
Introduction

he idea that the nervous system is a network of
interconnected neurons has a long and illustrious history
in neuroscience. Anatomical studies of the brain’s
cytoarchitecture, cellular circuits, and long-range fiber
systems have yielded an extraordinary amount of
detailed information about the brain’s structural organi-
zation. The ongoing quest to map the intricate networks
of the human brain with ever-increasing accuracy and
resolution has recently expanded in new directions.
Technological developments in noninvasive neuroimag-
ing have opened up new avenues towards studying the
structure and function of the human brain.1,2 These
advances are increasingly combined with powerful net-
work modeling tools developed in the course of a
broader research effort to understand the structure and
dynamics of complex systems.3,4 This recent confluence
of neuroscience and network science opens up a number
of new opportunities for approaching brain function
from a complex systems perspective.5-8 This review is
intended as a primer on current research efforts to map
and model the networks of the human brain, with the
long-term aim of understanding how the functioning of
the brain depends on its network architecture.
Modern noninvasive imaging techniques applied to the
human brain allow the mapping of anatomical regions
and their interconnecting pathways at near-millimeter res-
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An increasing number of theoretical and empirical studies
approach the function of the human brain from a net-
work perspective. The analysis of brain networks is made
feasible by the development of new imaging acquisition
methods as well as new tools from graph theory and
dynamical systems. This review surveys some of these
methodological advances and summarizes recent findings
on the architecture of structural and functional brain net-
works. Studies of the structural connectome reveal several
modules or network communities that are interlinked by
hub regions mediating communication processes between
modules. Recent network analyses have shown that net-
work hubs form a densely linked collective called a “rich
club,” centrally positioned for attracting and dispersing
signal traffic. In parallel, recordings of resting and task-
evoked neural activity have revealed distinct resting-state
networks that contribute to functions in distinct cognitive
domains. Network methods are increasingly applied in a
clinical context, and their promise for elucidating neural
substrates of brain and mental disorders is discussed.      
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olution. The resulting large-scale networks provide a com-
prehensive description of the brain’s structural connectiv-
ity, also called the human connectome.9,10 The connectome
essentially comprises a complete map of the brain’s struc-
tural connections. These structural connections shape
large-scale neuronal dynamics which can be captured as
patterns of functional and effective connectivity.11,12

Functional connectivity describes statistical patterns of
dynamic interactions among regions, also called “func-
tional networks,” while effective connectivity attempts to
discern networks of causal influences. Functional net-
works can be measured with a variety of neuroimaging or
electrophysiological recording methods, and they unfold
within the structural networks of the connectome while
the brain is endogenously active (or “at rest”) as well as
in the course of stimulus- or task-evoked perturbations.
Creating maps of structural or functional connections
brings the challenge of extracting relevant or significant
aspects of network organization, and this challenge can
be met by applying modern network modeling and
analysis tools. How these modern network approaches
have enriched our understanding of brain function is the
main topic of this article. The first section will provide an
overview of major quantitative methods for analyzing
brain network data. The following section will focus on
current efforts directed at mapping networks of the
human brain, with a focus on structural networks deliv-
ered by diffusion imaging and tractography. The article
then turns to the important problem of linking structural
networks to ongoing and evoked brain dynamics. Finally,
the article examines the state of the art in using network
approaches directed at uncovering the role of connectiv-
ity in brain and mental disorders. The article concludes
with a brief reflection on the future promise of network
approaches for understanding the function of the
healthy and diseased brain.

Tools and methods of network science

Brain networks can be derived from anatomical or phys-
iological observations, resulting in structural and func-
tional networks, respectively. When interpreting brain
network data sets, it is important to respect this funda-
mental distinction.7,13

Structural connectivity describes anatomical connections
linking a set of neural elements. At the scale of the
human brain, these connections generally refer to white
matter projections linking cortical and subcortical

regions. Structural connectivity of this kind is thought to
be relatively stable on shorter time scales (seconds to
minutes) but may be subject to plastic experience-
dependent changes at longer time scales (hours to days).
In human neuroimaging studies, structural brain connec-
tivity is commonly measured as a set of undirected links,
since the directionality of projections currently cannot
be discerned. 
Functional connectivity is generally derived from time
series observations, and describes patterns of statistical
dependence among neural elements.12 Time series data
may be derived with a variety of techniques, including
electroencephalography (EEG), magnetoencephalogra-
phy (MEG), and functional magnetic resonance imaging
(fMRI), and can be computed in a number of ways,
including as cross-correlation, mutual information, or
spectral coherence. While the presence of a statistical
relationship between two neural elements is often taken
as a sign of functional coupling, it must be noted that the
presence of such coupling does not imply a causal rela-
tionship.14 Functional connectivity is highly time-depen-
dent, often changing in a matter of tens or hundreds of
milliseconds as functional connections are continually
modulated by sensory stimuli and task context. Even
when measured with techniques that operate with a slow
sampling rate such as fMRI, functional connectivity may
exhibit non-stationary fluctuations (see below).
Effective connectivity represents a third and increasingly
important mode of representing and analyzing brain net-
works.11,15 Effective connectivity attempts to capture a
network of directed causal effects between neural ele-
ments. As such it represents a generative and mechanis-
tic model that accounts for the observed data, selected
from a range of possible models using objective criteria
like the model evidence. Recent developments in this
area include approaches towards “network discovery”16,17

