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PURPOSE. Transplanting photoreceptors from human pluripotent stem cell–derived retinal
organoids have the potential to reverse vision loss in affected individuals. However, trans-
plantable photoreceptors are only a subset of all cells in the organoids. Hence, the goal
of our current study was to accelerate and synchronize photoreceptor differentiation in
retinal organoids by inhibiting the Notch signaling pathway at different developmental
time-points using a small molecule, PF-03084014 (PF).

METHODS. Human induced pluripotent stem cell– and human embryonic stem cells–
derived retinal organoids were treated with 10 μM PF for 3 days starting at day 45
(D45), D60, D90, and D120 of differentiation. Organoids were collected at post-treatment
days 14, 28, and 42 and analyzed for progenitor and photoreceptor markers and Notch
pathway inhibition by immunohistochemistry (IHC), quantitative PCR, and bulk RNA
sequencing (n = 3–5 organoids from three independent experiments).

RESULTS. Retinal organoids collected after treatment showed a decrease in progeni-
tor markers (KI67, VSX2, PAX6, and LHX2) and an increase in differentiated pan-
photoreceptor markers (OTX2, CRX, and RCVRN) at all organoid stages except D120.
PF-treated organoids at D45 and D60 exhibited an increase in cone photoreceptor mark-
ers (RXRG and ARR3). PF treatment at D90 revealed an increase in cone and rod photore-
ceptors markers (ARR3, NRL, and NR2E3). Bulk RNA sequencing analysis mirrored the
immunohistochemistry data and quantitative PCR confirmed Notch effector inhibition.

CONCLUSIONS. Timing the Notch pathway inhibition in human retinal organoids to align
with progenitor competency stages can yield an enriched population of early cone or
rod photoreceptors.
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Most forms of retinal degeneration ultimately lead to
the permanent loss of the light-sensing cells called

photoreceptors. The human retina does not inherently
regenerate and so the ensuing vision loss is permanent.
Currently, there are no known effective therapeutics for the
vast majority of these patients. However, as long as the inner
retina stays intact, transplanting photoreceptors can provide
an avenue to restore vision. Human pluripotent stem cells
(hPSCs) have been used to generate retinal photoreceptors
in a monolayer or organoid setting to study development and
disease.1–4 Alternatively, laboratory-generated photorecep-
tors could be used as a pool of photoreceptors for transplan-
tation.5–8 Over the course of development, retinal progeni-
tor cells (RPCs) differentiate into their final cell fate in the
neural retina, including cone and rod photoreceptors, reti-
nal ganglion cells (RGCs), amacrine cells, horizontal cells,
bipolar cells, and Müller glia.

One of the critical pathways maintaining RPC multipo-
tency is the Notch pathway. It is a ligand-receptor pathway

that is used between multipotent cells to control neuronal
potential and proliferation.9,10 When the ligand (Delta-like
or Jagged in mammals) from a neighboring cell interacts
with the Notch receptor, it induces cleavage in Notch by
ADAM-family metalloproteases (Fig. 1A).10 The Notch intra-
cellular domain is then cleaved by γ -secretase and acti-
vates the DNA-binding CSL protein, which complexes with
Mastermind and other transcription factors, in the nucleus
to express proliferation genes, such as HES1 and HES5
(Fig. 1A).10 This process helps to maintain the RPC pool
throughout retinal development. Notch signaling has been
studied in many species to understand its importance in
retinal differentiation and specification. Constitutive Notch
pathway activation in the retina results in either a persis-
tent progenitor state or differentiation into Müller glia.11

Conversely, the inhibition of Notch signaling via small
molecule γ -secretase inhibitors in mouse and chicken retina
leads to synchronized differentiation of the tissue.12 The
Notch signaling pathway has also been implicated in retinal
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FIGURE 1. RPCs lose Notch activity after PF treatment and increase in photoreceptor fate. (A) Schematic of the Notch signaling pathway
before and after treatment with PF. (B) Quantitative PCR data are shown for human embryonic stem cell (hESC) and human induced
pluripotent stem cell lines after post-treatment day 14 as log2 fold change compared with control organoids for HES1, HES5, VSX2, and
OTX2 (n = 5 organoids per line, 3 biological replicates). (C–Fʹ) Bright-field and green fluorescent protein (GFP) expression observation in
early retinal organoid generated from CRXp-GFP H9 hESCs. PF treatment started at D45. After 14 days, PF-treated (Dʹ) organoids expressed
more CRXp-GFP than their control counterparts (Cʹ). This was also the case after 42 days (Eʹ, Fʹ). Scale bar, 50 μm. *P < 0.05, **P < 0.01,
***P < 0.005, ****P < 0.001. All statistical analyses were performed using one-way ANOVA with a Dunnett test to correct for multiple
comparisons in GraphPad Prism 9 software. See also Figure S1 for DAPT data. Ctrl, control.

