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Simple Summary: Although texture parameters of F-18 fluorodeoxyglucose positron emission tomog-
raphy/computed tomography images were known to associate tumor biology and clinical features,
the types and implications of parameters are too various and complicated. To overcome the limitation
of texture parameter, we attempted to produce a new simplified parameter from texture parameters
of F-18 fluorodeoxyglucose positron emission tomography/computed tomography images in lung
cancer patients using pseudotime analysis. Pseudotime analysis is a recently developed method to
explore changes in cell or tissue characteristics based on transcriptomic expression. It is the first study
to apply pseudotime analysis into radiomics dataset other than transcriptomics data. Herein, we
demonstrated that pseudotime can be successfully estimated from texture parameters. In the aspect
of prognostic prediction, pseudotime was an independent prognostic factor for overall survival in
contrast to conventional parameters such as metabolic tumor volume and total lesion glycolysis.
This study showed possibility of integrating various texture parameters into single parameter which
reflects disease progression status. Pseudotime, as a concrete value of disease progression, is expected
to be used in clinical field to evaluate disease and predict prognosis.

Abstract: Texture analysis provides image parameters from F-18 fluorodeoxyglucose positron emis-
sion tomography/computed tomography (FDG PET/CT). Although some parameters are associ-
ated with tumor biology and clinical features, the types and implications of these parameters are
complicated. We applied pseudotime analysis, which has recently been used to estimate changes
in individual sample characteristics, to texture parameters from FDG PET/CT images of locally
advanced non-small-cell lung cancer (NSCLC) patients undergoing neoadjuvant concurrent chemora-
diation therapy (CCRT) followed by surgery. Our subjects were 303 NSCLC patients who underwent
pretherapeutic FDG PET/CT and tri-modality therapy. Texture parameters of the primary tumor
were calculated from FDG PET/CT images acquired before neoadjuvant CCRT. Pseudotime analysis
was performed using the PhenoPath tool. Clinicopathologic features including survival data were
collected and survival analysis was performed to compare the prognostic significances of pseudotime
parameters with those of conventional PET parameters. Pseudotime was successfully estimated
from texture parameters. Normalized co-occurrence homogeneity, normalized co-occurrence inverse
difference moment, and black–white symmetry showed positive correlations with pseudotime, short
run emphasis, normalized co-occurrence dissimilarity, and short zone emphasis negative correlation.
The maximum standardized uptake value (SUV) and mean SUV were not associated with overall
survival. Pseudotime, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) showed
significant associations with overall survival. In contrast to MTV and TLG, pseudotime was an
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independent prognostic factor for overall survival. Various metabolic texture parameters can be
integrated into a single parameter using pseudotime analysis. Pseudotime of the primary tumor,
estimated from FDG PET/CT images, better predicts overall survival in locally advanced NSCLC
patients treated with tri-modality therapy than conventional PET parameters.

Keywords: non-small cell lung cancer; FDG PET/CT; texture analysis; prognosis; pseudotime analysis

1. Introduction

F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG
PET/CT) is a robust imaging modality to diagnose and determine the appropriate man-
agement of lung cancer [1]. The most representative parameter, maximum standardized
uptake value (SUVmax), provides diagnostic thresholds to identify malignant nodules in
the lung [2] and is an excellent prognostic factor for both disease-free survival (DFS) and
overall survival (OS) in lung cancer [3]. FDG PET/CT has special clinical significance in
locally advanced lung cancer, which can be treated with various therapy options. Beyond
conventional parameters such as SUVmax, volumetric parameters such as metabolic tu-
mor volume (MTV) and total lesion glycolysis (TLG) have demonstrated good prognostic
significance in locally advanced non-small-cell lung cancer (NSCLC) [4,5].

Radiomics, which produces texture features from medical images using diverse al-
gorithms, is a recently highlighted concept in nuclear medicine [6]. Beyond conventional
metabolic and volumetric parameters, texture parameters are associated with tumor bi-
ology and prognosis in lung cancer patients. For example, entropy and homogeneity
are significant prognostic factors for progression-free survival of lung cancer patients [7].
However, radiomics has limitations of diversity and complexity due to the variety and
complicated nature of the analysis algorithms. Among varying parameters, it is difficult
to extract significant texture parameters associated with cancer diagnosis or prognosis
with high reproducibility. In addition, it is difficult to understand the implications or
meanings of each texture parameter. A single simplified parameter integrating various
texture parameters would be better for applying radiomics in the clinical field.

