1).

TDPGs in LINEs in C. elegans

By aligning the 61 remaining RTs (from the initial 80 RTs, 
excluding the 19 RTs analyzed as RTZ_LTRs in the previous 
section) with reference RTs, we identified 28 RTZ_LINEs 
that had Asp residues conserved in Motifs A and C (red aster-
isks in Figure 2A and Table 2). In addition, these 28 RTZ_
LINEs had residues conserved in Motifs B′ and C (black 
asterisks in Figure 2A and Table 2). These 28 RTZ_LINEs 
had Lys but not Gly residues conserved in Motif D. Amino 
acid substitution of Gly in Motif D is often observed in RNA-
dependent RNA polymerases in negative-strand RNA 
viruses.42 Therefore, we held out the possibility that the RTZ_
LTRs with amino acid substitution of Gly in Motif D are func-
tional. In addition, in RTZ_LINE-61, Gly residues in Motif E 
were substituted. The substitution in this residue was found in 
RT in HIV-1 and Hepatitis B virus (HepB),42 leading us to 
consider the possibility that RTZ_LINE-61 is potentially 
functional (black asterisks in Figure 2A and Table 2). In sum-
mary, analysis of RT domains suggests that these 28 rtz_LINEs 
are potentially functional.

Next to study the EN domain, we aligned the 61 RTZ_
LINEs with reference ENs. A previous experimental test of 
transposition activity in 138 human L1 copies revealed that 
the Asp and His residues are essential, but conserved amino 
acid residues in other motifs tolerate multiple mutations.63 
We identified 14 RTZ_LINEs in which the critical Asp and 
His residues were conserved in their EN domains (red aster-
isks in Figure 2B and Table 2). Among the 14 RTZ_LINEs, 
RTZ_LINE-19 and RTZ_LINE-34 lacked a large N-terminal 
portion of the EN domain, whereas RTZ_LINE-44 and 
RTZ_LINE-61 lacked about half of this portion (Figure 2B). 
Nevertheless, in the absence of experimental tests of the func-
tion of N-terminal deletion EN mutants, we held out the pos-
sibility that all the 14 RTZ_LINEs have potentially functional 
EN domains. Taken together, we concluded that 6 rtz_LINEs 
encoded both potentially functional RT and EN domains (rtz_
LINE-5, rtz_LINE-13, rtz_LINE-22, rtz_LINE-57, rtz_
LINE-59, and rtz_LINE-61; Figure 2A and B, Table 2 and 
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Supplementary Table 4). However, it has been noted that 
human L1 can transpose via an EN-independent, 
RT-dependent mechanism.64 Therefore, we concluded that the 
28 rtz_LINEs with conserved RT domains (Figure 2A and 
Table 2) are potentially functional genes for LINE transposi-
tion. The 28 rtz_LINEs distributed across each chromosome 
(Figure 2C) and amino acid sequences of these genes could be 

grouped into 4 homologous clusters (Supplementary Figure 1 
and Supplementary Table 4).

TDPGs in TIR elements in C. elegans

Terminal inverted repeat element is composed of 19 super fam-
ilies: hAT, Tc1/mariner, CACTA (En/Spm), Mutator (MuDR), 

Figure 1.  Potentially functional rtz_LTRs and inz_LTRs encoded in long terminal repeat (LTR) elements. (A) Alignment of catalytic core domains of 

RTZ_LTRs with reference Reverse transcriptases (RTs). Abbreviations: HIV-1: Chain C, HIV-1 RT P66 subunit of human immunodeficiency virus type 1 

[5TXO_C], Hep-B: Hepatitis B virus RT_like family [QFR04538], ERV-K: Pol protein of human endogenous retrovirus K [CAA76882], RSV: Pol of Rous 

sarcoma virus [CAA48535]. (B) Alignment of catalytic core domains of INZ_LTRs with reference Integrases (INs). Abbreviations: ASV: IN in avian sarcoma 

virus [1ASU_A], HERVK: Pol protein in human endogenous retrovirus K [CAA76885], MMLV: p46 IN in Moloney murine leukemia virus (MoMLV) 

[NP_955592.1], HIV: IN in human immunodeficiency virus type 1 [1BIZ_A], Gypsy_Dm: IN, Gypsy endogenous retrovirus in Drosophila melanogaster 

[CAB69645], TEDV_Tm: ORFB in TED virus in Trichoplusia ni [YP_009507248], TP1731: Pol polyprotein in transposon_1731 in D. melanogaster [S00954], 

RVRP_At: retrovirus-related like polyprotein in Arabidopsis thaliana [CAB78488_1], Copia_Dm: Gag-Int-Pol protein in COPIA in D. melanogaster 