regeneration: in Xenopus and chicken retina, Müller glia
upregulate Notch signaling after damage and are critical to
restore the progenitor potential.13,14

Dysregulated Notch signaling has been associated with a
number of developmental and oncogenic disorders, includ-
ing some forms of leukemia. As a result, drug-like molecules

have been developed for human therapies including γ -
secretase inhibitors. PF-03084014 (PF) is a γ -secretase
inhibitor used in conjunction with docetaxel in a phase I
breast cancer therapy trial,15 as well as desmoid tumors.16 PF
drove a decrease in endogenous Notch intracellular domain
levels and a downregulation of Notch effector Hes1 in
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T-cell acute lymphoblastic leukemia cell lines bearing Notch
1 translocation mutation as in patients. This process led
to cell cycle arrest and eventually apoptosis.17 Owing to
its potent inhibition of the Notch pathway, we used PF to
drive synchronized differentiation of RPCs in our retinal
organoids.18 Recently, a single cell ATAC-seq analysis of PF
treatment of human fetal tissue showed a decrease in acces-
sibility of regions bearing the RBPJ motif (Notch effector)
and an increase in accessible regions with an OTX2 motif.19

Because we know approximately when each of the retinal
cell types are born from birth dating studies, we hypothe-
sized that targeting the differentiation of specific cell types
by using PF would generate an enriched pool of targeted cell
types. These cells could then be used for transplantation or
for studying molecular pathways that guide RPC differen-
tiation. In this report, we describe our efforts of enriching
photoreceptors from hPSC-derived retinal organoids using
the Notch pathway inhibitor, PF. We show that early progen-
itors (before D60) are biased to generate cones, whereas late
progenitors (beyond D90) are biased toward rods.

EXPERIMENTAL PROCEDURES

Cell Culture

The human embryonic stem cell line (CRXp-GFP H9) was
kindly provided by Dr. Anand Swaroop. The iPSC line
was kindly provided by Dr. Xianmin Zeng.20 Cells were
maintained on Matrigel (Corning 354234) coated plates in
mTeSR1 medium (StemCell Technologies) or mTeSR Plus
medium (StemCell Technologies) in a 5% CO2/5% O2 incu-
bator and passaged every 3 to 4 days using EDTA.

Retinal Organoid Differentiation

Retinal organoids were differentiated via the embryoid body
approach as described elsewhere.3

Notch Inhibition

PF-03084014 (PF; Sigma Aldrich PZ0298-5MG) was prepared
by dissolving it in DEPC water to a working concentration
of 1 mM. Aliquots were stored at –80°C until use. On treat-
ment day, organoids were treated with 10 μM PF dissolved
in media. After 3 days, fresh non-PF media were given every
2 to 3 days until collection day. The reconstituted PF loses
activity in approximately 3 months even at –80°C, so care
was taken to use fresh compound. DAPT (Sigma Aldrich)
was dissolved per manufacturer instructions and organoids
treated with 50 μM for 2 days.

Bulk RNA Sequencing Data Analysis

Control and PF-treated organoids were collected at 28 days
after treatment for mRNA extraction for RNA-seq analy-
sis (see Supplementary Methods). Library preparation and
Illumina-based transcriptome sequencing was carried out
at Novogene. After quality control (error rates of <0.03%),
alignments were parsed using STAR (v2.5) program79 and
mapped to the Homo sapiens genome assembly GRCh37
(hg19). Heatmaps of key genes was graph using BEAVR
web package (v1.0.10)80 in Docker. Differential expressions
were determined through DESeq2 R package (v1.14.1 ).81

Genes with an adjusted P value of less than 0.05 found

by DESeq2 were assigned as differentially expressed. Data
were graphed in R using the Enhanced Volcano plots
package.82 Gene ontology enrichment analysis of differ-
entially expressed genes was carried out by ClusterPro-
filer R package (v2.4.3),83 in which gene length bias was
corrected.

