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Effects of Heat Stress on Gut Microbiome in Rats
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Abstract Gut microbiome, as the largest and most

important micro-ecosystem, plays a critical role in health.

The purpose of this study was to evaluate whether heat

stress modulates the composition and diversity of the gut

microbiome in rats. The heat stress model was prepared in

rats with the heating temperature maintained at 35–38�C.

Cecum contents were collected after heat stress for 3 h and

days 1, 3 and 7. Total DNA was extracted for 16 S rRNA

sequencing and analysis of intestinal microbiome compo-

sition and diversity. The study showed that the composition

of the intestinal microbiome of heat stress group was

changed. And the heat stress modulated key phylotypes of

gut microbiota at the level of phylum and genus. In par-

ticular, the genus of Lactobacillus and Bacteroides were

significantly reduced, whereas the Oscillospira and

Clostridium were increased by heat stress. Meanwhile, the

rats under the heat stress encountered the change in car-

bohydrate metabolism, amino acid metabolism, and

membrane transport to defense against stress. Taken

together, the composition and structure of gut microbiome

were affected by heat stress and some key phylotypes were

also significantly altered. We conclude that the heat stress

could impact multiple biological functions, via altering the

gut microbiome.
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Abbreviations

HS Heat stress

Con Control

RT Rectal temperature

WBC White blood cell

GLU Glucose

PD Phylogenetic diversity

PCoA Principal coordinate analysis

OUT Operational taxonomic units

KEGG Kyoto, Encyclopedia of Genes and Genomes

Introduction

Heat stress resulting from elevated ambient temperature

is considered to be one of the most important environ-

mental stresses exerting deleterious effects on homeostasis

and severe systemic inflammatory response [1–3]. Heat-

induced multiple negative effects on physiological,

immune function, central nervous system, gut microbiota

and reproductive functions [4–7]. The heat exposure to

mice also causes changes in epithelial barrier dysfunction

and cell structure, which is the key to colonize gut

microbiota [8–10]. Heat stress can cause heatstroke, which

is characterized by hyperthermia and central nervous sys-

tem dysfunction [11]. Under stress, a reduction in intestinal

villus height, an increase in crypt depth, and the change of

intestinal villus can lead to the weakening of the intestinal

absorption and the dysbiosis of the intestinal microflora
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[9, 12, 13]. Over the past few decades, the mechanism of

heat stress is considered to be caused by the disorder of

central nervous system, not by peripheral organs. And the

understanding of intestinal function also focuses on the

digestion and absorption of nutrients [14–17].

Microbiota inhabiting the mucosal surface of the animal

skin, mouth, gastrointestinal tract and other organs is

considered as the largest and most important micro-

ecosystem. Gut microbiota residing in the digestive tracts

of humans and other animals is the largest and complex

community of microorganisms. Gut microbiome play

diverse roles in animal and human physiology, including

digestion of fiber, starch [18]; degradation of carbohydrate

fermentation to produce lactic acid, short chain fatty acids,

and other metabolites [19, 20]; synthesize certain vitamins

(e.g., B1, B2, B12, VK, and folic acid) [21]; modulate

immune system and functions [22, 23]; influence intestinal

epithelial permeability [24, 25]; and prevent infections

from other pathogens [26]. In addition, emerging evidence

suggests that the gut microbiome also regulates brain

development and behavior [27–29]. Studies have reported

the change in the response of germ-free rats to stress, an

abnormality in the hypothalamic pituitary adrenal axis

adjustment, and the decrease in the pain caused by

inflammation [30, 31]. This study mainly discusses the

changes of heat stress on gut microbiome in rats and then

provides a new possible mechanism of heat stress leading

to inflammatory response and nervous system disorders.