[P04146], Ty-3_Sc: Gag-Pol polyprotein in Ty3-G in Saccharomyces cerevisiae [GFP69998.1]. Asterisks indicate conserved residues. Red asterisks 

indicate residues for identifying potentially functional TDPGs. (C) Genomic positions of 8 potentially functional rtz_LTRs and 7 potentially functional 

inz_LTRs in the Caenorhabditis elegans genome. Gray lines represent chromosomes. Red circles over and under chromosome indicate positions of 

potentially functional genes of rtz_LTR-n and inz_LTR-n, respectively. Numbers over and under chromosome indicate numbers of rtz_LTR and inz_LTR 

genes, respectively. Vertical ticks and × marks with vertical ticks over and under chromosome indicate incomplete and complete ORFs, respectively, of 

rtz_LTRs and inz_LTRs, respectively.
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P, PiggyBac, PIF/Harbinger, Mirage, Merlin, Transib, Novosib, 
Rehavkus, ISL2EU, Kolobok, Chapaev, Sola, Zator, Ginger, 
and Academ.65 The transposition of TIR elements is mediated 
by Transposase (TP), which has a conserved DDD/E motif at 
the catalytic core.65 Structural analysis suggests that the 
DDD/E motif holds 2 metal ions to cleave and integrate 
dsDNA of the TIR element.66-68 Mutation of the conserved 
DDD/E motif abolishes TP activity.69,70 By aligning the 189 
TPZs with reference TPs, we identified 94 TPZs that had 
DDD/E motifs conserved that were homologous to those of 
Tc1/mariner family TPs (Figure 3A and Supplementary Table 
5). No TP aligned to DDD/E motifs of other TP super fami-
lies. Thus, we considered these 94 tpzs to be potentially func-
tional genes (Supplementary Table 5). tpzs were distributed 
across each chromosome (Figure 3B) and amino acid sequences 
of these genes predominantly formed 3 main homologous clus-
ters (Supplementary Figure 2 and Supplementary Table 5).

TDPGs in Helitrons in C. elegans

Helitron transposition is mediated by a SF1 family Helicase 
(HEL) with REP domain (REP-HEL). The 4 SF family HELs 
(SF1, SF2, SF3, and SF4) have conserved Motif I and Motif II 
domains. Motifs I and II correspond to the Walker A and 
Walker B domains, respectively, which are widely conserved 
among NTP-binding proteins.71,72 The Walker A/Motif I and 
Walker B/Motif II domains exhibit conservation of the Lys and 
Asp-Glu residues, respectively.72-75 Crystallographic analysis 
showed that the Lys in Motif I contacts a magnesium ion and β 
phosphate of ATP and functions to stabilize the transition state 
during ATP hydrolysis. Asp-Glu residues in Motif II are also 

involved in ATP hydrolysis.76,77 Mutations at the Lys in Motif 
I or Asp-Glu in Motif II abolish HEL activity.78-81

By aligning the 5 REP-HELs (RHZs) with reference HEL 
domains, we identified 5 RHZs that had Lys residues conserved 
in Motif I and had Asp-Glu residues conserved in Motif II (red 
asterisks in Figure 4A and Table 3). In addition, these 5 RHZs 
had (1) a conserved residue in Motif Ia (black asterisks in Figure 
4A and Table 3), which functions for ssDNA binding and 
energy transfer from the ATP-binding site to the DNA-
binding site76; (2) conserved Gly-Asp and other resides in Motif 
III (black asterisk in Figure 4A and Table 3), which is involved 
in contacting nucleotide γ-phosphates76; (3) a conserved Arg 
residue in Motif IV, which may be involved in NTP hydroly-
sis76; (4) a conserved residue in Motif IV/V, the function of 
which is not well understood18; (5) conserved residues in Motif 
V, which interacts with the sugar-phosphate backbone of 
DNA76; and (6) conserved residues in Motif VI, which may 
form part of the ATP-binding cleft to couple ATPase activity to 
HEL activity76 (Figure 4A and Table 3). Therefore, we consid-
ered these 5 rhzs to encode potentially functional HEL domains.

In the REP domain, the HUH Y2 motif (in which U is a 
hydrophobic residue) is evolutionarily conserved.16 HUH 
holds divalent metal ions to form nicks in the DNA strand in 
EN activity, whereas Tyr residues form a transient covalent 
bond with the cleaved DNA strand to generate phospho-
tyrosine for DNA strand transfer.16 The EN activity is abol-
ished by mutation of either 2 His or 2 Tyr residues.17 By 
aligning the 5 RHZs with reference REP domains, we found 
that the 5 RHZs conserved the 2 His and 2 Tyr residues (red 
asterisks in Figure 4B and Table 3). Taken together, our results 
suggest that the 5 rhzs encode both potentially functional 

Table 1.  List of potentially functional rtz_LTRs and inz_LTRs.

