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Abstract
Background  Non-invasive monitoring of epidermal 
growth factor receptor (EGFR) mutations conferring 
sensitivity and resistance to tyrosine kinase inhibitors 
(TKIs) is vital for efficient therapy of lung adenocarcinoma 
(LADC). Although plasma circulating cell-free tumour DNA 
(ctDNA) is detectable at an early stage, the size of the 
tumour does not strongly correlate with concentration of 
whole cell-free DNA (cfDNA), including normal leucocyte 
DNA. We sought to examine the clinical features of patients 
with LADC whose cfDNA examination held clues for 
analysis of cancer genomics. 
Methods   Forty-four plasma samples from 37 patients 
with LADC receiving EGFR-TKI therapy, including 20 
who developed resistance, were prospectively subjected 
to droplet digital PCR-cfDNA analysis to detect EGFR 
mutations and analysed according to clinical features. 
Results  cfDNA samples from 28 (64%) of the 44 samples 
were positive for TKI-sensitive mutations. Samples from 
19 (95%) of the 20 EGFR-TKI-resistant patients were 
positive for TKI-sensitive mutations. In 24 patients without 
TKI resistance, 7 (54%) of 13 patients with regional lymph 
node metastases, 4 (67%) of 6 patients with advanced 
T stage (T3 or T4) and 8 (57%) of 14 patients with 
extrathoracic disease progression were also positive for 
TKI-sensitive mutations. cfDNA analysis from patients 
with acquired TKI-resistance disease or extrathoracic 
disease progression correlated with a high detection 
rate of TKIsensitive mutations (acquired resistance: risk 
ratio=2.53, 95% CI 1.50 to 4.29; extrathoracic disease 
progression: risk ratio=5.71, 95% CI 0.84 to 36.74). 
Conclusions  cfDNA in patients with EGFR-TKI-resistance 
or extrathoracic disease progression may be useful for 
analysis of cancer genomics. 
Trial registration number  UMIN 000017581.

Introduction
The identification of epidermal growth 
factor receptor (EGFR)-activating muta-
tions and the subsequent development of 
EGFR tyrosine kinase inhibitors (TKIs) for 
advanced EGFR-mutant non-small cell lung 
cancer (NSCLC) represents a drastic change 
in treatment paradigms. Several randomised 

clinical trials have demonstrated that 
EGFR-TKI administration results in a superior 
response rate and longer progression-free 

Key question

What is already known about this subject?
►► Epidermal growth factor receptor (EGFR)-tyrosine 
kinase inhibitors (TKIs) for advanced EGFR-mutant 
non-small cell lung cancer (NSCLC) represents  
a drastic change in treatment paradigms.

►► Tumour genotyping using circulating plasma 
cell-free DNA (cfDNA) has the potential to allow 
non-invasive assessment of EGFR secondary 
mutation, while many existing assays are 
cumbersome and vulnerable to false-negative 
results.

►► We previously established a droplet digital PCR 
system to quantify EGFR mutations in cfDNA  
and documented the clinical characteristics of 
patients with lung adenocarcinoma (LADC).

What are the new findings?
►► We explored the clinical features of patients with 
LADC whose fraction of ctDNA within the total 
cfDNA was high.

►► We found TKI-sensitive mutations in most of 
the cfDNA samples obtained after confirming 
resistance.

►► cfDNA obtained from patients who developed 
extrapleural tumours without EGFR-TKI resistance 
also exhibited high plasma level of sensitising and 
resistance EGFR mutations.

How might it impact on clinical practice in the 
foreseeable future?

►► cfDNA obtained from patients who developed 
extrapleural tumours and/or EGFR-TKI resistance 
also exhibited high detection rates of the EGFR-TKI-
sensitising mutation by cfDNA testing.