Material and Methods

Animals

All experimental procedures in this study were approved

by the Animal Ethics Committee of the South China

Agricultural University (Guangzhou, China). The care and

use of the animals were carried out under the Guidelines

for Animal Experiments of the South China Agricultural

University, and all efforts were made to minimize the

number of animals, suffering, and to maximize their well-

being (permit number: 2014321, Guangzhou, China). All

procedures involving animals throughout the experiments

were conducted in strict accordance with the Chinese leg-

islation on the use and care of laboratory animals.

Seven-week-old male-specific pathogen-free (SPF)

Wistar rats (180 ± 10 g, purchased from the Center of

Experimental Animals of Southern Medical University,

approval number: 44002100005777) were housed under

standard conditions (22 ± 0.5 �C, 50 ± 5 % humidity, and

a 12 h light/12 h dark cycle) and maintained with free

access to a standard laboratory pellet diet and water.

Experimental Design In Vivo

Forty adult Wistar male rats were randomly divided into 2

groups with 20 rats in each group: heat stress group (HS)

for which the heater temperature is maintained at 35–38 �C
and humidity values at 50 to 60%, and the control group is

maintained at a temperature of 24–26 �C with free access

of drinking water and food for 7 days. The rectal temper-

ature was recorded and the contents in cecum from 5 rats

were collected after euthanasia at 3 h and day 1, 3 and 7.

And the blood was drawn from the abdominal aorta, and

the resulting serum was used to measure the circulating

level of white blood cell (WBC) and glucose (GLU) after

clotting at day 7. All samples were stored in - 80 �C
freezer until analysis. In this study, all rats were euthanized

by 30 mg/kg pentobarbital sodium and cervical vertebra

dislocation.

Bioinformatics and Statistical Analyses

Each rat cecum contents were used to extract total DNA for

16 S rRNA sequencing and analysis of cecum intestinal

microbiome. Then Illumina Miseq reads were analysed

using FLASH software. Briefly, paired-read pairs were

assembled into contigs that contained the V3–V4 Tags of

16 S rRNA [32]. All Tags need a stringent quality control

processing. Any Tags with ambiguous base and shorter

than 200 bp were culled. Identical or duplicate sequences

were merged. Chimera sequences were checked and

removed using usearch61. According to the similarity of

sequences, Tags were clustered to (OTUs) [33]. OTUs

were calculated at a distance of 0.03, using the UCLUST

[34]. Alpha diversity includes Chao1 and Shannon index

and rarefaction curves. The beta diversity analysis of PCoA

based on Bray-Curtis was calculated by the weighted and

unweighted Unifrac [35]. R was used to visualize the

abundance of the bacterial taxonomic composition. Com-

munity function prediction is based on the KEGG database.

The bar graph of the genus was produced with GraphPad

Prism 5 software. The significance of variance was anal-

ysed by one-way ANOVA. And *represents P\ 0.05 and

**represents P\ 0.01.

Results

Heat Stress on Rectal Temperature, White Blood

Cell and Glucose

The rectal temperature (RT) was recorded in rats at 3 h and

day 1, 3 and 7 (Table 1). There were obvious differences in

the RT of rats during the study between the HS group and

control group (P\ 0.01). The circulating level of WBC
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and GLU was also measured on day 7 (Table 2). The level

of WBC and GLU in the HS group weas markedly

increased by heat stress on day 7. These data suggested that

the model of heat stress was successfully established in this

study.

The Effects of Heat Stress on Alpha Diversity Index

The results on Alpha diversity index of the gut microbiota

in rats showed difference between the two groups

(Table 3). After heat stress for 3 and 7 days, the Chao 1

index of HS group was significantly decreased than that of

the control group. The phylogenetic diversity (PD) whole

tree index of the HS group was significantly lower than that

of the control group on day 7 and the Shannon index of HS

group was significantly lower than that of the control group

on 3 h.