involving the identification of graph models for effective
connectivity that best explain empirical data. While
effective connectivity bears much promise for the future,
most current studies of brain networks are still carried
out on either structural or functional connectivity data
sets, and hence these two modes of connectivity will
form the main focus of this review.
Within the formal framework of graph theory, a graph
or network comprises a set of nodes (neural elements)
and edges (their mutual connections). Structural and/or
functional brain connectivity data recorded from the
human brain can be processed into network form by fol-
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lowing several steps, starting with the definition of the
network’s nodes and edges (Figure 1). This first step is
fundamental for deriving compact and meaningful
descriptions of brain networks.18,19 Nodes are generally
derived by parcellating cortical and subcortical gray mat-
ter regions according to anatomical borders or land-
marks, or by defining a random parcellation into evenly
spaced and sized voxel clusters. Once nodes are defined,
their structural or functional couplings can be estimated,
and the full set of all pairwise couplings can then be
aggregated into a connection matrix. To remove incon-
sistent or weak interactions, connection matrices can be
subjected to averaging across imaging runs or individu-
als, or to thresholding. 
The resulting networks can be examined with the tools and
methods of network science. One approach is based on

graph theory and offers a particularly large set of tools for
detecting, analyzing, and visualizing network architecture.
A number of surveys on the application of graph theory
methods in neuroscience are available.13,20-25 An important
part of any graph-theoretical analysis is the comparison of
measures obtained from empirical networks to appropri-
ately configured populations of networks representing a
“null hypothesis.” A commonly used random null model
is generated by randomizing the global topology of a net-
work while preserving local node statistics, most impor-
tantly the graph’s degree sequence.
Figure 2 illustrates a selection of graph measures that are
widely used in studies of human brain networks. Based
on the insights they deliver, they can be classified into
measures reporting on aspects of segregation, integra-
tion, and influence.13 Segregation (or specialization)
refers to the degree to which a network’s elements form
separate cliques or clusters. Integration refers to the
capacity of the network as a whole to become intercon-
nected and exchange information. Influence measures
report on how individual nodes or edges are embedded
in the network and the extent to which they contribute
to the network’s structural integrity and information
flow.
An important measure of segregation is the clustering
coefficient of a given node, essentially measuring the
density of connections among a node’s topological
neighbors. If these neighbors are densely interconnected
they can be said to form a cluster or clique, and they are
likely to share specialized information. The average of
clustering coefficients over all nodes is the clustering
coefficient of the network, often used as a global metric
of the network’s level of segregation. Another aspect of
connectivity within local (ie, topologically connected)
sets of network nodes is provided by the analysis of net-
work motifs, constituting subgraphs or “building blocks”
of the network as a whole.26 Every network can be
uniquely decomposed into a set of motifs of a given size,
and the distribution of different motifs can reveal which
subgraphs occur more frequently than expected, relative
to an appropriate null model.
Measures of integration are generally based on the con-
cept of communication paths and their path lengths. A
path is any unique sequence of edges that connects two
nodes with one another, and its length is given by the
number of steps (in a binary graph) or the sum of the
edge lengths (in a weighted graph). The length of the
shortest path between each pair of nodes corresponds to
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Figure 1. Extraction of brain networks from brain measurements and
recordings. The basic workflow follows four main steps. (1)
Definition of network nodes, either by parcellation of the brain
volume into structurally or functionally coherent regions (left),
or on the basis of placement of sensors and/or recording sites
(right); (2) Definition of network edges, either by estimating
structural connections from structural or diffusion imaging
data (left), or by processing time series data into “functional
edges” that express statistical dependencies (right); (3)
Network construction, by aggregating nodes and edges into
a connection matrix representing a structural (left) or func-
tional network (right). The example plots are from previously
published data56,95; (4) Network analysis. 

                Reproduced from ref 162: Sporns O. The human connectome: a com-
plex network. Ann N Y Acad Sci. 2011;1224:109-125. Copyright ©
The Academy of Sciences 2011
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their distance (also often referred to as the “shortest
path length”), and the global average of all distances
across the entire network is called the network’s charac-
teristic path length. Closely related to this measure is the
global network efficiency, which is computed as the aver-
age of the inverse of all distances.27 One can see easily
that the global efficiency of a fully connected network
would be maximal (equal to one) while the global effi-
ciency of a completely disconnected network would be
minimal (equal to zero). Short path lengths promote

functional integration since they allow communication
with few intermediate steps, and thus minimize effects
of noise or signal degradation.
Measures of influence attempt to quantify the “impor-
tance” of a given node or edge for the structural integrity
or functional performance of a network. The simplest
index of influence is the node degree, and in many (but
not all) cases the degree of a node will be highly corre-
lated with other more complex influence measures. Many
of these measures capture the “centrality” of network ele-

Figure 2. Basic network metrics. For illustrative purposes, network measures are demonstrated in a rendering of a simple undirected graph with 12
nodes and 23 edges. (A) The node degree is simply the number of edges attached to a given node. (B) The clustering coefficient expresses
the extent to which a node’s topological neighbors are connected among themselves. Consider the “high clustering” which has a total
of six neighbors. These neighbors maintain 8 out of 15 possible edges, which results in a clustering coefficient of 0.53. Another node is
labeled “low clustering” since its 5 neighbors have only one mutual connection. (C) Networks can be uniquely decomposed into subgraphs
of motifs. The plot shows two examples of two different classes of undirected three-node motifs. (D) The length of the shortest path cor-
responds to the (topological, not metric) distance between two nodes. Here, the two nodes A and B connect to each other in three steps,
with a shortest path that travels through two intermediate nodes (here shown in gray). (E) The example network shown here can be decom-
posed into two main clusters or modules that are interconnected by a single hub node. The figure has been modified from ref 163.
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ments, for example expressed as the number of short
communication paths that travel through each node or
edge.28 This measure of “betweenness centrality” is
related to communication processes, but is also often
found to be highly correlated with the related measure
of “closeness,” quantifying the proximity of each node to
the rest of the network. Another class of influence mea-
sures is based on the effect of node or edge deletion on
short communication paths or network dynamics. For
example, vulnerability measures the decrease (or, in
some cases, the increase) in global efficiency due to the
deletion of a single node or edge.29 The most central or
influential nodes in a network are often referred to as
“hubs,” but it should be noted that there is no unique
way of detecting these hubs with graph theory tools.
Instead, a conjunction of multiple influence measures
(eg, degree, betweenness, vulnerability) should be used
when attempting to identify hub nodes.30