►► Analysis of cfDNA from patients with extrathoracic 
disease progression and acquired EGFR-TKI 
resistance may be effective for clarifying the 
unknown molecular mechanisms of resistance.

http://www.esmo.org/
http://esmoopen.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/esmoopen-2017-000292&domain=pdf&date_stamp=2018-02-19
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survival than platinum-based chemotherapy for advanced 
EGFR-mutant NSCLC.1–3 However, patients who initially 
respond to EGFR-TKIs eventually acquire resistance.

The mechanisms of acquired EGFR-TKI resistance 
have been widely studied and several mechanisms have 
been identified. The most common mechanism of resis-
tance to TKIs, observed in over 50% of patients, is a thre-
onine-to-methionine substitution within the gatekeeper 
residue at amino acid position 790 (T790M) of the EGFR 
gene.4–7 EGFR-independent mechanisms include the MET 
proto-oncogene, receptor tyrosine kinase (MET) ampli-
fication (about 3%–5%), v-erb-b2 avian erythroblastic 
leukaemia viral oncogene homolog 2 (HER2) amplifica-
tion (about 8%–13%), phosphatidylinositol 3-kinase cata-
lytic subunit (PIK3CA) mutation (about 1%–2%), B-Raf 
proto-oncogene serine/threonine-protein kinase (BRAF) 
mutation (about 1%), histological transformation from 
NSCLC to small cell lung cancer (6%) or epitheli-
al-to-mesenchymal transition (EMT) (about 1%–2%).6–8 
With many negative clinical trials in EGFR-TKI-resistant 
setting,9 treatment strategies for acquired resistance, 
until recently, have remained unclear.10 11

The standard of care is rapidly changing with the devel-
opment of third-generation, mutant-selective EGFR-TKIs 
that have activity against cells harbouring EGFR T790M 
mutations.11 12 Osimertinib is 30-fold to 100-fold more 
potent against T790M and less potent against wild-type 
EGFR13 14 and is approved for patients with T790M muta-
tion-positive NSCLC (as detected from tissue) who have 
progressed during or after EGFR-TKI therapy. However, 
tissue genotyping remains a clinical challenge because 
of the difficulty of tumour rebiopsy after acquisition of 
resistance in cases with small target lesions. In addition, 
rebiopsy may also result in insufficient tumour material 
for genetic analyses due to necrotic or fibrotic changes. 
Therefore, minimally invasive tests, known as a ‘liquid 
biopsies’, represent a promising breakthrough for detec-
tion of EGFR T790M or other mechanisms when disease 
progression occurs in distant sites, such as the brain, bone 
or lungs, that are not involved by the primary tumour.15–17

Circulating plasma cell-free tumour DNA (ctDNA), 
small DNA fragments from apoptotic and necrotic 
tumour cells or circulating tumour cells (CTCs) into 
the bloodstream, represents a promising source that 
inform tumour genetics, mechanisms of progression 
and drug resistance.18–20 ctDNA is only the portion of 
cfDNA specifically released from cancer cells, and most 
of cfDNA is derived from normal cells, including normal 
leucocytes that undergo apoptosis or necrosis. cfDNA is 
released by passive mechanisms, such as lysis of apop-
totic and necrotic cells or digestion of tumour cells by 
macrophages, and also by active mechanisms, such as the 
release of fragments of tumorous nucleic acid into the 
circulation by living cells.17 21 A new technique known as 
droplet digital PCR (ddPCR) may become a clinical diag-
nostic tool for assessing mutations in lung adenocarci-
noma (LADC).22 23 Tumour genotyping using cfDNA has 
the potential to allow non-invasive assessment of tumour 

biology, while many existing assays are cumbersome and 
vulnerable to false-negative results. The Roche cobas  
4800 system (Roche Molecular Systems, Inc), approved 
by the US Food and Drug Administration and the Phar-
maceuticals and Medical Devices Agency of Japan, is a 
companion diagnostic system for osimertinib to detect 
EGFR T790M mutations.24 In addition, comprehen-
sive genetic panel analysis of cfDNA using next-genera-
tion sequencing may be useful as a quantitative tool for 
genomic characterisation to inform choice of therapy.