Pseudotime analysis, also called trajectory inference analysis, is a spotlighted method
to explore changes in cell or tissue characteristics based on transcriptomic expression [8].
It provides a numerical scale to reflect where a cell or tissue is in the course of disease. A
previous study investigated cellular dynamics in lung cancer using pseudotime analysis [9].
In another, a tissue-scale RNA-sequencing dataset was successfully analyzed by pseudotime
analysis to demonstrate the evolution of tumor characteristics in lung cancer [10]. However,
no previous study has applied pseudotime analysis to radiomics data. We hypothesize
that pseudotime analysis can be applied to radiomics datasets to estimate relationships
or the temporal evolution of medical images from cancer patients. As RNA-sequencing
data corresponds with radiomics data and each cell or tissue sample corresponds with an
individual patient, pseudotime analysis can be implemented into texture parameters.

In this study, we acquired metabolic texture parameters from FDG PET/CT of NSCLC
patients. Pseudotime analysis was conducted for the texture parameters of the primary
tumor. The prognostic value of our newly developed pseudotime parameter was compared
with that of conventional metabolic and volumetric parameters of FDG PET/CT in patients
with locally advanced NSCLC undergoing tri-modality therapy.

2. Methods
2.1. Subjects

Four hundred fifty-nine consecutive patients undergoing FDG PET/CT examination
for the initial staging of NSCLC and subsequent neoadjuvant concurrent chemoradiation
therapy (CCRT), between January 2008 and December 2020, were retrospectively enrolled.
Among them, 24 patients with pathologies other than adenocarcinoma or squamous cell
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carcinoma and 27 patients who did not undergo curative surgery after neoadjuvant CCRT
were excluded. One patient with clinical stage IV disease and 17 patients with clinical
stage N1 or N3 disease were excluded to limit the sample to patients with the same clinical
stage. Five patients who did not undertake FDG PET/CT after neoadjuvant CCRT were
also excluded. Based on previous studies suggesting that the minimum MTV eligible for
radiomics analysis in FDG PET/CT is approximately 10 cm3, 82 patients with metabolic
tumor volumes smaller than 10 cm3 were excluded [11,12]. Finally, 303 patients who
underwent tri-modality therapy were included in this study (Figure 1). Our institutional
review board approved this retrospective cohort study (#2022-01-086), and the requirement
for informed consent was waived.
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Figure 1. Patient inclusion and exclusion criteria. Four hundred fifty-nine patients were retrospec-
tively enrolled. Among them, patients with pathologies other than adenocarcinoma or squamous cell
carcinoma, those who did not undergo curative surgery after neoadjuvant concurrent chemoradia-
tion therapy (CCRT), those with clinical stage IV or clinical stage N1 or N3 disease, those without
follow-up FDG PET/CT after neoadjuvant CCRT, and those with tumor volumes smaller than 10 cm3

were subsequently excluded. Ultimately, 303 patients were included.

2.2. FDG PET/CT Acquisition

All patients fasted for at least six hours and had blood glucose levels of less than
200 mg/dL at the time of their FDG PET/CT scans. Whole-body PET and CT images
from basal skull to mid-thigh were acquired 60 min after the injection of 5.0 MBq/kg FDG
without intravenous or oral contrast on a Discovery LS, a Discovery STE, or a Discovery MI
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DR PET/CT scanner (GE Healthcare, Milwaukee, WI, USA). Continuous spiral CT was per-
formed with an 8-slice helical CT (140 keV, 40–120 mA; Discovery LS) or 16-slice helical CT
(140 keV, 30–170 mA; Discovery STE, 120 keV, 30–100 mA; Discovery MI DR). An emission
scan was then obtained from head to thigh for 4 min per frame in the 2-dimensional mode
(Discovery LS), 2.5 min per frame in the 3-dimensional mode (Discovery STE), or 2 min per
frame in the 3-dimensional mode (Discovery MI DR). PET images were reconstructed using
CT for attenuation correction by the ordered-subsets expectation maximization algorithm
with 28 subsets and 2 iterations (matrix 128 × 128, voxel size 4.3 × 4.3 × 3.9 mm; Discovery
LS), ordered-subsets expectation maximization algorithm with 20 subsets and 2 iterations
(matrix 128 × 128, voxel size 3.9 × 3.9 × 3.3 mm; Discovery STE), or ordered-subsets
expectation maximization algorithm with 18 subsets and 4 iterations (matrix 192 × 192,
voxel size 3.9 × 3.9 × 3.3 mm; Discovery MI DR). SUV was calculated by adjusting for
administered FDG dose and the patient’s body weight.