While measures of segregation, integration, and influ-
ence can express structural characteristics of a network
from different perspectives, recent developments in
characterizing network communities or modules can
potentially unify these different perspectives into a more
coherent account of how a given network can be decom-
posed into modules (segregation), how these modules
are interconnected (integration), and which nodes or
edges are important for linking modules together (influ-
ence). Community detection is an extremely active field
in network science.31 A number of new community
detection techniques have found applications in the
analysis of structural and functional brain networks. One
of the most commonly used community detection algo-
rithms is based on Newman’s Q-metric32 coupled with an
efficient optimization approach.33 Another approach
called Infomap34 identifies communities on the basis of
a model of a diffusive random walk, essentially utilizing
the fact that a modular network restricts diffusion
between communities. In contrast, the Q-metric essen-
tially captures the difference between the actually
encountered within-module density of connections com-
pared with what is expected based on a corresponding
random model, given a particular partitioning of the net-
work into modules. Since combinatorics makes it
impractical to examine all possible module partitions, an
optimization algorithm is needed to identify the single
partition for which the Q-metric is maximized. 
Several methodological issues have arisen in recent
years that impact the way community detection is car-

ried out in brain networks, particularly in networks
describing functional connectivity (Figure 3). The first
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Figure 3. Methodological issues in the analysis of functional connectivity.
Panels (B) and (C) illustrate the effect of thresholding and bina-
rizing. Panels (D) to (G) illustrate the issue of degenerate solu-
tions in modularity. (A) A whole-brain functional connectivity
matrix generated by averaging over approximately 1000 par-
ticipants imaged in 18 imaging centers worldwide, as part of
the “1000 Functional Connectomes” dataset (F1000). Nodes
are arranged according to the Harvard-Oxford Atlas (compris-
ing 112 cortical and subcortical regions). Data are averaged
and processed as described in ref 39. (B) The same matrix as
shown in (A) after applying a threshold that retains only the
top 10 % of all connections. The remaining connections have
been binarized (set to unity strength; black squares). (C)
Optimal partitioning and rearrangement of nodes according
to modules. A total of five modules are found, with the major-
ity of binary connections arranged within these modules. (D)
The same matrix as shown in (A), after optimizing modularity
but without thresholding.39 Four modules are identified, with
a maximal Q = 0.4958. (E) The same matrix as in (D) but with
modules indicated in a block structure. (F) Mutliple applications
of the modularity optimization algorithm (here 1000) yielded
a number of unique solutions (here 47) that are displayed in
the form of the consensus matrix.41 Different gray levels refer
to the number of times each node pair was placed into the
same module. While the first module appears intact across
nearly all solutions, the last two modules display a complex
consensus structure, suggesting that they are closely linked.
(G) Three out of the 47 unique individual solutions found, with
value of Q = 0.4844, Q = 0.4820, and Q = 0.4778 (left to
right). Note that the last two modules have joined in the third
example, and that module 1 remains intact across all three
solutions. 
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issue concerns the widespread practice of thresholding
functional networks to retain only a small percentage
(often less than 10%) of the strongest functional connec-
tions. In addition, the remaining connections are then set
to unit strength, resulting in a greatly sparsified binary
network which is then subjected to standard graph
analysis. Since the appropriate value of the threshold is
a free and completely undetermined parameter, most
practitioners vary the threshold across a broad range
and then compute and compare graph metrics for the
resulting networks. The practice of thresholding func-
tional networks has two immediate consequences, a
much sparser topology which then tends to result in
more and more separate clusters or modules, and a
topology that discards all (even strong) negative corre-
lations. While the status of negative correlations in rest-
ing fMRI remains controversial,35-38 it could be argued
that the presence of an anticorrelation between two
nodes does contribute information about their commu-
nity membership. Building on this idea, variants of the
Q-metric and other related measures that take into
account the full weight distribution of a network have
been proposed.39 These new metrics can also be applied
to functional networks regardless of their density
(including fully connected networks), thus eliminating
the need for thresholding entirely.
The second issue relates to the optimization of the mod-
ule partition given a cost or quality metric like
Newman’s Q. Studies of various real-world networks
have shown that identifying the single optimal partition
can not only be computationally difficult, but that many
real networks can be partitioned at near-optimal levels
in a number of different or “degenerate” ways.40

Aggregating these degenerate solutions can provide
additional information about the robustness with which
a given node pair is affiliated with the same or a differ-
ent module. This idea has been developed further into a
quantitative approach called “consensus clustering.”41

Consensus clustering has not yet been widely applied to
brain networks,39,42 but it may soon become a useful tool
since it provides information about the strength with
which individual neural elements affiliate with their
“home community.” An attractive hypothesis is that ele-
ments with generally weak affiliation are good candi-
dates to assume functional roles as hub nodes that cross-
link diverse communities.
The next three sections of the article will review our cur-
rent knowledge about the network architecture of struc-

tural brain networks, how structural networks relate to
functional networks in both rest and task conditions, and
what we can learn by applying network approaches to
clinical problems.