Although technical advances may further improve 
the sensitivity of cfDNA analysis, assessment of biolog-
ical and genomic factors may eventually be limited by 
the tiny concentrations involved. A range of sensitive 
sequencing methods is typically implemented in many 
molecular pathology laboratories. However, very low 
levels of mutated DNA can lead to a false-positive result 
and DNA aberrancies do not always represent a cancer 
clone, or they can produce a false-negative result when 
the level is below the assay detection limits.24 Therefore, it 
is necessary to establish more clinically useful sequencing 
methods for analysing cfDNA from LADC patients. We 
previously established a ddPCR system to quantify EGFR 
mutations in cfDNA.25 We explored the clinical features 
of patients with LADC whose fraction of ctDNA within 
the total cfDNA was high, rendering cfDNA examination 
useful for analysis of cancer genomics with next-genera-
tion sequencing.

In this study, we investigated the relationship between 
patient characteristics and the detection rate of EGFR 
mutations in cfDNA from patients with a histologically 
confirmed EGFR mutation.

Materials and methods
Study population
Peripheral blood samples were collected from  
13 patients with  LADC with EGFR exon 19 in-frame 
deletions or 24 patients with exon 21 L858R mutations 
after obtaining written informed consent. In addition, 
peripheral blood samples from two patients with LADC 
harbouring the 4-anaplastic lymphoma receptor tyrosine 
kinase (EML4-ALK fusion) gene were also collected for 
EGFR mutation-free controls, because of the exclusivity 
with EGFR mutations in lung cancer with ALK fusion. 
Blood samples from each patient were collected in two 
5 mL EDTA-containing Vacutainers and spun to sepa-
rate plasma within 30 min of collection. Plasma samples 
were kept frozen at −80°C until DNA extraction. We eval-
uated the incidence of TKI-sensitivity in patients with 
histologically  confirmed EGFR mutations. Seventeen 
patients provided cfDNA before EGFR-TKI therapy and  
20 provided cfDNA after developing resistance to 
EGFR-TKIs. Seven of 20 patients also provided blood 
samples before administration of EGFR-TKI; therefore, 
a total of 44 blood samples were collected from the  
37 patients who developed resistance (17+20+7=44). Most 
of these patients were subjects in our previous study.25 
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We collected information about patient characteristics 
for follow-up analysis. We examined the samples using 
picoliter-ddPCR to determine the fraction of cfDNA with 
EGFR mutations and the concordance of T790M muta-
tion status between cfDNA and rebiopsied tumour tissues. 

Measures and definitions
Picoliter-ddPCR
cfDNA was extracted from 2 mL of plasma using the 
QIAamp Circulating Nucleic Acid kit (Qiagen, USA) 
and quantitated using a NanoDrop spectrophotometer 
(Thermo Fisher Scientific/Life Technologies) and a 
Qubit fluorometer (Invitrogen, Carlsbad, California, 
USA). Reaction mixtures containing 4 ng of cfDNA were 
subjected to picoliter-ddPCR. Detection of representative 
exon 19 in-frame deletions, and L858R and T790M muta-
tions was conducted using an assay (TaqMan SNP geno-
typing assay, Life Technologies) as previously reported.25 
Digital PCR was performed (RainDrop Digital PCR 
System, RainDance Technologies, Billerica, Massachu-
setts, USA) in which PCR takes place in millions of drop-
lets with volumes of approximately 5 pL.26–28 Compensa-
tion factors and the respective thresholds were set based 
on data from positive-control cell lines (II-18, NCI-H1975, 
PC-9) to define droplets positive for exon 19 deletions 
and the L858R and T790M mutations.