rtz ID inz ID Class Chr Position RT IN

rtz_LTR-2 inz_LTR-2 CER5-I_CELTR/Gypsy II (7556985, 7561601) D G DD G K LG D D E

rtz_LTR-3 inz_LTR-3 CER2-I_CELTR/Gypsy II (11067565, 11073355) D G DD N K LG D D E

rtz_LTR-4 inz_LTR-4 CER6-I_CELTR/Gypsy III (4178552, 4183161) D G DD G K LG D D E

rtz_LTR-5 inz_LTR-5 CER1LTR/Gypsy III (9116926, 9123745) D G DD G K LG D D E

rtz_LTR-8 inz_LTR-7 CER3-I_CELTR/Gypsy IV (923461, 926380) D G DD N K LG D D E

rtz_LTR-11 - CER10-I_CELTR/Pao V (8540078, 8541860) D G DN K E LG  -    -    -

rtz_LTR-17 - CER8-I_CELTR/Pao V (18702294, 18708087) D G DN K K LG  -    -    -

- inz_LTR-10 CER13-I_CELTR/Pao X (1841438, 1849184)  -    -    --    -   -   -- D D E

rtz_LTR-19 inz_LTR-11 CER11-I_CELTR/Pao X (3867459, 3871374) D G DN N E LG D D E

Evolutionarily conserved amino acids within the Reverse transcriptase (“RT”) and Integrase (“IN”) within potentially functional RTZ_LTRs and INZ_LTRs. The consecutive 
amino acid single letters without spaces indicate conserved amino acids within the same domain. See amino acids indicated by asterisks in Figure 1A and B. A dash (-) 
indicates the absence of an ID or conserved amino acid. The “Class” denotes TE identity as determined by RepeatMasker analysis. Chromosome ID (“Chr”) and genomic 
positions (“Position”) are provided for each gene.
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HEL and EN domains (Table 3 and Supplementary Table 6). 
These 5 rhzs are located only on chromosome II (Figure 4C).

TDPGs in MPs in C. elegans

Our RepeatMasker analysis did not identify MP elements. 
Dfam_3.1 library contains 9 copies of Maverick and 20 copies 

of Polinton, excluding the absence of these elements from the 
repeat library as a potential cause. One possible cause is that 
MP is more than 10 kbp in length, longer than other TEs iden-
tified here; optimizing the parameters of RepeatMasker’s algo-
rithm may be necessary for efficient identification. Notably, 
MPs located on chromosomes I, II, III, IV, and X of the  
C. elegans genome assembly (PRJNA907379) have previously 

Figure 2.  Potentially functional rtz_LINEs encoded in long interspersed nuclear elements (LINEs). (A) Alignment of reverse transcriptase (RT) domains of 

RTZ_LINEs with reference RTs. Abbreviations: HIV-1: Chain C, HIV-1 RT P66 subunit of human immunodeficiency virus type 1 [5TXO_C], Hep-B: 

hepatitis B virus RT_like family [QFR04538], ERV-K: Pol protein of human endogenous retrovirus K [CAA76882], RSV: Pol of Rous sarcoma virus 

[CAA48535]. (B) Alignment of the Endonuclease (EN) domains of RTZ_LINEs with reference ENs. Abbreviations: RTE-1_Ce: apurinic-apyrimidic EN 

domain containing RT of non-LTR retrotransposon in Caenorhabditis elegans [AAC72298.1], AP_End_Hs: DNA-(apurinic or apyrimidinic site) EN in Homo 

sapiens [NP_542379.1], TAD1-1_N.c: Exonuclease-Endonuclease-Phosphatase (EEP) domain containing Pol protein Neurospora crassa [AAA21781.1], 

Jockey_D.m: EEP domain containing RT in Drosophila melanogaster [AAA28675.1], RT_H.s: EN domain containing RT of L1, H. sapiens [AAB59368.1]. 

Asterisks indicate conserved residues. Red asterisks indicate residues for identifying potentially functional TDPGs. (C) Genomic positions of 28 

potentially functional rtz_LINEs in the C. elegans genome. Gray lines represent chromosomes. Red circles indicate positions of potentially functional 

genes of rtz_LINE-n. Numbers indicate numbers of rtz_LINE-n genes. Vertical ticks and × marks indicate incomplete and complete ORFs, respectively, 

of rtz_LINEs.
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been reported.21,22,82 Using the representative AL110478.1 
sequence of MP in C. elegans,82 we searched for MP copies in 
the VC2010 assembly by using the NCBI nucleotide BLAST 
program (https://blast.ncbi.nlm.nih.gov/). We identified short 
homologous regions >100 bps that were densely scattered on 3 
distinct regions on chromosome I (MP Ia, MP Ib, and MP Ic) 
and 2 regions on chromosome X (MP Xa and MP Xb) (Figure 
5A and B). Thus, the reference MP copy used in our homology 

search was aligned discontinuously in these putative MP copies 
in the VC2010 genome assembly (Figure 5B), and these MP 
copies were located on different chromosomes from previous 
reports.

The VC2010 genome assembly provides substantial advan-
tages over its predecessors in both precision and completeness, 
but at the current stage, any assembly is imperfect.39 Compared 
with the N2 genome assembly, the VC2010 assembly contains 

Table 2.  List of potentially functional rtz_LINEs.