Mapping the network structure 
of the human brain

Due to the invasive nature of most classical anatomical
methods like tract tracing, these methods cannot be
applied to large samples of individual brains and they
cannot be deployed in vivo, hence rendering tract tracing
studies in human populations and relating structural net-
work features to brain dynamics or behavior virtually
impossible. Tract tracing has an important role to play
for the study of anatomical connections in animal mod-
els, particularly in non-human primates,43 and it is of vital
importance for validating anatomical data derived from
noninvasive imaging technology.44 To the extent that
such validation has been carried out, indications are that
most projections identified by noninvasive imaging have
counterparts in white matter fascicles described by clas-
sical anatomy.
Most studies on human brain connectomics have been
carried out by charting structural connections on the
basis of data coming from diffusion MRI and tractogra-
phy (Figure 4).45-48 Diffusion MRI and tractography infer
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Figure 4. From imaging structural brain connectivity to network metrics.
The three plots show three different ways to represent struc-
tural connections in anatomical space. (A) A set of tractogra-
phy streamlines. Red, green and blue indicate fibers running
along the medial-lateral, anterior-posterior, and dorsal-ventral
direction, respectively. (B) A network diagram of nodes (red)
and edges (blue), with edge width indicating the edge
strength, calculated as the streamline density linking each
node pair. For clarity, only the strongest edges are shown. (C)
A plot representing a nodal network measure, in this case the
node betweenness centrality. Highly central nodes are found
in medial parietal as well as cingulate and frontal cortex. Data
replotted from ref 56.
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the spatial orientations and trajectories of bundles of
myelinated axons traversing the brain’s white matter, on
the basis of measurements of the diffusion anisotropy of
water or other small molecules within biological tissue.
Importantly, diffusion imaging and tractography deliver
inferential and statistical models of fiber anatomy but
cannot directly trace or visualize anatomical connec-
tions. Methods for signal acquisition and fiber recon-
struction are under continual development, with impor-
tant recent advances in imaging complex (eg,
intersecting) fiber architecture,49,50 and new algorithms
for improved accuracy in inferring fiber pathways,
including estimates of their uncertainty and evidence.51,52

Another area of important methodological development
concerns the biological interpretation of connection
weights resulting from aggregating fiber counts or prob-
abilities into a connection matrix.53,54 New approaches for
obtaining additional measures of white matter
microstructure, eg, axonal diameters and packing densi-
ties,55 will likely help to refine estimates of the weight,
strength, and conduction velocity of individual long-dis-
tance projections. 
The node degree (the number of connections attached
at each node) is one of the most easily accessible graph
measures and it is also highly informative, as is the dis-
tribution of node degrees across the whole network.
Most, if not all, complex networks found in natural, espe-
cially biological, systems have been shown to have a
broad degree distribution, with a small but important
admixture of nodes that maintain considerably higher
numbers of connections than most other nodes. In the
human brain, node degrees appear to be distributed
broadly, with some studies reporting exponential or
exponentially truncated power-law distributions for
node degree.56-59 Such broad (non-Gaussian, log-normal)
degree distributions are also seen in tract tracing studies
in cortex of nonhuman primates.43

Virtually all studies of human brain networks have
found evidence of small-world attributes,60 generally
measured as high clustering and a short path length, or
alternatively as high local and global efficiency. The pres-
ence of small-world organization is indicative of a bal-
ance between anatomical and functional segregation on
the one side (indexed by clustering and local efficiency)
and the capacity for global integration on the other side
(indexed by the prevalence of short communication
paths and global efficiency). The brain appears to be one
among many examples of small-world networks encoun-

tered in many different contexts, from social to techno-
logical to biological systems.61 However, it should be
noted that small-world attributes are not uniquely diag-
nostic of particular network architectures and can
appear in a variety of connectivity models, including ran-
domly rewired lattices, modular and even scale-free net-
works. 
Closer analysis of brain networks has shown that high
clustering is often due to the presence of modules, or
network communities of densely interconnected neural
elements. Such modules are collectives of elements that
share common input and output projections, exhibit sim-
ilar physiological responses and form coherent func-
tional systems.62 More recent studies have suggested that
modularity of structural and functional brain networks
extends across multiple scales, resulting in a hierarchy of
nested “modules-within-modules,” 63,64 a mode of organi-
zation encountered in other networks specialized for
information-processing. In functional terms, modules
allow for rapid and efficient sharing of information
among brain regions that tend to contribute to a com-
mon set of tasks or responses, while promoting their
functional specialization by creating boundaries that
restrict the spread of information across the entire net-
work. To ensure functional integration across modules
requires specialized hub regions, generally identified by
their high degree, high centrality, and diverse connection
profiles that straddle the boundaries between modules.30

Several studies of human structural brain networks have
attempted to identify hubs, and most studies have con-
verged on a set of regions including portions of the
medial and superior parietal cortex as well as selected
regions in orbitofrontal, superior frontal, and lateral pre-
frontal cortex.56,58 Many of these regions have been pre-
viously described as multi- or transmodal association
areas65 and exhibit complex physiological responses,
diverse activation patterns across tasks, and widespread
functional connectivity.66 These physiological character-
izations are consonant with their high centrality and
structural embedding as connector hubs interlinking
multiple modules.
Hubs perform important integrative roles in structural
networks, but until fairly recently it has been unclear
how they connect and interact with each other. Several
early studies carried out in humans and other species
had suggested a tendency for hubs to be densely inter-
connected in a “hub complex,” 30 or a structural core
(Figure 5).56 Network studies in other disciplines have