RESULTS

Small Molecule γ-Secretase Inhibitor Blocks
Notch Pathway Activity in Three-dimensional
Retinal Organoids and Drives Differentiation

Using previously published three-dimensional retinal
organoid differentiation protocols,3,4 we generated
organoids from a human induced pluripotent stem cell
line20 and a modified human embryonic stem cell line
(CRXp-GFP H921). Both lines consistently made retinal
organoids, signified by a bright outer ring of retinal tissue.
D45 organoids were then treated with 10 μM of the γ -
secretase inhibitor, PF-03084014 hydrobromide, for 3 days
and analyzed at post-treatment day 14 (D59) for down-
stream effectors of Notch (HES1 and HES5) and early retina
genes (VSX2 and OTX2) using quantitative PCR. Both HES1
and HES5 have been shown to be downstream of Notch and
are important regulators in neuronal differentiation.22 VSX2
is expressed in developing RPCs, but is downregulated as
cells differentiate, except in bipolars and Müller glia.23,24

OTX2 is expressed in photoreceptors, bipolars, and RPE.25,26

We observed a consistent decrease in downstream Notch
pathway targets (HES1 and HES5) (Fig. 1B) in organoids
from both cell lines after PF treatment. This finding was
associated with a decrease in RPC genes (VSX2). Concomi-
tantly, we observed an increase in the photoreceptor gene
(OTX2) (Fig. 1B). Interestingly, DAPT, another Notch γ -
secretase inhibitor, which has been used to inhibit Notch
in chickens and mice retina,12,13 did not drive significant
differentiation (Supplementary Fig. S1). These data indicate
that the clinically relevant Notch pathway inhibitor PF
drives differentiation of human RPCs.

CRX is an essential transcription factor that regulates
many downstream photoreceptor genes.25–27 The CRXp-
GFP H9 reporter line, generated to report activity of CRX
promoter in differentiating photoreceptors, has been shown
to express GFP around D37 in retinal organoids.21 This
reporter line allowed us to estimate the timing of photore-
ceptor differentiation in vitro (Figs. 1C–F). At 14 (Fig. 1Dʹ)
and 42 days (Fig. 1Fʹ) post-D45 treatment, we observed
significantly higher GFP expression compared with control
cultures (Figs. 1Cʹ–Eʹ) along with loss of typical bright
organoid appearance on brightfield (Figs. 1D, F). Thus,
PF treatment drove CRX expression, suggesting that the
organoids were pushed toward a photoreceptor fate.

PF-Treated Retinal Organoids Lose Progenitor
Properties in Early Time Points

Because PF treatment had a profound effect on driving
differentiation in D45 retinal organoids, we next tested the
effects on RPCs at different developmental stages (D45,
60, 90, and 120) and analyzed them using immunohisto-
chemistry (IHC) after 14 and 42 days (Fig. 2A). Overall, we
observed an almost complete loss in KI67, a pan cell cycle
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FIGURE 2. Notch inhibition turns off progenitor markers in retinal organoids. (A) Schematic of the treatment timeline. Once RPCs are
generated on day 30, separate PF treatment occurred on D45, 60, 90, and 120. Collections for IHC happened after 14 and 42 days (red
arrows) and for bulk RNA-seq after 28 days (blue arrow). (B–M) Immunofluorescence staining using antibodies against KI67 (B, F, J),
PAX6 (C, G, K), VSX2 (D, H, L), LHX2 (E, I, M) are shown in white for treatment groups D45 (B–E), D60 (F–I), and D90 (J–M). Nuclei are
counterstained with DAPI in blue. Scale bar, 25 μm. See also Figure S2 for quantitative data and Figure S3 for the D120 treatment group.