2.3. FDG PET/CT Image Analysis

Image feature extraction was based on the threshold segmentation method with a
threshold SUV value of 2.5 in MIM version 6.4 software (MIM Software Inc., Cleveland, OH,
USA). Briefly, the target primary tumor was identified by an experienced nuclear medicine
physician who was unaware of all of the clinical information, except the target tumor site.
As the physician dragged the cursor out from the center of the target tumor to a point near
the edge of the lesion, the software automatically outlined a three-dimensional volume of
interest above the SUV of 2.5 on the tumor. After creating segmentation of the target tumor
lesion, we extracted PET image features using the Chang Gung image texture analysis
toolbox (CGITA, https://code.google.com/p/cigita, accessed on accessed on 1 July 2021),
an open-source software package implemented in MATLAB (version 2012a; MathWorks
Inc., Natick, MA, USA) [13]. A total of 86 PET features available in CGITA were measured
on each segment. Parameters from the voxel alignment matrix, neighborhood intensity
difference, intensity size zone matrix, normalized co-occurrence matrix, and neighboring
gray level dependence, and SUV statistics, except conventional parameters, were selected
as input data. Conventional parameters such as SUVmax, mean SUV (SUVmean), MTV,
and TLG were also calculated by the CGITA software.

2.4. Pseudotime Estimation

A pseudotime trajectory was generated using the “PhenoPath” package in R [14].
PhenoPath, an analytical tool for pseudotime, has previously been used to estimate the
ordering of gene expression measurements across individual objects. It employs Bayesian
statistics and models latent progression of gene expression. In this study, PhenoPath is
applied to the radiomics dataset, which corresponds to the RNA-sequencing data described
in previous reports. For preprocessing, ComBat harmonization was conducted to remove
batch effects due to various PET/CT instruments using the package “neuroCombat” in R.
Subsequently, corrected texture parameters were normalized using the “scale” function in R.
The input data were a normalized texture parameter matrix of initial FDG PET/CT images
from 303 lung cancer patients. We chose an evidence lower bound (ELBO) of 10−6 and
computed thinned by 2 iterations. Then, the PhenoPath algorithm repeated the calculation
to predict pseudotime with 2 iterations until ELBO reached below 10−6. ELBO is a quantity
to reflect optimized approximation in probabilistic inference [15]. Ultimately, pseudotime
was estimated as a reference value for latent progression of the texture characteristics from
FDG PET/CT. Pseudotime was normalized with range of 0 to 1 for further analysis.

2.5. Clinical Variables and Follow-Up

Clinical information including sex, age, performance of adjuvant therapy, and histo-
logical type of the primary tumor was obtained by reviewing electronic medical records.
Radiologic reports of CT covering the chest were reviewed, and the locations of the primary
tumors were obtained. Clinical tumor stage (cT stage) was evaluated by the size of the

https://code.google.com/p/cigita
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primary tumor measured by CT of the FDG PET/CT scans. Clinical nodal stage (cN stage)
was evaluated by the maximal number of lymph nodes positive for metastasis on the CT
or FDG PET/CT scans. After we reviewed the pathologic reports of surgical specimens,
pathological T and N stages were determined based on the AJCC/UICC staging system
(8th edition).

Adjuvant therapy was performed after surgery according to each patient’s situation
and their corresponding physician’s decision. After surgery, all patients were monitored
regularly to obtain accurate information regarding recurrence. The follow-up program was
every 2–4 months during the first year, every 4–6 months during the next 2 years, and every
year thereafter. Every follow-up evaluation included a complete physical examination,
complete blood count, biochemical screening, and chest X-ray. CT scans of the chest were
performed from every 6 months to 1 year, or more frequently if clinically indicated.

Recurrence or metastasis was considered when there was an abnormal finding sug-
gesting recurrence or metastasis on serial imaging studies or pathologically confirmed
malignancy. The events for survival analysis were defined as recurrence or metastasis and
any cause of death. The disease-free and overall survival durations from the last follow-up
or event were recorded for each patient.