pointed to the existence of a “rich club,” a set of hub
regions that are more densely interconnected than pre-
dicted by chance alone.67 Rich clubs may be significant
features of network architecture as they provide a struc-
tural substrate for integrating and disseminating infor-
mation across the entire network. The first report on rich
club organization came from a study of cat cerebral cor-
tex, where a rich club of hub regions was found to form
a densely interconnected core circuit cross-linking all
major functional subsystems.68 A detailed analysis of the
topology of human brain structural connectivity
acquired with diffusion imaging and tractography
revealed a rich club of highly interconnected hub regions
including portions of the superior frontal cortex, supe-
rior parietal cortex, and the precuneus, in addition to
several subcortical regions including the thalamus, hip-
pocampus, and part of the basal ganglia.69 Graph analysis
showed that 89% of all short communication paths
among non-rich club regions across the network pass
through the rich club, and that damage to pathways link-
ing rich club regions to each other had a larger disrup-
tive effect on network communication than equal
amount of damage to connections among non-rich club
regions. 
Rich club organization has been confirmed and
extended in subsequent studies focusing on the role of
the rich club in brain communication,70 its disruption in
a mental disorder,71 and its presence in the cerebral cor-
tex of a non-human primate, the macaque monkey.72 The

latter study not only demonstrated rich club organiza-
tion in a directed network of inter-regional projections
derived from classical tract tracing studies, but also
showed again that the rich club is interspersed between
structural and functional communities. The macaque rich
club contains several regions of association cortex that
are homologues to rich club regions found in the human
brain. The emerging picture of the organization of the
human connectome is one of a modular small world net-
work, with network communities that are interlinked by
a coherent sub-network or core of hub regions whose
position within the overall network is strongly suggestive
of a central role in global information flow and integra-
tion. The implications of such a structural core or rich
club for cognition and behavior have only begun to be
explored.73

An emerging trend in network analyses of human struc-
tural networks is to interpret network attributes not only
in reference to network topology (which only considers
the link structure of the network) but also in reference
to the network’s spatial embedding (which additionally
considers the spatial positions of nodes and the lengths
and trajectories of edges). This trend is fueled by the
realization that many aspects of network topology are
driven by the brain’s spatial embedding which places
tight constraints on the cost of building and maintaining
networks, including wiring length and volume, metabolic
energy used for signaling, and developmental mecha-
nisms.74 For example, a propensity of the network to
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Figure 5. Modules, cores, and rich clubs. (A) A schematic network composed of four modules that are linked by hub nodes (black). These hub nodes
are clearly important for connecting modules to each other, but they are only weakly interconnected amongst each other. (B) With the
addition of further inter-module connections hub nodes now form a densely interconnected rich club, consisting of 5 nodes with a degree
of 4 or higher. (C) The same network as shown in (B), but now shown after core decomposition, (ie, the iterative removal of low degree
nodes, shown here in gray). This procedure results in a core network comprising 4 nodes with a minimal degree of 3.
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exhibit high clustering may be due to greater network
economy that is conferred by mostly short projections.
Indeed, modules of structural brain networks are often
spatially compact with member regions located in close
physical proximity and linked by relatively short projec-
tions. But conservation of resources alone is insufficient
to explain all aspects of brain network architecture.
Long-distance projections have not only been evolution-
arily conserved, they have been expanded in cases where
their expansion has promoted increased network perfor-
mance.75 These findings suggest that the benefits brought
by conserved network cost are balanced in a closely
negotiated trade-off with the demands of network effi-
ciency. Interesting questions for the future concern how
this trade-off is instantiated in the healthy human brain
and how its disturbance might contribute to brain and
mental disorders (see below).

Dynamic brain networks

Ever since Hans Berger’s first electrophysiological
recordings, it has been recognized that the brain is never
silent, but always engaged in apparently spontaneous
and endogenously driven neural activity. While the
investigation of endogenous neural dynamics has a long
and illustrious history in the study of human EEG and
MEG recordings, ongoing fluctuations in the brain’s
blood-oxygenation-level-dependent (BOLD) signal
acquired with fMRI were long regarded as “background
noise,” to be filtered and averaged away as an undesir-
able source of variability that obscured stimulus- and
task-evoked neural responses. The discovery of struc-
tured correlations in spontaneous BOLD signals,76

together with the realization that many attention-
demanding tasks were accompanied not only by regional
activations but also by a consistent pattern of regional
de-activations,77 paved the way for a reconsideration of
spontaneous brain activity as anatomically structured
and physiologically meaningful. This reconsideration has
ushered in a fundamental paradigm shift in human neu-
roimaging, away from thinking of the brain as a “reflex-
ive organ,” whose responses are driven primarily by the
momentary demands of the environment, and towards a
new view that regards the brain’s intrinsic dynamics as a
dominant feature of its functional activity.78,79