Threshold setting for positive detection
To determine the threshold for detecting EGFR muta-
tions in patient’s cfDNA, cfDNA from two patients with 
LADC harbouring the EML4-ALK fusion was used as 
negative controls because of the exclusivity of EGFR muta-
tions in lung cancer with ALK fusion. Only a few droplets 
among millions were positive for EGFR mutations. Due 
to the possibility that a few EGFR mutations could be 
present even in ALK fusion-positive patients with LADC, 
the threshold for a positive result was tentatively set to 
10 droplets based on the negative control data. Using 
this threshold, the rate of false-positive droplet detection 
was predicted to be <0.0002%. The picoliter-ddPCR anal-
ysis complies with the essential requirements listed on 
the Minimum Information for Publication of Quantita-
tive Real-Time PCR Experiments (MIQE) guidelines for 
ddPCR.29 This procedure was described in our previous 
study.25

Statistical analysis
Correlation between the ability to detect EGFR muta-
tions in plasma and patient characteristics was calculated 
using risk ratios and a logistic regression model with the 
following covariates: tumour stage (postoperative relapse 
vs stage IV), tumour, node and metastasis (TNM) stage 
according to the seventh edition of the UICC TNM classi-
fication at the time of plasma sampling (Tx/1/2 vs T3/4, 
N0 vs N1/2/3, M0/M1a vs M1b, postoperative recurrence 
vs stage IV disease), extrathoracic disease progression at 
latest imaging (negative vs positive) and resistance to 
EGFR-TKI (negative vs positive) based on the distribution 

for the number of patients. Fisher exact test with a signif-
icance level of P<0.05 was used to assess the association 
between the detection rate and patient characteristics. 
We also calculated concordance rates of T790M mutation 
status (T790M-positive or T790M-negative) between tissue 
and plasma. Analyses were performed using commercial 
software (IBM SPSS Statistics V.24.0).

Results
Detection rate and risk ratio by subgroup in all patients
We examined the relationship between clinical character-
istics and detection rates for TKI-sensitising mutations in 
plasma DNA. In total, we examined cfDNA samples from 
37 patients with LADC who received EGFR-TKI therapy: 
24 provided cfDNA before EGFR-TKI therapy and 20 
provided cfDNA after developing resistance to EGFR-TKIs. 
In seven patients, samples that acquired both before and 
after acquisition of EGFR-TKI resistance were analysed. 
We used picoliter-ddPCR to detect EGFR-TKI-sensitising 
and T790M mutations in the samples (table  1). Other 
clinical characteristics of the patients are shown in  the 
online supplementary tables 1 and 2.

The sensitivity of plasma genotyping was 64% (95% 
CI 56.8% to 65%) for the sensitising mutation for all 
samples (28 of 44), 60% for exon 19 deletions (18 of 30) 
and 71% for L858R (10 of 14). The detection rates for 
TKI-sensitising mutations in plasma were not significantly 
correlated with sex, smoking status, EGFR mutation status 
at diagnosis, tumour stage, immediate prior treatment 
regimen or the type of EGFR-TKI at first administration. 
The detection rate of TKI-sensitive EGFR-mutations in 
cfDNA from patients with acquired EGFR-TKI resistance 
(95%, 19/20, risk ratio=2.53, 95% CI=1.50  to 4.29) was 
correlated with a higher detection rate of EGFR  muta-
tions, as previously reported (figures 1 and 2, table 2).

Detection rate and risk ratio by subgroup in patients without 
EGFR-TKI resistance
Even in 24 patients before EGFR-TKI therapy, individ-
uals with advanced T stage (67%, 4/6, risk ratio=2.40, 
95% CI 0.94 to 6.12), any lymph node metastases (54%, 
7/13, risk ratio=2.96, 95% CI 0.77 to 11.43) or UICC 
stage IV disease (60%, 6/10, risk ratio=2.80, 95% CI 0.91 
to 8.61), sensitive mutations were also more likely to be 
detected mutation but not significant (figure 2, table 2). 
The detection rate was notably higher in patients who 
developed extrathoracic disease progression (57%, 8/14, 
risk ratio=5.71, 95% CI 0.84 to 38.74) than in those who 
did not. Additionally, the adjusted risk ratio for mutation 
detection according to extrathoracic disease progression 
using the multivariate generalised linear model was 7.14 
(95% CI 1.08 to 47.22, P=0.041) (table 3). There was a 
strong relationship between TKI-sensitive mutation detec-
tion and extrathoracic disease progression.