2.6. Statistical Analysis

Correlation analyses were performed to reveal associations between image parameters
and estimated pseudotime. Pearson’s correlation analysis was performed for each image
parameter and pseudotime. Age was recorded as a continuous scale and divided into three
groups as a discrete scale according to tertiles for log-rank tests and multivariate analyses.
Clinical variables including sex, age by both discrete and continuous scales, location of
primary tumor, cT stage, clinical TNM stage, performance of adjuvant therapy, histological
type of primary tumor, and pathological TNM stage were employed for univariate survival
analysis. For FDG PET/CT images, SUVmax, SUVmean, MTV, TLG, and pseudotime
were selected as variables. These five parameters were recorded as continuous scales and
divided into two groups as a discrete scale according to a cutoff value to best discriminate
prognosis of overall survival (OS) in all patients. They were explored by the “surv_cutpoint”
function in the package “survminer”. SUVmax, SUVmean, MTV, TLG, and pseudotime
were employed with both discrete and continuous scales for univariate survival analysis.

OS and disease-free survival (DFS) were endpoints of analysis. The Cox proportional
hazards model was used to evaluate the prognostic power of each variable. Hazard ra-
tios (HRs) and 95% confidence intervals were estimated. Log-rank statistics were also
obtained by the Kaplan–Meier method. Significant variables in univariate survival anal-
ysis with p-values of log-rank statistics lower than 0.05 were included in multivariate
survival analysis. Variables with collinearity were excluded. Due to multicollinearity
issues, multivariate survival analysis was performed repeatedly according to each image
parameter. All statistical analyses were performed using R software (v. 4.0.4, R Foundation
for Statistical Computing, Vienna, Austria). A p-value lower than 0.05 was considered
statistically significant.

3. Results
3.1. Demographic Data

The clinical characteristics and demographics of the subjects are described in Table 1.
Overall, 72.6% of patients were male, and the median age was 62.3 years. The histological
type of 63.4% of total subjects was adenocarcinoma. The tumors were located in the right
lung in 66.0% of subjects. No adjuvant therapy was performed in 66.0% of subjects. Among
clinical stages, 63.0% of subjects were stage IIIA. In post-operative pathological findings,
stage III was the most common stage.
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Table 1. Demographic and clinical characteristics of patients with lung cancer.

Characteristics Patients, n (%)

Sex
Female 83 (27.4)
Male 220 (72.6)

Age, median (range), years 62.3 (31.8–79.0)
<59 105 (34.7)

59~66 100 (33.0)
66≤ 98 (32.3)

Histological type
Adenocarcinoma 192 (63.4)

Squamous cell carcinoma 111 (36.6)
Location

Right lung 200 (66.0)
Left lung 103 (34.0)

Adjuvant therapy
No 200 (66.0)

Chemotherapy 103 (34.0)
Clinical T stage

T1 44 (14.5)
T2 148 (48.8)
T3 81 (26.7)
T4 30 (9.9)

Clinical stage
IIIA 191 (63.0)
IIIB 112 (37.0)

Histological grade
1 83 (11.5)
2 533 (73.9)
3 105 (14.6)

Unknown
Post-operative pathological T stage

0 34 (11.2)
T1 118 (38.9)
T2 103 (34.0)
T3 39 (12.9)
T4 9 (3.0)

Post-operative pathological N stage
N0 120 (39.6)
N1 24 (7.9)
N2 158 (52.1)
N3 1 (0.3)

Post-operative pathological TNM stage
0 29 (9.6)
I 64 (21.1)
II 43 (14.2)
III 165 (54.5)
IV 2 (0.7)

SUVmax, median (range) 13.2 (4.4–32.8)
<14.7 194 (64.0)
14.7≤ 109 (36.0)

SUVmean, median (range) 4.9 (2.6–11.5)
<3.9 62 (20.5)
3.9≤ 241 (79.5)

MTV, median (range), cm3 40.5 (10.1–468.8)
<60.2 202 (66.7)
60.2≤ 101 (33.3)

TLG, median (range) 192.7 (28.7–2554.4)
<272.4 189 (62.4)
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Table 1. Cont.

Characteristics Patients, n (%)

272.4≤ 114 (37.6)
Pseudotime, median (range) 0.38 (0–1)

<0.38 268 (88.4)
0.38≤ 35 (11.6)

Instrument
Discovery LS 67 (22.1)

Discovery STE 216 (71.3)
Discovery MI DR 20 (6.6)

TNM: tumor-node-metastasis; SUVmax: maximum standardized uptake value; SUVmean: mean standardized
uptake value; MTV: metabolic tumor volume; TLG: total lesion glycolysis.