Task-dependent deactivations in regions including the
posterior cingulate/precuneus and medial prefrontal cor-
tex led to the notion that increased activity among these

regions during rest constituted the brain’s “default
mode,” 80 soon followed by the observation that resting
BOLD fluctuations in these regions exhibited coherent
inter-regional patterns of functional connectivity consti-
tuting a “default mode network.” 81 Other coherent rest-
ing-state networks were found to be associated with
attention and cognitive control,82-84 and some of these
networks were found to engage in anticorrelations.36,85 In
parallel with studies that primarily examined specific
networks revealed by seed-based patterns of whole-
brain functional connectivity, an increasing number of
studies attempted to decompose whole-brain resting-
state fMRI recordings into independent components or
communities,86-88 drawing on a variety of clustering,
dimension reduction and network analysis techniques.
Recent comprehensive surveys have shown that resting-
brain dynamics can be broken down into a relatively
small set of “resting-state networks” (RSNs).89-91 Some of
these networks are primarily composed of regions that,
on the basis of their task-evoked responses, can be
regarded as either sensory or motor, while others such
as the default mode network, the dorsal/ventral atten-
tion network and the frontoparietal network comprise
sets of regions that exhibit a wide range of responses to
more complex multimodal stimuli and tasks.
Despite the cognitively unconstrained nature of the
“resting state” (an issue that once gave rise to con-
tentious discussion about its relevance for studying brain
function92), resting brain fluctuations and resting-state
networks form largely consistent topographical patterns
across individual subjects93 as well as scanning sessions94,95

and imaging centers.96 While the global arrangement of
these patterns remains largely unchanged during global
state transitions such as waking and sleeping97 or other
states of consciousness,98 some functional connections
exhibit experience-dependent modifications for example
in response to specific sensorimotor training.99,100 RSNs
are not unique to humans, and have also been described
in macaque monkey101 as well as in the rodent brain.102

The reproducibility of RSN topography strongly suggests
an anatomical basis in the brain’s structural connection
patterns, the connectome.103 This idea was explored in neu-
rocomputational models that pointed to a relationship
between an anatomical coupling matrix of inter-regional
projections and emergent patterns of functional connec-
tivity resulting from spontaneous neural dynamics unfold-
ing within this coupling matrix.104 Empirical studies in non-
human primates showed significant overlap between



anatomical projections mapped by tract tracing studies
and resting-state functional connections.101,105,106 Studies
carried out in humans combining diffusion imaging /trac-
tography and resting-state fMRI recordings obtained
within the same cohort of participants also documented a
robust statistical relationship between structural and func-
tional connectivity (Figure 6).56,95,107 Other studies exam-
ined anatomical connections in relation to functional
RSNs demonstrating that functionally coherent networks
were linked by anatomical projections.108,109 More detailed
network analyses of structural and functional connectivity
revealed that while functional connectivity reflected the
underlying structural networks, the relation between
structural and functional connections was non-trivial and
complex. For example, many strong functional connec-
tions were observed among pairs of regions that were not
linked by a direct structural projection. Network models
strongly suggest that all functional connections reflect a
combination of numerous dynamic influences traveling
through the network along many paths, most of them indi-
rect paths that take multiple intermediate steps. 

An anatomical basis for the organization of dynamic
brain fluctuations into RSNs is compatible with the
related idea that RSNs represent the result of strength-
ening and weakening of connections due to a history of
co-activation and common recruitment during task-
evoked activity.19,110 This proposal suggests that patterns
of functional connectivity expressed during rest recapit-
ulate coactivation patterns expressed across many tasks,
with the strengths among regions modified through a
mechanism akin to Hebbian plasticity. This mechanism
of plasticity further sculpts and shapes the efficiency of
the underlying anatomical substrate, essentially tailoring
RSN configurations to reflect individual history and
experience. Indeed, task-evoked patterns of coactivation
are robustly related to functional connectivity observed
in the resting brain,111,112 lending support to the notion
that the resting brain cycles through or rehearses pat-
terns of coactivation that are at other times purposefully
deployed in response to varying stimulus and task con-
texts. This idea of rehearsal or recapitulation implies that
spontaneous brain activity displays fine-grained tempo-
ral structure on time scales that are considerably shorter
than the several minutes typically required for sampling
stable and consistent patterns of resting-state functional
connectivity.
The idea that the “resting state” is less a state, but rather
a dynamic spatiotemporal pattern, was first encountered
and explored in computational models of resting brain
activity.104 The inherently irregular and chaotic dynamics
generated at each cortical region gave rise to fluctua-
tions in their inter-regional coupling that spanned sev-
eral time scales, including slow variations in coupling
strength over the course of seconds to minutes. These
slow changes occurred even in the absence of any
endogenous or exogenous drive. These findings have
been confirmed and extended in a series of computa-
tional studies revealing the critical role of noise and
dynamic instability in inducing spontaneous fluctuations
of resting brain activity.113-116 An emerging theoretical
idea is that of a “functional repertoire” of network states
that is continually revisited and rehearsed in the course
of noise-driven endogenous neural activity.117,118

In line with these computational observations, recent
empirical studies carried out in human, macaque, and rat
brain119-125 have shown that functional couplings among
remote brain regions can indeed exhibit non-stationari-
ties in coupling strength, manifesting as slow variations
in functional connectivity and hence in the topology of
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Figure 6. Relation of structural to functional connections. All data
shown here are represent the right hemisphere of cerebral cor-
tex (averaged over 5 participants), replotted from refs 56,95.
(A) Structural connectivity (SC) matrix, with edge weights
resampled to a Gaussian distribution. (B) Empirical resting-state
functional connectivity (FCemp), expressed as Pearson corre-
lations of fMRI time series (average of two runs per participant,
35 minutes total length). (C) Simulated functional connectivity
(FCsim) obtained using a neural mass model (average of 8 runs
of 8 minutes simulated time).95,164 (D) Correlation between SC
and FCemp (R = 0.57). (E) Correlation between SC and FCsim
(R = 0.51). (F) Correlation between FCemp and FCsim (R =
0.46). Correlation plots show regression lines in red, and are
computed over structurally connected node pairs in panels (D)
and (E), and all node pairs in panel (F).
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functional networks across time. The relation of these
slow network dynamics to cognitive processes, their rela-
tion to much faster non-stationarities in synchronization
patterns measured with EEG126,127 and MEG,128 and their
potential significance for clinical studies remain to be
explored.
Over the past few years, network studies of the brain’s
structural connections as well as resting or task-evoked
functional connectivity have delivered a wealth of
insights into brain organization and integrative function.
Increasingly, network measures are deployed to charac-
terize patterns of development129-133 and individual differ-
ences within cohorts of healthy participants.134 The map-
ping of individual network differences is a principal goal
of the Human Connectome Project135,136 which aims at
drawing relations between network structure and dynam-
ics on the one side, and patterns of heritability, behavior,
and genomic variations on the other. These studies will
allow, for the first time, to construct an overview of the
range of variability in network organization across the
human population. An important additional step, which
is already pursued in a growing number of recent and
ongoing studies of brain networks, involves identifying
network correlates of brain and mental disorders.