marker expressed in the nuclei of proliferating cells,28 at 14
days for the D45, D60, and D90 treatment groups (Figs. 2B,
F, J, Supplementary Fig. S2). Interestingly, there were few
KI67+ cells (3.3% ± 1.5%) in the D60 42 days post-PF group
than the D60 14 days post-PF organoids (0.4% ± 0.4%). This

finding could be due to some PF treatment-resistant cells that
continued to proliferate afterward. Finally, D90 organoids at
42 days control conditions have few KI67+ cells (4.7% ±
1.63%) that are lost upon PF treatment (0.9% ± 0.45%). The
D120 group do not have any KI67+ cells after 14 and 42 days
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FIGURE 3. Notch inhibition at D45 causes mass generation of immature cone photoreceptors in retinal organoids after 14 and 42 days.
Immunofluorescence staining using antibodies against OTX2 (A), CRX (B), RCVRN (C), RXRγ (D), ARR3 (E), NRL (F), LHX1 (G), BRN3A
(H), HuC/D (I), and ISL1/2 (J) are shown in white. Markers are split into pan photoreceptors (A–C), cones (D, E, J), rods (F), horizontals
(G), RGCs (H–J), and amacrines (I). Nuclei are counterstained with DAPI in blue. Scale bar, 25 μm. See also Figure S2 for quantitative data
and Figures S4–5 for additional staining data.

(Supplementary Fig. S3A), suggesting that the organoids are
fully differentiated by D134.

We further confirmed our KI67 data with other specific
RPC markers such as PAX6, VSX2, and LHX2. We observed a
consistent loss of expression of these proteins in the neurob-
lastic layers in the D45, D60, D90, and D120 groups after
treatment (Figs. 2C–E, 2G–I, 2K–M, Supplementary Figs. S2,
3B–D). Although PAX6 was expressed in the organoids,
there were clear groups of PAX6high and PAX6low cells.
These PAX6high cells likely correspond with amacrine, as well
as RGCs, although they tend to die off in later stages of
organoid development.29–31 VSX2low cells were abundantly
present in controls, but decrease to a few rare VSX2low

after PF treatment (Figs. 2C, G, K, Supplementary Figs. S2,
S3B); the post-treatment cells are most likely bipolars, indi-
cated by VSX2high expression (Figs. 2Dʹ–Dʹʹʹ, Hʹ–Hʹʹʹ, Lʹ–Lʹʹʹ,
Supplementary Figs. S3Cʹ–Cʹʹʹ).24 The same was true for
remaining LHX2+ Müller glia at this stage (Figs. 2E, I, M,
Supplementary Fig. S3D).32 The D120 organoids contained
predominantly LHX2high cells (Supplementary Fig. S3D),
indicating the absence of any significant RPCs at this
time-point.

Notch Knockdown Increases Cone Photoreceptor
Population in Early-Stage Retinal Progenitors

Because PF treatment results in synchronized differentiation
of human RPCs in the retinal organoids, we next sought
to test the competency of RPCs to generate various retinal
neurons. Birth-dating studies have closely correlated genesis
of different retinal neurons to progenitor staging.33–39 Based
on these, cones are poised to be generated in D45 to D60
retinal organoids. To investigate cone photoreceptor devel-
opment, we immunostained for OTX2, CRX, RCVRN, RXRγ ,
and ARR3. Recoverin (RCVRN) is a Ca2+-binding protein
that helps to regulate the phosphorylation of the visual
opsins in photoreceptors.40,41 RXRγ is present in develop-
ing cones and is downregulated to form S-cone photorecep-
tors.21,42 ARR3 aids in quenching the phosphorylated state of
S- and M/L-opsins in cone photoreceptors.43 The D45 post
14-day control group had a few cells that are positive for
OTX2, CRX, RCVRN, RXRγ , and ARR3 (Figs. 3A–E, Supple-
mentary Fig. S2A), which increased over the next 4 weeks.
Upon PF treatment, at the 14-day time-point, we observed
that the majority of cells expressed OTX2, CRX, and RXRγ ,
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along with significant increases in RCVRN (Figs. 3Aʹ–Dʹ,
Supplementary Fig. S2A). At the 42-day time-point, again we
observed similar changes in the above proteins (Figs. 3A–
D, Supplementary Fig. S2A). Additionally, ARR3, which was
higher at the 14-day time-point after treatment compared
with controls, was further upregulated at 42 days after PF
treatment (Figs. 3E-Eʹʹʹ), suggesting further maturation of
the cone photoreceptors. Interestingly, although we see a
massive increase in photoreceptor differentiation, the typi-
cal multilayered retinal alignment is lost.