The Effect of Heat Stress on the Composition of Gut

Microbiome

The principal coordinate analysis (PCoA) based on the

Unifrac distances weighted (Fig. 1) and unweighted

(Fig. 2) values was performed to determine the effects of

heat stress on gut microbiome composition. In 3 h and on

days 1, 3 and 7, the plot of PCoA were clustered together in

the HS group and control group respectively, whereas the

scatter points between the HS group and control group

showed obvious differences, suggesting that the composi-

tion of the gut microbiome changes significantly in each

stage by heat stress. These data suggest that the composi-

tion of gut microbiota in caecum is markedly changed by

heat stress.

The Community Contributed at the Phylum Level

by Heat Stress

In this study, we used PyNAST software and Greengenes

database to compare the known sequences and to compare

the relative abundance at the phylum level in all the groups.

At the phylum level, the relative abundance and commu-

nity composition were significantly shifted by heat stress,

whereas the dominant bacteria in caeca were Firmicutes

and Bacteroidetes in all the groups (Fig. 3). The main

phyla of Firmicutes, Bacteroidetes and Verrucomicrobia

showed an obvious difference between the two groups. The

relative abundance of Firmicutes was increased by heat

stress except on day 3. In 3 h and on day 3, the phylum of

Bacteroidetes was significantly increased than that in the

control group, but decreased on days 1 and 7. The relative

abundance of Verrucomicrobia was reduced in the HS

group compared to the control group, but increased on day

7. These changed have no time-dependent and may be

related to the dynamically changing gut microbiota.

The Changes in Key Phylotypes at the Genus Levels

by Heat Stress

Taxon-based analysis at the genus level showed that the

relative abundance of Lactobacillus, Bacteroides, Oscil-

lospira and Clostridium were significantly changed by heat

stress (Fig. 4). The relative abundance of Lactobacillus

was significantly reduced in the HS group compared to the

control group on day 3 (P\ 0.01), whereas the relative

abundance of Bacteroides was reduced on day 7

(P\ 0.01). For Oscillospira, the relative abundance was

increased by heat stress on day 1, 3 and 7 and the

Clostridium was also increased in 3 h (P\ 0.05) and on

day 7(P\ 0.01).

KEGG Community Function Prediction Annotation

A total of 6909 functional genes were identified and have

significant paired genes in the Kyoto, Encyclopedia of

Genes and Genomes (KEGG) database. These pathways

were divided into five main categories, including meta-

bolic, genetic information processing, environmental

information processing, cellular processes, and organismal

systems (Fig. 5). Among the 5 functional categories, 35

major KEGG pathways were selected. The changes of

Table 1 The effect of heat

stress on rectal temperature
Index Group 3 h 1 day 3 days 7 days

RT (�C) HS 39.65 ± 0.06** 38.52 ± 0.04** 39.54 ± 0.14** 39.00 ± 0.24**

Control 37.63 ± 0.29 37.00 ± 0.09 37.67 ± 0.12 37.78 ± 0.07

*Represents p\ 0.05 and **represents p\ 0.01 compared to the Con group

Table 2 The effect of heat stress on white blood cell and glucose

Time point Group WBC (9109/L) GLU (mmol/L)

7 days HS 6.52 ± 0.22** 7.10 ± 0.70**

Control 3.00 ± 0.48 2.98 ± 0.56

*Represents p\ 0.05 and **represents p\ 0.01 compared to the

control group
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biological pathways in the HS group mainly concentrated

on the four types of pathways: metabolism, genetic infor-

mation processing, environmental information processing

and cellular processes. The HS group was more active in

the carbohydrate metabolism, amino acid metabolism, and

membrane transport gene expression compared with the

control group, indicated that multiple biological functions

of the body reaction path were shifted to be more active by

heat stress and these changes may be related to the gut

microbiome.

Discussion

Heat stress can lead to the inflammation of the organ,

including liver, hypothalamus, and intestinal bleeding,

while the mechanism of heat stress based on the nervous

system cannot be explained reasonably [5, 14, 36]. Recent

Studies demonstrated that heat stress can worsen gut dis-

orders and change the composition of gut microbiota,

which may be one of the mechanisms of heat stress

[37–39]. The results of this study suggested that the com-

position and structure of gut microbiota were affected by

heat stress and the changes of biological pathways by heat

stress may be related to the gut microbiota.