Clinical applications

So far, this review has focused on how network approaches
can become useful tools for understanding and character-
izing the structure and function of the intact, healthy brain.
However, a major promise of human connectomics is that
it will lead to a deeper understanding of the biological sub-
strates underlying brain and mental disorders,137-140 includ-
ing their genetic bases.141 The primary aim of human 
connectomics is to map patterns of structural brain con-
nectivity and uncover their relationship to emerging pat-
terns of brain dynamics. Disturbed interactions among
brain regions have been shown to be associated with vir-
tually all brain and mental disorders, as well as with brain
injury and recovery. A comprehensive treatment of distur-
bances of network organization in the diseased and dam-
aged brain is beyond the scope of the present review. An
instructive example of how studies of connectivity have
begun to illuminate disease processes is provided by recent
studies of schizophrenia. 
Schizophrenia is a severe and partly heritable psychiatric
disorder characterized by a number of symptoms gener-
ally leading to a loss of integration across several

domains of cognition and mental function, and impact-
ing social interactions, emotional and thought processes.
Ever since Eugen Bleuler coined the term “schizophre-
nia” noting that the disorder seems to interrupt “the
thousands of associative threads which guide our think-
ing,” 142 the condition has been thought to involve the dis-
turbance or “disconnection” of connectivity in the
brain.143 Rather than involving a net loss of connections,
the disorder is now more commonly thought to be asso-
ciated with “dysconnectivity,” an abnormal pattern of
connections among distinct brain regions that may
involve both the strengthening and weakening of path-
ways and result in altered functional integration.144 In
recent years, numerous studies deploying the full range
of electrophysiological and imaging techniques have
documented system-wide as well as topographically spe-
cific disruptions of structural and functional brain con-
nections.145,146 Among the structural pathways that are
consistently found to be disturbed are connections link-
ing portions of the frontal and temporal lobes.147,148

Studies of effective connectivity in controls and patients
with schizophrenia conducted in the course of a working
memory task have additionally revealed a selective
impairment of effective connections between parietal
and prefrontal regions.149

Going beyond studies of single regions or pathways, a
number of whole-brain connectivity analyses have
demonstrated that schizophrenia is associated with the
disruption of extended brain networks. Resting-state
fMRI analyses in patients with schizophrenia have
shown that functional connectivity within the default
mode network is selectively disturbed in patients with
schizophrenia.150,151 Other studies have shown regionally-
specific and yet widespread patterns of functional
dysconnectivity, eg, involving both stronger and weaker
couplings of the dorsolateral prefrontal cortex with
other regions across the brain,150 as well as selectively
impaired functional connectivity between components
of RSNs involved in cognitive control.153 Diffusion MRI
and tractography have shown that connectivity deficits
involving frontal and temporal brain regions result in
reduced centrality of prominent brain hubs and a less
centrally integrated network architecture.154 A different
study also found reduced structural connectivity in
patients with schizophrenia, as well as disturbances in
the centrality of hub regions, for example in the medial
frontal and left temporal lobe.155 Both studies pointed to
a reduction in global network efficiency, a potential
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index of impaired functional integration. More recently,
network analysis of structural brain connectivity has
shown a selective disturbance of pathways cross-linking
regions forming the brain’s rich club,71 a collective of
highly connected and densely linked nodes.69 Given its
central role in brain communication, an impairment of
rich club connections is likely to manifest in functional
disturbances of integrative neural processing. 
The complexity of the genetic basis for most common
brain and mental diseases in conjunction with their pro-
nounced phenotypic heterogeneity greatly complicates
any systematic attempts at mapping genetic risk factors to
clinical disorders, and even hinders their objective char-
acterization on the basis of biologically based criteria. It
has been suggested that the study of intermediate pheno-
types, occupying positions that are intermediate between
genetics and clinical phenotypes, may represent a promis-
ing way forward (Figure 7).156,157 Intermediate phenotypes
may allow for an objective classification of heterogeneous
phenotypes into more coherent subgroups, and thus allow
a better understanding of which genetic or other biologi-
cal factors participate in each subgroup’s disease mecha-
nisms. The connectome and its endogenous and task-dri-
ven dynamics is an attractive candidate for an

intermediate phenotype as it represents a point of conver-
gence for a multitude of genetic and environmental fac-
tors, while also offering a plethora of potential “biomark-
ers” or probes that have proven to be of value in
characterizing disease states of the brain. As brain net-
work approaches continue to mature, it is to be expected
that much work will focus on developing network mea-
sures that can characterize healthy and abnormal varia-
tions in brain structure and function. Such measures may
help to identify factors that are associated with genetic
and environmental disease mechanisms, and they may
also serve as potential biomarkers for more objective
diagnosis and prediction of effective treatment options.
There is great potential for learning about disease states
by mapping variations in network architecture in large
cohorts of healthy participants, a chief goal of the
Human Connectome Project. Understanding the “nor-
mal” range of variability will provide insight into how
disease phenotypes differ. It has been suggested that
brain and mental disorders (indeed many common
human diseases) represent quantitative rather than qual-
itative deviations from health.158,159 Rather than being
caused by the presence or absence of single genetic fac-
tors, it appears that many common diseases, including
those affecting brain and mind, manifest through the
accumulation of small effects contributed by numerous
genetic variants160,161 and thus represent quantitative
traits that form the extremes of otherwise continuous
phenotypic distributions. How various measures of brain
networks relate to such phenotypic traits is still largely
unknown. As more data on the network architecture of
healthy and diseased brains becomes available, it will
become possible to test the intriguing idea that metrics
of connectivity can define new ways of classifying and
inter-relating common mental disorders.