Tumour tissues from 12 of the 20 patients with TKI 
resistance were rebiopsied and subjected to genomic 
analysis (patients 1–10, 19 and 20). The results from 10 

https://dx.doi.org/10.1136/esmoopen-2017-000292
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of these patients were concordant with those from cfDNA 
analysis (concordance rate, 0.83). While the results from 
rebiopsied tissue from the remaining two patients were 
positive for EGFR-TKI-sensitising and T790M mutations, 
one (patient 6) had a negative result by cfDNA anal-
ysis and the other (patient 19) was positive only in the 
EGFR-TKI-sensitising mutation test.

Discussion
We evaluated the relationship between patient character-
istics and the positive detection rate of EGFR mutations 
in cfDNA from patients with histologically  confirmed 
EGFR mutations. TKI-sensitive mutations were detected 
in most (95%, 19/20) (figure 1) of the cfDNA samples 
obtained after confirming resistance. Notably, cfDNA 
obtained from patients who developed extrapleural 
tumours without EGFR-TKI resistance also exhibited high 
detection rates of the EGFR-TKI-sensitising mutation by 
cfDNA testing. This finding confirms the usefulness of 
examining cfDNA to deduce tumour burden and certain 
amounts of ctDNA in progressed cases, as suggested by 

Figure 1  Detection rate for EGFR mutations in cfDNA. 
Detection rates from cfDNA for TKI-sensitive and T790M 
mutations are shown. Twenty samples were collected from 
patients with resistance to EGFR-TKI therapy (patients 
1–20), and 24 from patients before EGFR-TKI therapy 
(patients 1, 8, 10–12, 16, 17 and 21–37). cfDNA, cell-free 
DNA; EGFR, epidermal growth factor receptor; TKI, tyrosine 
kinase inhibitor. 

Figure 2  Detection rate of EGFR mutations in cfDNA 
by characteristics. The sensitivity of plasma genotyping 
for the sensitising mutation was 64% for all samples. 
Mutation detection rate from patients with UICC stage IV 
disease, T stage 3/4 disease, any lymph nodal metastases, 
extrathoracic disease progression and acquired EGFR-
TKI-resistant disease was significantly higher than from 
those without these features. cfDNA,  cell-free DNA;  EGFR,  
epidermal growth factor receptor; TKI, tyrosine kinase 
inhibitor; UICC, Union Internationalis Contra Cancrum . 

Table 2  Detection rate and risk ratio by subgroup

Characteristics No
Detection 
(%)

Risk ratio 
(95%  CI) 

Total 28/44 64 –

EGFR-TKI resistance

 � Negative 9/24 38 1 

 � Positive 19/20 95 2.53 (1.50 to 4.29) 

Cases without TKI 
resistance 

9/24 38 

 � T stage

 � �  X or 1 or 2  5/18 28 1 

 � �  3 or 4 4/6 67 2.40 (0.94 to 6.12) 

 � N stage 

 � �  x or 0 2/11 18 1

 � �  1 or 2 or 3 7/13 54 2.96 
(0.77 to 11.43)

 � M stage 

 � �  0 or 1a 1/7 14 1 

 � �  1b or metastatic 
recurrence 

8/17 47 3.29 
(0.50 to 21.66)

Stage 

 � Rec 3/14 21 1

 � IV 6/10 60 2.80 (0.91 to 8.61)

Extrathoracic 
progression 

 � �  Negative 1/10 10 1

 � �  Positive 8/14 57 5.71 
(0.84 to 38.74)