3.2. Pseudotime Estimation

Pseudotime of the primary tumor was successfully estimated in texture parameter
datasets. A principal components analysis was performed to visualize the order of pseudo-
time in each FDG PET/CT image (Figure 2a) and it demonstrated that pseudotime was
estimated according to a specific direction, not randomly. A total of 20 parameters showed
positive correlations with pseudotime, and 40 parameters showed negative correlations
with pseudotime. The top 10 features displayed in Figure 2b and detailed statistics for all
parameters are described in Supplementary Table S1. Normalized co-occurrence homo-
geneity (including representatively), normalized co-occurrence inverse difference moment,
black–white symmetry, long run emphasis, and second moment showed positive correla-
tions with pseudotime. Short run emphasis, normalized co-occurrence dissimilarity, short
zone emphasis, neighboring gray level dependence entropy, and small number emphasis
showed negative correlations with pseudotime. Additionally, we performed correlation
analyses between conventional image parameters and pseudotime. SUVmax, SUVmean,
MTV, and TLG; all showed positive correlations with pseudotime (Figure 2, r = 0.480,
r = 0.401, r = 0.784, r = 0.478, respectively; p < 0.001 for all).
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Figure 2. Pseudotime analysis results. Pseudotime of primary tumors was successfully estimated in
the radiomics dataset. (a) A principal components analysis plot visualized the order of pseudotime
in each FDG PET/CT image. Although there was no clustering, pseudotime was estimated according
to a specific direction and not randomly. (b) The top 10 features demonstrating positive correlations
and top 10 features demonstrating negative correlations with pseudotime are shown. Conventional
image parameters based on SUV are also shown.

3.3. Survival Analysis

In univariate survival analysis, sex, age with discrete scale, age with continuous scale,
histological type, pT stage, pN stage, pathological TNM stage, SUVmax with discrete
scale, SUVmean with discrete scale, and SUVmean with continuous scale were significant
prognostic factors for DFS (Table 2). Sex, age with discrete scale, age with continuous
scale, pT stage, MTV with discrete scale, MTV with continuous scale, TLG with discrete
scale, TLG with continuous scale, pseudotime with discrete scale, and pseudotime with
continuous scale were significant prognostic factors for OS (Table 2). In the multivariate
survival analysis, pseudotime was selected as an independent prognostic factor for OS
(Table 3). In contrast, MTV and TLG were not independent prognostic factors for OS.
MTV with discrete scale, TLG with discrete scale, and pseudotime with discrete scale
discriminated the risk of overall survival well (Figure 3).

Table 2. Univariate Cox regression analysis for survival.

Variable Categories
Disease-Free Survival Overall Survival

Hazard
Ratio

95% Confidence
Interval p p of Log-Rank

Test
Hazard
Ratio

95% Confidence
Interval p p of Log-Rank

Test

Sex Male vs. female 1.519 1.084–2.128 0.015 0.01 0.549 0.343–0.878 0.012 0.01

Age
<59

0.01 0.00159~66 0.667 0.458–0.972 0.035 0.987 0.613–1.675 0.960
66≤ 0.556 0.366–0.843 0.006 2.023 1.284–3.186 0.002

Age (1-yr increase) 0.976 0.959–0.993 0.007 0.007 1.036 1.012–1.061 0.003 0.003

Location Right 0.7 0.9Left 1.080 0.769–1.516 0.659 1.018 0.683–1.517 0.930
Histological type Adenocarcinoma <0.001 0.8Squamous cell

carcinoma 0.379 0.254–0.567 <0.001 1.044 0.702–1.551 0.833

Clinical T stage
T1

0.07 0.4T2 0.817 0.517–1.290 0.386 0.874 0.495–1.545 0.644
T3 1.053 0.642–1.728 0.839 1.203 0.659–2.194 0.548
T4 0.408 0.184–0.905 0.027 1.400 0.672–2.918 0.369

Clinical stage IIIA 1 0.07IIIB 0.990 0.704–1.392 0.952 1.415 0.964–2.077 0.076
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Table 2. Cont.

Variable Categories
Disease-Free Survival Overall Survival

Hazard
Ratio

95% Confidence
Interval p p of Log-Rank

Test
Hazard
Ratio

95% Confidence
Interval p p of Log-Rank

Test

Adjuvant therapy No 0.6 0.2Chemotherapy 1.106 0.792–1.545 0.555 1.330 0.899–1.967 0.153
Histological grade Well differentiated

0.8 0.8Moderately
differentiated 1.762 0.245–12.670 0.573 0.654 0.159–2.693 0.556

Poorly differentiated 1.786 0.247–12.910 0.565 0.673 0.162–2.801 0.586
Post-operative

pathological T stage 0

<0.001 0.005T1 3.470 1.591–7.567 0.002 1.653 0.739–3.698 0.221
T2 2.616 1.185–5.777 0.017 1.629 0.725–3.663 0.238
T3 2.576 1.059–6.264 0.037 2.347 0.980–5.623 0.056
T4 7.714 2.702–22.022 <0.001 5.696 1.993–16.282 0.001