Although it is not anticipated, we wanted to assess
whether D45 RPCs were competent to generate any rod
photoreceptors. NRL is necessary and sufficient to form rod
photoreceptors.44 We observed no NRL+ cells in either D45
14 and 42 days control groups (Figs. 3F, Fʹʹ). Surprisingly,
after PF treatment, a few rare NRL+ rod photoreceptors were
observed in the D45 14- and 42-day post-treatment groups
(Figs. 3Fʹ, Fʹʹʹ, Supplementary Fig. S2A), suggesting that even
D45 retinal organoids have minor competence to generate
rod photoreceptors.

Birth-dating studies suggest that early retinal progenitors
have the potential to generate RGCs, amacrines, and hori-
zontals.34–37,45 We next tested the ability to generate these
cells in D45 organoids after PF treatment. LHX1 is expressed
by developing horizontals,46 and we observed few scattered
LHX1+ horizontals in control organoids (Figs. 3G, Gʹʹ), with
no significant change upon PF treatment at both the 14- and
42-day time-points (Figs. 3Gʹ, Gʹʹʹ). BRN3, a POU4F transcrip-
tion factor family present in RGCs in the retina, determines
the diversity of RGCs.47 Most of the BRN3A+ (POU4F1) cells
are present in the lower one-half or below of the neuroblas-
tic layer in the 14- and 42-day controls (Figs. 3H, Hʹʹ). Inter-
estingly, after PF treatment, we detected very few, if any,
BRN3A+ cells in the organoids (Figs. 3Hʹ, Hʹʹʹ, Supplemen-
tary Fig. S2A). This finding suggests that either the RGCs
are struggling to survive in a mature organoid model lack-
ing stem or glial cell support or that PF is directly toxic to
RGCs in the organoids. HuC/D is expressed by mature RGCs
and amacrines and in developing horizontals (in rats).48 We
found a large population of HuC/D+ cells in the 14-day
control conditions (Fig. 3I), but the number of cells dimin-
ished modestly after treatment (Fig. 3Iʹ). The 42-day control
and treated groups show similar expression of HuC/D+ cells
(Figs. 3Iʹʹ–Iʹʹʹ). Given the observed pattern of BRN3A+ cells
(Fig. 3H), it is likely that most of the HuC/D+ cells are
amacrines in treated organoids and do not change with PF
treatment. Finally, ISL1 is expressed in RGCs, amacrines, and
bipolars whereas ISL2 is in cones.49,50 Staining for ISL1/2,
we observed a dramatic increase in ISL1/2+ cells in the 14-
day treated group compared with the corresponding control
(Figs. 3J–Jʹ), with an expression pattern similar to OTX2 and
CRX staining (Figs. 3A, B), suggesting that most of these
might be early cone photoreceptors. At the 42-day time-
point, there was not much change between the control and
treated groups (Figs. 3J–Jʹʹʹ). This finding could be due to
only a transient expression in ISL2 in newly differentiated
cones.51 To test whether the cellular competency changed
significantly in D60 organoids, we next treated these with
PF for 3 days and analyzed them 14 and 42 days later. Here
again, we observed that PF resulted in a cone-rich organoid
(Figs. 4A–E, Supplementary Fig. S2B), without any signif-
icant changes in the other cell types (Figs. 4F–H, Supple-
mentary Fig. S2B).

One of the most intriguing findings was a lack of maturity
in the cone photoreceptors in the PF-treated differentiated

FIGURE 4. Notch inhibition at D60 causes mass generation of imma-
ture cone photoreceptors in retinal organoids after 14 and 42 days.
Immunofluorescence staining using antibodies against OTX2 (A),
CRX (B), RCVRN (C), RXRγ (D), ARR3 (E), NRL (F), BRN3A (G), and
HuC/D (H) are shown in white. Markers are split into pan photore-
ceptors (A–C), cones (D, E), rods (F), and RGC/amacrines (G–I).
Nuclei are counterstained with DAPI in blue. Scale bar, 25 μm. See
also Figure S2 for quantitative data and Figures S4–5 for additional
staining data.
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FIGURE 5. Notch inhibition at D90 causes mass generation of immature rod photoreceptors in retinal organoids after 14 and 42 days.
Immunofluorescence staining using antibodies against OTX2 (A), CRX (B), RCVRN (C), RXRγ (D), ARR3 (E), NRL (F), NR2E3 (G), HuC/D
(H), and glutamine synthase (I) are shown in white. Markers are split into pan photoreceptors (A–C), cones (D, E), rods (F, G), amacrines
(H), and Müller glia (I). Nuclei are counterstained with DAPI in blue. Scale bar, 25 μm. See also Figure S2 for quantitative data and Figures
S4–5 for additional staining data.