Gene ID Class Chr Position RT EN PC

rtz_LINE-1 RTE1LINE/RTE-RTE I (2950852, 2952124) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-2 LINE2E_CELINE/CR1 I (4185973, 4187716) D G DD K K LG   -  -   -  -   -      --- PC2

rtz_LINE-3 RTE1LINE/RTE-RTE I (4935419, 4937297) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-5 RTE1LINE/RTE-RTE I (8775178, 8778372) D G DD G K LG N E Y D N DDH PC1

rtz_LINE-6 Vingi-2_CELINE/I-Jockey I (14229294, 14230404) D G DD K K LG   -  -   -  -   -      --- PC3

rtz_LINE-9 RTE1LINE/RTE-RTE II (1831404, 1833282) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-11 Vingi-2_CELINE/I-Jockey II (9804786, 9806178) D G DD K K LG   -  -   -  -   -      --- PC3

rtz_LINE-12 Vingi-1_CELINE/I-Jockey II (13809694, 13811320) D G DD G K LG   -  -   -  -   -      --- PC3

rtz_LINE-13 RTE1LINE/RTE-RTE III (404229, 407423) D G DD G K LG N E Y D N DDH PC1

rtz_LINE-14 LINE2C1_CELINE/CR1 III (7100465, 7102105) D G DD R K LG   -  -   -  -   -      --- PC2

rtz_LINE-15 RTE1LINE/RTE-RTE III (7180182, 7183418) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-18 LINE2C1_CELINE/CR1 IV (1602836, 1604476) D G DD R K LG   -  -   -  -   -      --- PC2

rtz_LINE-19 RTE1LINE/RTE-RTE IV (4625912, 4628285) D G DD G K LG   -  -   -  -   -   DDH PC1

rtz_LINE-20 Vingi-1_CELINE/I-Jockey IV (4835118, 4837566) D G DD G K LG   -  -   -  -   -      --- PC3

rtz_LINE-22 LINE2A_CELINE/CR1 IV (6411447, 6414339) D G DD S K LG N E Y D N DDH PC2

rtz_LINE-25 RTE1LINE/RTE-RTE IV (11542654, 11544867) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-27 RTE1LINE/RTE-RTE IV (15832895, 15833927) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-32 RTE1LINE/RTE-RTE IV (17649917, 17653111) D G DD G K LG N E Y D N DDH PC1

rtz_LINE-33 RTE1LINE/RTE-RTE V (1946891, 1948145) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-35 LINE2A_CELINE/CR1 V (4246672, 4247554) D G DD K K LG   -  -   -  -   -      --- PC2

rtz_LINE-46 NeSL-1LINE/R2 V (17312793, 17316369) D G DD N K LG   -  -   -  -   -      --- PC4

rtz_LINE-48 NeSL-1LINE/R2 V (17637370, 17642434) D G DD N K LG   -  -   -  -   -      --- PC4

rtz_LINE-50 RTE1LINE/RTE-RTE X (75209, 76481) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-53 LINE2E_CELINE/CR1 X (1608458, 1610063) D G DD K K LG   -  -   -  -   -      --- PC2

rtz_LINE-57 RTE1LINE/RTE-RTE X (2102788, 2105982) D G DD G K LG N E Y D N DDH PC1

rtz_LINE-58 RTE1LINE/RTE-RTE X (9235621, 9236893) D G DD G K LG   -  -   -  -   -      --- PC1

rtz_LINE-59 RTE1LINE/RTE-RTE X (15766961, 15770155) D G DD G K LG N E Y D N DDH PC1

rtz_LINE-61 RTE1LINE/RTE-RTE X (18078630, 18081306) D G DD G K L-   -  -  Y D N DDH PC1

Evolutionarily conserved amino acids within the Reverse transcriptase (“RT”) and Endonuclease (“EN”) domains within potentially functional RTZ_LINEs. The 
consecutive amino acid single letters without spaces indicate conserved amino acids within the same domain. See amino acids indicated by asterisks in Figure 2A and 
B. A dash (-) indicates the absence of a conserved amino acid. The “Class” denotes TE identity as determined by RepeatMasker analysis. Chromosome ID (“Chr”) and 
genomic positions (“Position”) are provided for each gene.

https://blast.ncbi.nlm.nih.gov/
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Figure 3.  (Continued)
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Figure 3.  Potentially functional tpzs encoded in terminal inverted repeat (TIR) elements. (A) Alignment of catalytic core domains of TPZs with reference 

Transposases (TPs). Amino acid sequences of Pogo_SM, CIRT2_CA, and Mar1_TV as examples of Tc1/mariner class TPs were arbitrarily obtained from 

Yuan and Wessler.65 Red asterisks indicate conserved residues used to identify potentially functional TDPGs. (B) Genomic positions of 94 potentially 

functional tpzs in the Caenorhabditis elegans genome. Gray lines represent chromosomes. Red circles indicate positions of potentially functional genes 

of tpz-n. Numbers indicate numbers of tpz genes. Vertical ticks and × marks indicate incomplete and complete ORFs, respectively, of tpzs.