Post-operative
pathological N

stage
N0

<0.001 0.7N1 1.500 0.785–2.865 0.219 1.151 0.587–2.257 0.682
N2 2.200 1.512–3.200 <0.001 1.138 0.754–1.715 0.538
N3 2.293 0.315–16.715 0.413 2.957 0.405–21.618 0.285

Post-operative
pathological stage

0

<0.001 0.6
I 2.398 0.915–6.286 0.075 1.694 0.683–4.203 0.255
II 2.840 1.054–7.653 0.039 2.117 0.840–5.337 0.112
III 4.598 1.871–11.304 0.001 1.931 0.834–4.472 0.125
IV 2.168 0.253–18.563 0.480 2.400 0.288–20.015 0.418

SUVmax <14.7 0.4 0.214.7≤ 0.858 0.607–1.213 0.386 1.260 0.855–1.856 0.243
SUVmax

(continuous) 0.959 0.924–0.994 0.024 0.02 1.013 0.973–1.055 0.535 0.5

SUVmean <3.9 0.033.9≤ 0.662 0.454–0.965 0.032 0.678 0.440–1.044 0.077 0.08
SUVmean

(continuous) 0.854 0.748–0.976 0.020 0.02 0.986 0.850–1.144 0.855 0.9

MTV <60.2 0.960.2≤ 0.985 0.693–1.400 0.931 1.663 1.133–2.439 0.009 0.009
MTV (continuous) 0.997 0.994–1.000 0.093 0.09 1.004 1.001–1.007 0.004 0.003

TLG <272.4 0.8272.4 ≤ 0.953 0.676–1.342 0.782 1.619 1.107–2.368 0.013 0.01
TLG (continuous) 1.000 0.999–1.000 0.094 0.09 1.001 1.000–1.001 0.016 0.01

Pseudotime <0.59 0.4 0.0030.59≤ 1.196 0.787–1.816 0.402 1.894 1.236–2.901 0.003
Pseudotime
(continuous) 0.694 0.277–1.739 0.436 0.4 3.085 1.108–8.588 0.031 0.03

SUVmax: maximum standardized uptake value; SUVmean: mean standardized uptake value; MTV: metabolic
tumor volume; TLG: total lesion glycolysis.

Table 3. Multivariate Cox regression analysis for overall survival.

MTV TLG Pseudotime

Variable Categories Hazard
Ratio

95%
Confidence

Interval
p Hazard

Ratio
95%

Confidence
Interval

p Hazard
Ratio

95%
Confidence

Interval
p

Sex Female vs.
male 0.626 0.387–1.011 0.056 0.611 0.380–0.985 0.043 0.605 0.376–0.974 0.038

Age
<59

59~66 0.929 0.560–1.541 0.774 0.952 0.575–1.577 0.848 1.014 0.612–1.680 0.957
66≤ 1.775 1.118–2.819 0.015 1.807 1.141–2.863 0.012 2.060 1.298–3.269 0.002

MTV <60.2
60.2≤ 1.448 0.975–2.149 0.066

TLG <272.4
272.4≤ 1.459 0.992–2.144 0.055

Pseudotime <0.59
0.59≤ 2.245 1.397–3.609 <0.001

MTV: metabolic tumor volume; TLG: total lesion glycolysis.
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4. Discussion

In the present study we found that pseudotime analysis of primary tumors could
be successfully applied to radiomics data drawn from FDG PET/CT images in NSCLC.
Several texture parameters showed significant correlations with estimated pseudotime.
Pseudotime was a significant prognostic factor on both continuous and discrete scales in
the univariate survival analysis for OS. In addition, it was an independent prognostic factor
in the multivariate analysis for OS, in contrast to MTV and TLG.

Radiomics is a new concept in which image features are extracted from medical images
using mathematical algorithms. Various texture parameters can be calculated by radiomics
algorithms. Previous studies reported that texture parameters have prognostic significance
in lung cancer. Park et al. [7] showed that entropy and homogeneity were significant
prognostic factors for progression-free survival of lung cancer patients. Lovinfosse et al. [16]
reported that dissimilarity was an independent predictor of outcomes in patients with
lung cancer treated with radiotherapy and suggested hypotheses for possible mechanisms
explaining how those texture parameters affect the prognosis of lung cancer. However, there
are still some limitations to applying radiomics concepts in clinical contexts. Whereas the
biological meanings of conventional parameters such as SUVmax or volumetric parameters
such as MTV are straightforward, it is difficult to understand the implications of texture
parameters as mathematical products. In addition, there is no consensus regarding which
texture parameter is most appropriate to utilize and easiest to understand, even among
nuclear medicine physicians. Thus, developing an integrated parameter from various
texture parameters is necessary.