Outlook

The study of brain networks is still in its infancy. The devel-
opment of new analytic techniques and modeling
approaches, in parallel with continued methodological
refinements in the area of human neuroimaging, continue
to allow ever more detailed analyses of human structural
and functional networks. Graph methods have proven use-
ful for capturing how networks vary across individuals,
how they change with experience, how they evolve across
the human life span, and why they fail in a variety of brain
and mental disorders. In the immediate future, some
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Figure 7. The connectome as an example of an intermediate phenotype.
This schematic diagram illustrates a hierarchy of brain pheno-
types, ranging from molecular to behavioral scales. Variations
along these scales are influences by genetic variation and envi-
ronmental factors. Connectomics deals with patterns of struc-
tural connections and functional brain activity at the cellular
and systems level. As such, connectomics focuses on levels
where genetic and environmental factors converge.

               Modified from ref 165: Bullmore ET, Fletcher P, Jones PB. Why psychi-
atry can’t afford to be neurophobic. Br J Psychiatry. 2009;194:293-295.
Copyright © The Royal College of Psychiatrists 2009
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important areas of research will likely focus on structure-
function relationships, leading to a better understanding
of how structural networks give rise to rich and flexible
neural dynamics. Another promising area involves the
analysis of network dynamics, the ever-changing topology
of brain networks that are endogenously generated and
modulated by stimuli and the environment. Studies of how
networks change in the course of early development will
likely stimulate new approaches towards mapping individ-
ual cognitive and behavioral developmental trajectories.
Studies of networks may also prove important in the con-
text of neurodegenerative disorders such as Alzheimer’s
disease, contributing to the as-yet elusive goal of develop-
ing better diagnoses and treatment options.

Whatever the future may bring the convergence of new
technologies for observing the structure and function of
the human brain with new analysis and modeling meth-
ods for the study of complex networks will almost cer-
tainly continue to bring change to the field. The new sci-
ence of networks may provide a much needed
theoretical framework for uniting empirical and compu-
tational studies of the nervous systems at all scales, from
neurons to systems. Along the way, we may finally
uncover the principles of network organization that
account for the human brain’s astonishing computa-
tional power, flexibility, and robustness. ❏
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Estructura y función de redes cerebrales
complejas

Un creciente número de estudios teóricos y empíri-
cos enfocan la función del cerebro humano desde
una perspectiva de red. El análisis de las redes cere-
brales se ha hecho posible gracias al desarrollo de
nuevos métodos de obtención de imágenes, así
como de nuevas herramientas provenientes de la
teoría de grafos y de los sistemas dinámicos. Este
artículo revisa algunos de estos avances metodoló-
gicos y resume los hallazgos recientes sobre la
arquitectura de las redes cerebrales estructurales y
funcionales. Los estudios del conectoma estructural
revelan que existen varios módulos o comunidades
de redes que están vinculadas entre sí por concen-
tradores (“hubs”) que median los procesos de
comunicación entre los módulos. Análisis recientes
han demostrado que los concentradores de la red
forman un nodo densamente interconectado deno-
minado “club de ricos”, localizado centralmente
para atraer y dispersar las señales de tránsito. En
paralelo, los registros de la actividad neural en
reposo y evocada por tareas han revelado distintas
redes en estado de reposo que contribuyen a las
funciones en diversos dominios cognitivos. Ya que
los métodos de red se aplican cada vez más en el
contexto clínico, se discute lo prometedor que pue-
dan resultar estos para dilucidar los sustratos neu-
rales de los trastornos cerebrales y mentales.

Structure et fonction des réseaux cérébraux
complexes

De plus en plus d’études théoriques et empiriques
abordent la fonction du cerveau humain sous
l’angle de réseaux. L’analyse de ces réseaux est ren-
due possible par le développement de nouvelles
méthodes d’acquisition d’imagerie et de nouveaux
outils issus de théories graphiques et de systèmes
dynamiques. Cet article analyse certaines de ces
avancées méthodologiques et résume les récentes
découvertes sur l’architecture des réseaux cérébraux
anatomiques et fonctionnels. Des études sur le
connectome structurel montrent plusieurs modules
ou communautés de réseaux liés par des points cen-
traux ou centres d’activité (hubs) permettant des
processus de communication entre les modules. De
récentes analyses des réseaux ont montré que les
centres de ces réseaux forment un collectif à forte
densité de liaison appelé « club de riches », disposé
centralement pour attirer et disperser la circulation
du signal. Parallèlement, des enregistrements de
l’activité neuronale déclenchée par le travail ou au
repos ont révélé des réseaux d’état de repos dis-
tincts contribuant à des fonctions dans différents
domaines cognitifs. Les modèles de réseaux sont de
plus en plus appliqués dans un contexte clinique et
nous analysons les perspectives qu’ils offrent pour
élucider les substrats neuronaux des troubles men-
taux et cérébraux.
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