short insertions, deletions, and duplications ranging from tens 
to thousands of base pairs, which are distributed in all chromo-
somes.39 These differences could be due to polymorphism in 
the VC2010 strain or could be due to errors arising during 
sequencing and/or assembly of the N2 genome assembly. In the 
comparison between recent de novo assemblies of the N2 and 
Hawaiian genomes, indels with about 50 bases are widely 
detected across the genomes,83 suggesting that such small 
indels may be inserted at a relatively rapid rate in evolution. We 
interpret that the discontinuity within the MP copies (Figure 

5A and B) reflects the actual sequence present in the VC2010 
strain. On the other hand, as mentioned in previous reports,39 
artifactual large structural variations in VC2010 could still 
remain even after careful correction in the VC2010 assembly. 
At this point, we remain agnostic as to whether the different 
chromosomal locations of the MP copies in VC2010 are actu-
ally present in the strain or reflect errors in the assembly pro-
cess to obtain the VC2010 assembly.

To identify TDPGs encoded in these MP loci, ie, DNA 
polymerase B (DNA POLB) and IN, we applied SNAP and 
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DIAMOND to the 5 MP copies. Two DNA POLB-related 
genes (polB_MP) encoding 378 and 93 amino acids were 
located in MP Ia and MP X, respectively (Supplementary 
Table 7). Two IN genes (inz_MP) were located in MP Ib and 
MP Ic (Supplementary Table 8). Interestingly, a gene encoding 
the helix-turn-helix 48 (HTH48) domain-containing protein, 
which is conserved in some Transposases (TPs), is located in 
MP Xa (Supplementary Tables 9 and 10). Because TPs are 

functionally and evolutionarily related to INs,84,85 we consid-
ered these 3 IN-related genes to be inz_MPs.

DNA POLB has 5 conserved motifs from Motifs I to V.86 
By aligning PolB_MP-1 (at MP Ib) and PolB_MP-2 (at MP 
Xa) with the reference DNA POLBs, we found that PolB_
MP-1 lacked most of the N-terminal motifs from I to III and 
only had YnDTD conserved in Motif IV. In addition, PolB_
MP-2 only had conservation of a short N-terminus fragment 

Figure 4.  Potentially functional rhzs encoded in Helitrons. (A) Alignment of amino acid sequences of helicase (HEL) domains with reference HELs. PIF1 

in Saccharomyces cerevisiae [P07271], HEL_T4 in Enterobacteria phage T4 [P32270], TraA Sinorhizobium fredii [P55418], TraI_EC Escherichia coli 

[P14565], TRWC E. coli [Q47673]. (B) Alignment of amino acid sequences of REP domains with reference REPs. Rep_Bb in Brevibacillus borstelensis 

[BAA07788.1], Rep plasmid pVT736-1 [AAC37125.1], Rep_Pf3P. phage Pf3 [AAA88392.1], Rep_EC IS91 [BCN22733.1], TnpA_EC IS91 TnpA E. coli 

[QIC00531.1]. Asterisks indicate conserved residues. Red asterisks indicate residues used for identifying potentially functional TDPGs. (C) Genomic 

positions of 5 potentially functional rhzs in the Caenorhabditis elegans genome. Gray lines represent chromosomes. Red circles indicate positions of 

potentially functional genes of rhz-n. Numbers indicate numbers of rhz genes. Vertical ticks and × marks indicate incomplete and complete ORFs, 

respectively, of rhzs.
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and did not exhibit conservation of Motifs I to V. Therefore, 
we considered that these PolB_MPs likely do not encode func-
tional proteins. Next, by aligning INZ_MP-1 (at MP Ib), 
INZ_MP-2 (at MP Ic), and INZ_MP-3 (MP Xa) with refer-
ence INs, we found that INZ_MP-1 and INZ_MP-2 encoded 
glutamic acid triads that align with the reference DDE triad 
(black asterisks in Figure 5C). Based on this potential func-
tional conservation, we do not reject the possibility that inz_
MP-1 and inz_MP-2 encode functional genes. INZ_MP-3 
did not align with the reference DDE triads, whereas INZ_
MP-3 aligned with the DDD/E triad in the Tc1 family TPs 
(red asterisks in Figure 5C). We thus also considered inz_MP-3 
to be a potentially functional gene.

The IN encoded in a MP copy has been identified as a cel-
lular IN (c-Integrase) that is homologous to the retrotranspo-
son IN.22 In addition, the IN in MP is highly homologous to 
the TP encoded in ginger DNA transposon.87 Maverick/
Polintons has been proposed to be involved in gene transfer 
between eukaryotic DNA mobile elements (dsDNA viruses, 
adenoviruses, small ssDNA viruses, Mavirus-like virophages, 
icosahedral viruses).88-90 Considering that inz_MP-3 at MP 
Xa encoded an HTH48 domain, and that the DDD motif was 
homologous to the Tc family of DNA TPs, we note the possi-
bility of evolutionary interactions between the Tc family of 
DNA transposons and MP in C. elegans.