Pseudotime analysis is a recently emerging method to estimate the genetic or biologic
evolution of cells or tissues based on large-scale transcriptomic expression data [8]. This
method is based on the hypothesis that data from multiple cross-sectional specimens can
be integrated into consecutive datasets reflecting temporal evolution [17]. There have
been previous related studies using pseudotime analysis to investigate temporal change
of tumor biology (Table 4). Kim et al. [9] attempted to reveal the evolution of malignant
cells and immune cells using the Monocle method for single-cell RNA-sequencing data.
Pang et al. [18] analyzed the progression of glioblastoma cells using the Monocle method
for single-cell RNA-sequencing data. Beyond single-cell RNA-sequencing data, pseudotime
analysis has been applied to uncover the temporal evolution of tumor characteristics of
colorectal cancer and breast cancer based on tissue-scale RNA-sequencing data using the
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PhenoPath method [14]. We previously reported the evolution of the clinicomolecular and
immunological characteristics of lung adenocarcinoma using pseudotime analysis based
on tissue-scale RNA-sequencing data [10]. Transcriptomics data and radiomics data both
consist of large-scale datasets with various features from multiple cross-sectional speci-
mens or subjects. However, no previous study has implemented pseudotime analysis in
radiomics datasets from FDG PET/CT images. In the present study we applied pseudotime
analysis to radiomics data from multiple cross-sectional FDG PET/CT images to estimate
the sequential order of individuals for the first time.

Table 4. A benchmarking table of previous studies.

Study Subject Cancer Type Subject Data Type Analysis Method

Kim et al. [9] Lung cancer (adenocarcinoma) Single-cell RNA sequencing Monocle
Pang et al. [18] Glioblastoma Single-cell RNA sequencing Monocle

Campbell and Yau [14] Colorectal cancer and breast cancer Tissue-scale RNA sequencing Phenopath
Lee et al. [10] Lung cancer (adenocarcinoma) Tissue-scale RNA sequencing Phenopath

The present study Lung cancer (both adenocarcinoma
and squamous cell carcinoma)

Radiomics data from FDG
PET/CT images Phenopath

There are over 70 methodologies with various characteristics and algorithms to execute
pseudotime analysis [19]. Among them, the Monocle and Slingshot methods are widely
used methods in single-cell RNA transcriptomic data. Many methods, including these,
employ three steps to estimate pseudotime as follows: dimension reduction, clustering,
and trajectory estimation. In contrast, PhenoPath, another pseudotime analysis method,
uses a Bayesian statistic that integrates linear regression to estimate the ordering of high-
dimensional data across individuals [14]. In this study, PhenoPath was selected as an
appropriate analytical tool for the following reasons: First, no previous study has applied
other popular methods such as Monocle or Slingshot to data other than single-cell RNA-
sequencing data. PhenoPath was previously applied for bulk RNA-sequencing data and
has proven to be useful to estimate the temporal order of individuals [10,14]. Second,
linear regression modeling is required for the application of pseudotime in clinical contexts.
Pseudotime is expected to be useful when it provides disease-progression status for patients
based on a predictive model. Linear regression is thought to be the simplest and easiest
method for constructing a predictive model. Third, a pilot study showed that the Slingshot
method cannot estimate pseudotime accurately. Clustering results were too coarse to
construct appropriate trajectories (data not shown). Relatively small numbers of patients,
relatively small dimensions of radiomics data, and heterogeneous patterns of radiomics
data might cause this problem. Therefore, PhenoPath was employed in this study and
pseudotime was successfully acquired.