EGFR, epidermal growth factor receptor; Rec, recurrence 
after surgery or definitive chemoradiotherapy; TKI, tyrosine 
kinase inhibitor.
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previous studies.30 31 On the other hand, only a subset of 
cfDNA samples obtained before EGFR-TKI therapy was 
positive for TKI-sensitive mutations (38%, 9/24). One 
possible explanation for this difference is that the EMT 
of tumour cells, which often plays a role in resistance 
to EGFR-TKIs, permits tumour-initiating cells to invade 
blood vessels, which might increase the amount of plasma 
ctDNA by spreading tumour cells into the blood.32 33 A 
large cfDNA study found that the sensitivity of plasma 
genotyping for a known sensitising mutation was 82% 
from patients with acquired EGFR-TKI resistance.34 It is 
reassuring that the imperfect sensitivity of cfDNA analysis 
mitigates its value as a non-invasive alternative to a biopsy. 
Several systems have been approved as companion diag-
nostic systems for third-generation EGFR-TKI to detect 
EGFR T790M mutations from cfDNA all over the world.34 
Given the wide range of reported sensitivities and specif-
icities of the different platforms, it will be essential for 
prospective therapeutic trials to mandate the collection 
of plasma cfDNA to establish reproducible concordance 
rates with tissue for clinical validation.

Notably, our analysis found a lower risk of false-negative 
results and similar risk of extrapleural disease progression 
following previous therapy compared with prior studies 
that examined larger populations.22 35 Even in a smaller 
cohort such as ours, these analyses suggest the same 
trend towards reducing false-negative results. Therefore, 
selecting specific subgroups could increase the usefulness 
of cfDNA genotyping as a diagnostic test in response to 
individual preferences, to increase the true-positivity rate. 
This may be attributable to the increased use of next-gen-
eration sequencing for analysis, which can be used to 
analyse patient samples that cannot be genotyped because 
of insufficient tissue or tissue sampling errors related to 
tumour heterogeneity.36 To fully exploit the potential 
usefulness of next-generation sequencing of liquid biop-
sies, suitable patients must be selected for cfDNA anal-
ysis. Therefore, in order to validate the analysis results, we 
should select patients whose cfDNA contains a sufficient 
fraction of tumour DNA to screen mutations.

Limitations of this study include its small sample size. 
Additionally, not all individuals with a positive cfDNA 
result underwent a diagnostic rebiopsy; therefore, some 
mutations might have been clinical false-positives. There-
fore, to validate the sensitivity, specificity and accuracy of 
cfDNA analysis, it is important to test and conduct stan-
dardised cfDNA-based large-scale studies with samples 
that contain certain amounts of ctDNA.

Conclusions
Analysis of cfDNA from patients with extrathoracic 
disease progression and acquired EGFR-TKI resistance 
may be efficient for clarifying the molecular mechanisms 
of resistance. Further analysis of cfDNA from patients 
with these features is required to validate tumour molec-
ular profiling and treatment modification.
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Abstract has been added in.
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Table 3  Generalised linear model assessing predictors of mutation detection

Variable

Univariate model Model 2 Final model

Risk ratio (95% CI) P value Risk ratio (95% CI) P value Risk ratio (95% CI) P value

Advanced T stage (T3 or 
T4/Tx or T1 or T2) 

1.71 (0.76  to  3.85) 0.192

Regional lymph node 
metastasis (any N/N0) 

2.26 (0.79  to  6.49) 0.131

Distant metastasis (M1b or 
metastatic Rec/M0 M1a) 

3.33 (0.53  to  20.91) 0.381

Stage (stage  IV /
postoperative Rec) 

3.81 (1.03  to  14.04) 0.045 1.50 (0.36  to  6.23) 0.577

Extrathoracic disease 
progression (+/−) 

6.00 (0.914  to  39.41) 0.062 5.00 (0.49  to  50.83) 0.174 7.14 (1.08  to  47.22) 0.041

Rec, recurrence after surgery or definitive chemoradiotherapy. 
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