organoids. S- and M/L-opsins are required for cone photore-
ceptors to be able to process photons into a chemical signal.
There was a lack of S- and M/L-opsins expression in both the
D45 and D60 14- and 42-day post-treatment groups (Supple-
mentary Figs. S4A, B, D, E). Even upon further culture for
70 and 140 days after treatment on D45, organoids failed
to express either of the opsins (Supplementary Figs. S5A,
B). Furthermore, these PF-treated organoids do not express
rod markers despite long-term culture, owing to the absence
of competence at this stage (Supplementary Figs. S5C–E).
These data suggest that, although PF can drive cone-rich
organoids, accelerating the in vitro culture system lacks the
cues required to complete the maturation of photoreceptors.

Notch Knockdown in Late Retinal Progenitors
Increases the Rod Photoreceptor Population

Late retinal progenitors are biased to generate rod photore-
ceptors over cones.34–37,45,52 To examine our ability to stim-
ulate rod photoreceptor generation, we cultured retinal

organoids for 90 days before a 3-day PF treatment. At 14
and 42 days after treatment, general photoreceptor protein
makers (OTX2, CRX, and RCVRN) increased in both PF-
treated groups compared with control (Figs. 5A–Cʹʹʹ, Supple-
mentary Fig. S2C). Cone photoreceptor expression also
increased as shown by RXRγ and ARR3 immunolabeling
(Figs. 5D-Eʹʹʹ, Supplementary Fig. S2C). Next, we looked
for the generation of rod photoreceptors using rod-specific
markers, namely, NRL44,53 and NR2E3.52,54 We found a signif-
icant increase in both rod markers at 14 days after PF treat-
ment and even more so after 42 days (Figs. 5F–Gʹʹʹ, Supple-
mentary Fig. S2C). Based on these data, D90 organoids
are both rod and cone photoreceptor competent. HuC/D+

amacrines remained toward the bottom of the neuroblastic
layer and did not increase after PF treatment (Figs. 5H–Hʹʹʹ).

Müller glia are the last retinal cell type formed from
RPCs and Notch signaling is an important driver for Müller
glia formation.55–57 Müller glia are identified by glutamine
synthase (GS) expression.58 In D90 control organoids, Müller
glia start to form but are sparse (Fig. 5I). Interestingly, we
observed a reduction in number of GS+ Müller glia espe-
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FIGURE 6. RNA sequencing analysis of PF treated retinal organoids confirm RPC loss and photoreceptor differentiation phenotypes.
Organoids were treated for 3 days at D45, D60, and D90 of differentiation and analyzed 28 days later. (A) At all three stages there is a
consistent downregulation of RPC genes and Notch pathway effectors with a stronger effect at early time-points when the organoids are
RPC enriched. (B) Photoreceptor genes are highly upregulated especially at D45 and D60 treatment time-points. Smaller increases in rod-
specific genes were observed in the D90 treatment group. (C) RGC specification genes (POU4F family) were downregulated while maturation
markers upregulated with PF. (D) Smaller increases in inner retina specification genes were observed while maturation markers were highly
upregulated. (E) PF treatment led to the consistent upregulation of various synaptic maturation genes expressed in the inner and outer retina.
(F) Volcano plot showing the significant differentially expressed genes at all three treatment time-points. See also Figure S6 for additional
RNA-seq analysis.

cially at the 42-day post-treatment time point (Figs. 5Iʹ–Iʹʹʹ).
This PF-mediated decrease in Müller glia is most likely due
to the lack of Notch signaling needed for their specification.