TDPGs in DIRS, PLE, and Crypton  
elements in C. elegans

Our RepeatMasker analysis did not identify copies of DIRS or 
Crypton. A previous homology-based search of 34 nematode 
species to identify Tyr-REC genes that mediate transposition 
of DIRS and Crypton identified an incomplete cDNA for a 
Tyr-REC gene in chromosome II of C. elegans.91 We applied 
SNAP to a genomic region of this incomplete cDNA with 
20 kbp 5′ flanking and 20 kbp 3′ flanking genomic regions in 
VC2010, but did not find any complete ORF. From this result 
and previous studies, we conclude that C. elegans may not have 

a functional Tyr-REC gene. Finally, consistent with a previous 
report,92 our analysis on VC2010 did not identify any PLE 
copies.

Discussion
Extensive bioinformatic studies on TEs have led to the identi-
fication of novel TEs, the inferred mechanisms of transposition 
from enzymes coded on TEs, and through phylogenetics anal-
ysis, the clarification of the evolutionary processes of TEs and 
the genome.6,7,26 Despite such studies, the physiological func-
tions of TEs, such as their roles in development, and aging, as 
well as evolution, are largely unverified experimentally. In this 
report, we searched for TDPGs in all the representative TE 
orders in the latest genome assembly of C. elegans (VC2010). 
According to our RepeatMasker analysis, more than 50 000 TE 
loci exist in the latest C. elegans genome assembly (Figure 6A 
and Supplementary Table 1). These loci encode 428 complete 
ORFs, 66.8% of which (285 genes) are TDPGs. Among them, 
we identified 142 potentially functional genes, including 8 rtz_
LTRs, 7 inz_LTRs, 28 rtz_LINEs, 94 tpzs, and 5 rhzs (Figure 
6B). In addition, our manual analysis identified 3 potentially 
functional inz_MPs (Figure 6B). In total, we identified 145 
potentially functional TDPGs.

The preponderance of total TE loci relative to those retain-
ing potential for mobility is well noted but has rarely been 
quantified. The best studied example is the retrotransposon L1, 
a member of the well-studied LINE order. The human genome 
has more than 500 000 loci corresponding to L1, accounting 
for 17% of the human genome.93 However, bioinformatic anal-
ysis has identified only 146 copies of full-length L1 in the 
human genome, and only 107 of these L1 copies have con-
served intact RT genes.94 In vitro experimental tests of the 
mobility of L1 copies showed that fewer than 100 copies of L1 
were active, with 6 L1 copies accounting for most of the activ-
ity of L1 in the human genome.95 Similarly, cancer cell genome 
analysis and genome comparison in human population showed 
that limited number of L1 loci comprise the bulk of mobile 
activity of L1.96-99 These results indicate that a limited number 

Table 3.  List of potentially functional rhzs.

Gene ID Class Chr Position HEL REP

rhz-1 Helitron1_CERC/Helitron II (858688, 863243) GKT V IDEM IGDQV R I SQGL YLSR H H Y Y

rhz-2 Helitron1_CERC/Helitron II (1985427, 1990301) GKT V IDEM IGDQV R I SQGL YLSR H H Y Y

rhz-3 Helitron1_CERC/Helitron II (1994314, 1999188) GKT V IDEM IGDQV R I SQGL YLSR H H Y Y

rhz-4 Helitron1_CERC/Helitron II (2018435, 2023309) GKT V IDEM IGDQV R I SQGL YLSR H H Y Y

rhz-5 Helitron1_CERC/Helitron II (2619731, 2624240) GKT V IDEM IGDQV R I SQGL YLSR H H Y Y

Evolutionarily conserved amino acids within the Helicase (“Hel”) and Endonuclease (“REP”) domains within potentially functional RHZs. The consecutive amino acid 
single letters without spaces indicate conserved amino acids within the same domain. See amino acids indicated by asterisks in Figure 4A and B. A dash (-) indicates 
the absence of a conserved amino acid. The “Class” denotes the TE identity as determined by RepeatMasker analysis. Chromosome ID (“Chr”) and genomic positions 
(“Position”) are provided for each gene.
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Figure 5.  Maverick/Polintons (MPs) in the Caenorhabditis elegans genome. (A) Genomic positions of homologous regions with AL110478.1. Five 

rectangular regions are as follows: in chromosome I: MP Ia, 3543 bp region from 0.4521550 × 107 to 0.4525093 × 107 bps; MP Ib, 17 276 bp region from 

1.0486778 × 107 bps to 1.0504054 × 107 bps, and MP Ic, 43 817 bp region from 1.3280931 × 107 bps to 1.3324748 × 107 bps; and in chromosome X: MP Xa, 

11 758 bp region from 0.2000999 × 107 bps to 0.2012757 × 107 bps, and MP Xb, 183 668 bp region from 1.7462913 × 107 bps to 1.7646581 × 107 bps. (B) 