We found that pseudotime showed good associations with SUVmax, SUVmean, MTV,
and TLG. It is well known that these parameters increase with cancer stage. Therefore,
estimated pseudotime was a significant predictor of disease progression in lung cancer.
The results of the present study suggest the following clinical advantages of pseudotime as
a parameter: First, pseudotime showed good discrimination of high-risk patients for OS
and was an independent prognostic factor for OS, unlike MTV or TLG. This implies that an
integrated single parameter derived from multiple texture parameters may be more useful
to predict survival prognosis than conventional volumetric parameters. In a previous
study, texture parameters showed significant differences between responders and non-
responders, in contrast to conventional parameters [20]. Another study revealed that only
contrast and coefficient of variation of SUVs had prognostic power for long-term survival
in locally advanced lung cancer [21]. According to these studies, we hypothesized that
tumor heterogeneity may have closer associations with treatment response and survival
than conventional parameters in lung cancer patients with CCRT. Therefore, pseudotime
derived from various texture parameters is expected to be useful, especially in locally
advanced lung cancer patients. Second, pseudotime based on FDG PET/CT is expected to
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provide information on disease progression, not only for physicians but also for patients.
Explanations with concrete values for disease progression may be useful to communicate
with patients and help them to understand their diseases more accurately. Therefore, further
study should attempt the prediction of pseudotime in a larger patient pool with machine
learning methods. As this study is a preliminary study to demonstrate the possibility and
usefulness of pseudotime analysis, predictive analysis was not conducted. More clinical
and imaging data are being collected for this further study.

In addition, various image parameters were well correlated with estimated pseudo-
time. Among texture parameters, it is notable that homogeneity showed positive correla-
tions with pseudotime and MTV. In contrast, dissimilarity showed a negative correlation
with pseudotime. There are controversies about associations between the volume and
heterogeneity of tumors in FDG PET/CT images. A previous study suggested a negative
correlation between tumor volume and uniformity in FDG PET/CT images of lung cancer
patients [22]. On the contrary, another study reported that homogeneity and MTV had a
significantly positive correlation [16]. The present study echoes the latter finding. Two
hypotheses can be suggested. First, tumor characteristics change due to survival of the
fittest: tumor cells with the best proliferation and survival become the majority. Second,
differences between voxel values of FDG PET/CT can be underestimated due to high
cellular density of a voxel or the overall high glucose metabolism of tumor tissue.

Pseudotime analysis with radiomics data is a newly developed concept in the present
study. Therefore, it is important to validate this concept in clinical aspects. First, an external
validation is required. A multi-institutional study with more subjects could support the
usefulness of pseudotime analysis for radiomics data. Second, a combined modeling for
prognosis prediction is needed. Although pseudotime of radiomics data showed good
prognostic discrimination in this study, it is not the only factor to determine prognosis.
As clinical and pathological factors have been well known to reflect tumor biology, a
prognostic model including clinicopathological factors as well as pseudotime from imaging
data is expected to have excellent clinical significance. To conduct pseudotime analysis, a
general computing system and basic statistical software, such as R, are needed. If there is
a large scale of subjects or high-dimension dataset, an advanced computing system may
be required.

This method can be also applied to radiomics data of other image modalities such as
magnetic resonance imaging (MRI). For example, an apparent diffusion coefficient (ADC) is
a value reflecting cell density based on the motion of water molecules [23]. Radiomics data
based on ADC are known to have a correlation with the prognosis of cervical cancer and
histological types of head and neck cancer [24,25]. Considering this previous knowledge,
pseudotime analysis from an ADC map of an MRI can provide additional information in
other cancer subtypes such as cervical cancer, or head and neck cancer.

This study has several limitations. First, only subjects undergoing neoadjuvant CCRT
as an initial treatment were included in this study. As high-stage tumors usually demon-
strate high FDG uptake, images of high-stage patients were expected to be useful in this
preliminary study due to easy tumor recognition and delineation. Therefore, subjects with
neoadjuvant CCRT were recruited for this project. As described earlier, a larger cohort is
being collected for further study that will include patients with other treatment options
such as surgery only or palliative chemotherapy. Second, it was difficult to evaluate the
prognostic power of pseudotime for predicting the complete remission after neoadjuvant
CCRT as there were only 29 patients (9.6% of total subjects) with complete remission, and
this number was too small to reach statistical significance in this analysis. Finally, PET/CT
images were acquired by multiple instruments. As the technical parameters of each instru-
ment are different, harmonization was performed to reduce batch effects. Therefore, the
analysis of integrated data is reasonable.

In conclusion, pseudotime analysis was successfully applied to texture parameters
from primary tumors on FDG PET/CT images of NSCLC patients for the first time. Pseudo-
time showed a good stratification power for prognosis and was an independent prognostic
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factor for OS in NSCLC cancer patients with tri-modality therapy, performing better than
conventional PET parameters. We demonstrated the possibility of integrating various tex-
ture parameters into a single parameter that reflects disease progression status. Pseudotime,
as a concrete measure of disease progression, is expected to be used in clinical contexts to
evaluate disease and prognosis.
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