In the D120 treatment group, where we did not observe
any change in progenitor expression after PF (Supplemen-
tary Figs. S3A–Dʹʹʹ), there were no significant changes in
expression for photoreceptor markers (OTX2, CRX, RCVRN,
and ARR3; Supplementary Figs. S3E–Hʹʹʹ). A small number
of M/L-opsin+ cells were observed in the 42-day control and
treated organoids (Supplementary Figs. S3Iʹʹ–Iʹʹʹ), but this
finding is most likely due to the age of the organoids and not
a result of the treatment. The number of NRL+ rod photore-
ceptor cells were unchanged at 14 days after PF with a small
increase at 42 days (Supplementary Figs. S3Jʹ–Jʹʹʹ).

RNA Sequencing Analysis of PF-treated Organoids

We next sought to analyze the effects of Notch inhibition
using bulk RNA-seq analysis. We cultured retinal organoids
for either 45, 60, or 90 days before 3 days of PF treatment
as described elsewhere in this article. At 28 days after treat-

ment, RNA was collected and processed for RNA-seq analy-
sis. This time-point was chosen as a midpoint between the
two time-points included in the IHC analysis. Upon anal-
ysis of Notch pathway effector (HES1 and HES5) expres-
sion, we observed a significant downregulation at all three
stages of differentiation, with the maximal downregulation
in the D45 treatment group (Fig. 6A). This is likely because
the organoids at this stage have the most RPCs with active
intercellular Notch activity compared with the other treat-
ment time-points. Similarly, we confirmed the downregula-
tion of various genes typically expressed in RPCs, including
PAX6, LHX2, VSX2, ASCL1, and SOX2 (Fig. 6A). In alignment
with our IHC data, cone photoreceptor differentiation was
biased in early-stage organoids (D45 and D60) as evidenced
by increases in ARR3, RXRG, TULP1, GNAT2, CNGA3, and
PDE6C, among other cone genes (Fig. 6B).

In contrast, D90 PF-treated organoids were rod photore-
ceptor biased, with smaller differences in marker expres-
sion levels compared with untreated organoids at this age
(D118); RPCs have mostly differentiated at this time-point,
and control cultures have generated rods as well (Fig. 6B).
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We observed relatively small changes in rod maturation
genes (ROM1, NRL, and GNB3).

Similar to our IHC data (Fig. 3), we observed a down-
regulation of RGC markers, POU4F1 (BRN3A) and POU4F2
(BRN3B), in the D45 and D90 treatment groups; however,
we did see an increase in maturation genes typically associ-
ated with RGCs (THY1, NEFH, and NRN1) at all three time-
points (Fig. 6C). These increases in RGC markers could be
due to an increase in expression in surviving RGCs or cross-
expression in other inner retinal neurons. Next, we focused
on other inner retinal markers such as PROX1, which mark
progenitors destined to interneuron fates (e.g., amacrines
and horizontals).59 PROX1 was increased in D60 PF-treated
organoids, suggesting an increase in the pool of amacrines
and horizontals at this time-point (Fig. 6D). This finding
was further confirmed by the elevated expression of both
ONECUT2 and ONECUT1, which both regulate early born
cell fates and are critical for horizontal cell genesis,60,61 and
GAD2, GLYTL1A, MEIS2, and STMN2, which are linked to
amacrine and horizontal cell fates62–65 (Fig. 6D). One of
surprising findings was the early upregulation of LHX3 post-
PF treatment at D45 and, to a lesser extent, D60 (Fig. 6D).
LHX3 in rodent species has been linked to bipolar differen-
tiation66–68; however, we hypothesize that LHX3 may be a
transiently expressed marker of early retinal cell fates, such
as cone photoreceptors. Finally, we analyzed cellular matu-
ration through using synaptic markers.69 We observed signif-
icant upregulation of a number of photoreceptors and pan-
retina associated synaptic genes (e.g., SV2, SNAP25, SYP, and
RIMS2), especially in D45 and D60 treatment groups, with
smaller changes in D90 treated organoids (Fig. 6E).

To confirm whether these changes were significant, we
carried out differential expression analysis using DESeq2
analysis in R. Differential expression analysis confirmed our
IHC data (Fig. 6F). At all three time points (D45, D60, and
D90), we observed a significant decrease in Notch targets
and RPC genes. D45-treated cells had the largest and most
significant increase in photoreceptor associated genes. D90
had fewer significantly different genes and mostly enriched
in photoreceptor maturation genes. A gene ontology anal-
ysis of the RNA-seq data showed that the most significant
effect of PF treatment on retinal organoids was a downreg-
ulation of cell cycle, mitosis, and DNA replication, which in
turn resulted in a significant increase in gene networks asso-
ciated with visual perception and synaptic organization and
activity (Supplementary Fig. S6).