Scattered distribution of homologous DNA regions with AL110478.1 in each of 5 MP copies. Red dots indicate homologous regions > 500 bps. Blue dots 

indicate homologous regions of <500 bps and >100 bps. (C) Alignment of catalytic core domains of INZ_MP-1 and INZ_MP-2 with reference Integrases 

(INs). Abbreviations: ASV: IN in avian sarcoma virus [1ASU_A], HERVK: Pol protein in human endogenous retrovirus K [CAA76885], MMLV: p46 IN 

Moloney murine leukemia virus (MoMLV) [NP_955592.1], HIV: IN in HIV-1 [1BIZ_A], Gypsy_Dm: IN, Gypsy endogenous retrovirus in Drosophila 

melanogaster [CAB69645], TEDV_Tm: ORFB in TED virus in Trichoplusia ni [YP_009507248], TP1731: Pol polyprotein in transposon_1731 in  

D. melanogaster [S00954], RVRP_At: retrovirus-related like Polyprotein in Arabidopsis thaliana [CAB78488_1], Copia_Dm: Gag-Int-Pol protein in COPIA 

in D. melanogaster [P04146], Ty-3_Sc: Gag-Pol polyprotein in Ty3-G in Saccharomyces cerevisiae [GFP69998.1]. (D) Alignment of catalytic core domains 

of INZ_MP-3 with reference Transposases (TPs). Amino acid sequences of Mariner-10_HM, Mariner-3_AN, Pogo_SM, Mariner-1_SP, CIRT2_CA, 

Mariner-1_AF, MAR1_TV, and Tc1-1_AG as examples of Tc1/mariner class TPs were arbitrarily obtained from Yuan and Wessler.65 Asterisks indicate 

conserved amino acids in catalytic core.
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of L1 copies encode functional TDPGs, which is consistent 
with our finding of the stark contrast between the number of 
potentially functional TDPGs and the total number of TEs.

Critical amino acids at the catalytic cores of TDPGs have 
been studied in LTR elements,27-29 LINEs,30-32 and TIR ele-
ments33 in C. elegans. We compared the 145 potentially func-
tional TDPGs identified in this study to those identified 
previously. In previous studies of LTR elements, researchers 
identified 2427 or 1028 full-length copies among 124 or 62 LTR 
element copies, respectively, in C. elegans. Another study 
reported 17 rtz_LTRs with conserved Asp residues in Motifs 
A and C, and 15 inz_LTRs with a conserved DDE triad.29 We 
identified 8 potentially functional rtz_LTR and 7 potentially 
functional inz_LTR genes. Thus, we found fewer potentially 
functional rtz_LTRs and inz_LTRs in this study than were 
identified by previous studies.27-29 Differences in the genome 
assembly used in Ganko et al27 and Bowen and McDonald,29 as 
discussed in Yoshimura et al,39 might contribute to this dis-
crepancy. On the other hand, using the same VC2010 assembly 
as us, Kanzaki et al28 identified 10 LTR elements; we identified 
nearly the same number but slightly fewer TDPGs. A detailed 
analysis of the coding sequence of the catalytic core of enzymes 
in the 10 full-length LTR elements28 may provide consilience 
with the number of potentially functional LTR element genes 
identified here. Notably, TDPGs in the most-studied C. elegans 
LTR element, Cer1 on chromosome III,27,100 were found on 
our list of potentially functional genes (i.e. rtz_LTR-5 and 
inz_LTR-5; Figure 1C). Cer1 is both biologically active  
and mobile101-103 in recent evolutionary history, based on a 
comparison of natural isolates of C. elegans.104 For LINE 

retrotransposons, among more than 1000 copies of LINE,30 6 
copies of the RTE LINE suborder31 and 17 copies of the T1/
CR1 LINE suborder32 encode the rtz_LINE that conserves 
the Asp residues in Motifs A and C. We identified a similar 
number of LINE copies (618 copies; Supplementary Table 1). 
Among them, 28 rtz_LINEs preserved potentially functional 
RT domains, which is more than total number of potentially 
functional rtz_LINEs reported previously. For TIR elements, a 
previous report showed that 61 tpzs had the conserved DDD/E 
motifs in 127 copies of Tc/mariner family TIR element.33 We 
identified 94 potentially functional tpzs in 189 copies of the 
Tc/mariner family TIR element, which is a larger number than 
was reported previously. For Helitron DNA transposon, we 
found that 1.65% of the C. elegans genome was occupied with 
Helitron copies (Supplementary Table 1), similar to previous 
reports (~2%).18 There was no further amino acid sequence 
analysis about rhzs.

In addition, we investigated the latest version of Wormbase 
(WS292). For Tc1/mariner, among its 636 copies, 129 tpzs 
were found, with 112 being potentially functional tpzs. 
Regarding LINE, among its 62 copies, 9 out of 10 potentially 
functional rtz_LINEs were found. For LTR element, among its 
15 copies with 4 ORFs registered, none showed potentially 
functional rtz_LTR and inz_LTR. In the case of MP, among its 
12 copies, 3 polB_MPs (C33E10.6, Y106G6G.5, Y26D4A.9) 
were registered, but inz_MP was not found. Among these 
PolB_MP, only Y26D4A.9 preserved motif IV out of 5 con-
served motifs, and thereby these pol_MPs were not considered 
potentially functional genes. Likely due to discrepancies in the 
genome sequences, corresponding ORFs for these 3 polBs were 
not found in the VC2010 genome assembly. Helitron, DIRS, 
Crypton, and PLE were not registered. Taken together, our 
catalog of potentially functional TDPGs includes an equiva-
lent or, for some TEs, greater number of genes compared with 
the number identified in previous reports, and reflects various 
lines of available biological and bioinformatic evidence, sup-
porting the validity of our annotation.

In human and mouse genomes, L1 is the most abundant 
among TE classes, with 145 copies in human and 2811 copies 
in Mus musculus being conserved at full length.94,105,106 In  
D. melanogaster, Saccharomyces cerevisiae, and Arabidopsis thali-
ana,107 LTR element is the most abundant class, with 325 cop-
ies in D. melanogaster108 and 51 copies in S. cerevisiae109 being 
conserved at full length. Long terminal repeat elements are 
only the TE encoded in Schizosaccharomyces pombe, with 13 
copies being conserved at full length.110 DNA transposons are 
the most abundant in Danio rerio (zebrafish), with 2.3 million 
copies, but it is unknown how many of these copies are 
active.111 Similarly, it is unknown how many of the 286 LTR 
elements in A. thaliana are active.107 In our study, TIR ele-
ments were the most abundant transposon class (20 852 cop-
ies; Supplementary Table 1) in C. elegans, encoding 94 copies 
of potentially functional tpz. Our identification of 145 

Figure 6.  Summary of potentially functional TDPGs in the 

Caenorhabditis elegans genome. (A) The percentage of copy numbers of 

LTR element (blue), LINE (green), Helitron (red), MP (purple), and TIR 

element (brown) in the total copy number of TEs in the C. elegans 

genome. (B) The percentage of potentially functional TDPGs; 8 rtz_LTR 

(blue) and 7 inz_LTR (light blue), 28 rtz_LINE (green), 5 rhz (red), 3 inz_

MP (purple), and 94 tpz (brown) in total 145 potentially functional TDPGs 

identified in this study.
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potentially functional TDPGs indicates that C. elegans encodes 
the fewest number of potentially functional TDPGs among 
conventional metazoan model organisms. We propose that C. 
elegans can be a useful model metazoan to study the conserved 
physiological, pathological, and evolutionary roles of transpo-
son mobility.

Conclusions
Our TDPG catalog, which contains 145 potentially functional 
TDPGs encoded in LTR elements, LINEs, TIR elements, 
Helitrons, and Mavericks/Polintons, serves as a source of infor-
mation for conducting RNA interference (RNAi) experiments 
to systematically manipulate the mobility of both autonomous 
and non-autonomous TEs. By designing primer sets to specifi-
cally amplify certain genome regions encoding a TDPG, RNAi 
experiments can simultaneously manipulate the mobility of 
TEs that rely on the target TDPGs, other TEs that rely on 
homologous copies of the TDPG, and non-autonomous TEs 
that depend on these TDPGs. RNAi targeting a TDPG in a 
homologous gene cluster of rtz_LINE and tpz (Supplementary 
Figures 1 and 2) can more efficiently and simultaneously affect 
the mobility of multiple TEs. Our TDPG catalog could poten-
tially promote the study of the physiological functions of TE 
mobility.

Limitation
Our gene catalog provides substantial advantages over its pre-
decessors, such as Wormbase for conducting experimental 
studies but is imperfect. The TDPGs in our catalog were 
curated based on amino acid sequences within the catalytic 
cores; some of these genes might be truncated in other regions, 
such as the N- or C-terminus or within inter-functional 
domains. The TDPGs in our catalog might lack DNA ele-
ments necessary for proper gene transcription. Due to muta-
tions in regions responsible for translational regulation,112 it is 
possible that genes may not produce functional transcripts or 
proteins. In addition, our current TDPG search scheme does 
not detect genes located in the genome regions that 
RepeatMasker did not recognize as TEs. Thus, the possibility 
remains that there are still unidentified TDPGs. To address 
these shortcomings, it will be necessary to combine multiple 
algorithms for TE and gene identification across different ver-
sions of wild-type genome assemblies, based on continuously 
updated reference libraries for TEs, and to take the union of 
the TDPGs identified through these bioinformatics searches. 
In addition, integrating in vivo transcript information obtained 
from Expressed Sequence tags and RNA-seq data could fur-
ther refine the gene catalog. Experimental evolution and re-
sequencing organisms after targeting the current set of TDPGs 
would provide an orthogonal approach to evaluate whether this 
catalog is exhaustive. These expanded analyses could provide a 
more rigorous basis for experimental manipulation of TE 
mobility in vivo.
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