DISCUSSION

In this study, we describe a methodology to exploit human
retinal progenitor competency states in retinal organoids
to drive enriched photoreceptor populations. We show that
the Notch pathway is active in RPCs within hPSC-derived
retinal organoids, and that this pathway can be effectively
inhibited using the Notch inhibitor, PF-03084014. Using this
approach, we generated highly enriched cultures of photore-
ceptors with significantly decreased numbers of prolifer-
ating retinal stem cells. The broader goal of this work is
to generate a more uniform source of photoreceptors that
can be used for cell replacement therapies to aid in visual
recovery.

The most unanticipated and interesting finding in our
studies was the photoreceptor bias in our synchronized
differentiated retinal organoids. When treated early (D45

or D60), we observed a significant increase in the cone
population, shown via both IHC and bulk RNA-seq. The
same phenomenon occurred with the rod photoreceptors
when organoids were treated at D90, although to a smaller
extent. Although we expected a noticeable increase in other
inner retinal neurons after PF treatment, our data showed
no significant differences to inner retinal neuron markers in
PF-treated organoids, even at the D60 treatment time-point
group. These results do, however, align well with previ-
ous studies showing that Notch1 plays a role in the inhibi-
tion of cone and rod fate.11,70,71 Conditional genetic knock-
down of Notch in early RPCs in mice has been shown to
result in cone overproduction at the expense of other reti-
nal neurons, whereas a later-onset knockdown results in
rod overproduction. Recent studies using well-defined cis-
regulatory elements for various progenitor states, including
VSX2 for multipotent RPCs and THRB for cone-restricted
RPCs, to analyze the effects of Notch signaling inhibition
suggest that Notch regulates the formation of restricted RPC
states from multipotent RPCs.72 This potential mechanism
could be driving specific fate decisions in human retina
development. Additionally, Notch activity has been shown
to be critical for the final Müller glia fate specification.55–57

Persistent Notch activity promotes the expression of down-
stream Müller glial genes and stabilizes Müller glia fate.73

Consistent with these studies, PF-treated retinal organoids
show a paucity of Müller glia.

Another interesting aspect of our studies was a lack
of complete maturation of the differentiated cone and rod
photoreceptors. Although these cells expressed early cone
and rod differentiation markers, including RCVRN and ARR3,
the more mature markers, such as the opsins, were lacking
in these prematurely differentiated cells despite long-term
culture for 70 and 140 days after treatment. Similar observa-
tions have been made in Zebrafish Notch knockdown stud-
ies.57 Together, these data suggest that other native retina
cell types may be critical for driving the full maturation of
photoreceptors, either directly or through secreted factors
that may be missing in our PF-treated organoids. Recently, a
number of factors have been shown to induce photorecep-
tor maturation and opsin expression in retinal organoids,
including 9-cis retinaldehyde, docosahexaenoic acid, fibrob-
last growth factor-1, and thyroid hormone.74–76 It remains to
be seen whether the addition of these factors could poten-
tially drive maturation in PF-treated organoids. Along with a
lack of maturation, there was an obvious loss of lamination
and impaired organization in the PF-treated organoids. We
hypothesize that this is due to the absence of critical cues
from RPCs and/or Müller glia, which likely provide spatial
information to newly differentiated neurons. This factor also
likely contributes to the lack of photoreceptor maturation,
including the development of inner and outer segments.
That being said, one advantage of generating an enriched
pool of immature photoreceptors is that these cells will likely
achieve better integration after transplantation, compared
with more mature photoreceptors.77,78

In summary, the results reported herein show that Notch
signaling is necessary for RPC maintenance in hPSC-derived
retinal organoids. Notch pathway inhibition using a small
molecule validated in human studies, PF-03084014, can drive
photoreceptor specific synchronized differentiation in reti-
nal organoids to generate enriched cultures of immature
cone and rod photoreceptors, which could then be useful
for cell replacement approaches to treat severe photorecep-
tor degenerative disorders in affected patients.
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