The previous study found that when the ambient tem-

perature exceeds 28 �C, it can lead to the slight rupture and

regional edema of the small intestinal (duodenum, jejunum,

ileum) villus [10]. In this study, the temperature in our

model of heat stress was in agreement with previous

studies [1, 40]. And increased the rectal temperature, white

blood cell and glucose were observed by heat stress in this

study, which is in agreement with other studies of different

animals [12, 41]. Taken together, the model of heat stress

was established.

This study was conducted to explore the relationship

between the composition of the gut microbiome and heat

stress. Heat stress has adverse effects on growth perfor-

mance, immunity and overall health, but its mechanism

remains largely unclear, which may be related to gut

microbiota [42, 43]. In this study, our results showed that

the alpha diversity, including Chao1, PD whole tree and

Shannon index of gut microbiota in cecum was signifi-

cantly changed by heat stress. However, there was no

significantly change on the alpha diversity index of day 1,

which may be because the gut microbiota is a slow process,

and it is consistent with the results of previous studies [7].

In this study, the Chao1 and PD whole tree first increased

and then decreased upon heat stress, which may be due to

the suddenness of stress stimulation. With the extension of

stress time, the adaptation to the stress and gut microbiota

of heat stress rats tended to be stable. The Chao1, PD

whole tree and Shannon index based on operational taxo-

nomic units (OTU), which is used to estimate the richness

and diversity of gut microbiota and predict the number of

species, were obvious decreased in HS group compared

with the control group, indicating that heat stress can

reduce the richness and diversity of gut microbiota. These

results are consistent with previous studies that heat stress

can change the richness and diversity of gut microbiome

[44].

Our results based on PCoA showed that heat stress could

modulate the composition of gut microbiome in caecum.

Meanwhile, the obvious differences in the relative abun-

dance of bacterial at the phylum and genus level between

the HS group and Con group were obtained. Heat stress

was previously shown to regulate the diversity of gut

microbiota and inhibit the dominant Lactobacillus [45, 46].

And disruptive social, which is another stress, was also

shown to reduce the relative abundance of the genus and

increase the relative abundance of Clostridium [47].

In the current research, the phyla of Firmicutes and

Bacteroidetes were the dominant bacteria and had a sig-

nificant difference in the caecum of rats by heat stress,

which was in agreement with another report, but in the

fecal of laying hens [39]. The relative abundance of Bac-

teroidetes, which contains many beneficial genera, such as

Bacteroidetes, was significantly decreased, whereas the

Verrumicrobia, including Akkermansia, which can reduce

body weight, was increased in the heat stress group,

Table 3 Alpha diversity

indexes of the gut microbiota in

heat stress rats

Time point Group Chao1 PD_whole_tree Shannon

3 h HS 4316.25 ± 43.14 103.96 ± 0.49 7.27 ± 0.15*

Control 5973.33 ± 264.48 131.50 ± 3.31 8.13 ± 0.11

1 day HS 7984.30 ± 263.59 148.32 ± 5.11 8.07 ± 0.04

Control 7003.53 ± 244.73 148.32 ± 5.08 7.67 ± 0.06

3 days HS 6343.86 ± 229.98* 146.34 ± 2.49 8.04 ± 0.02

Control 8101.88 ± 335.32 163.49 ± 2.50 8.41 ± 0.06

7 days HS 4604.57 ± 215.91* 103.60 ± 3.22* 7.67 ± 0.07

Control 6197.48 ± 192.84 134.86 ± 2.02 7.88 ± 0.05

*Represents p\ 0.05 and **represents p\ 0.01 compared to the control group
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indicating that heat stress can affect the body by gut

microbiota. At the genus level, the relative abundance of

Lactobacillus and Bacteroides, which were putative bene-

ficial genera, was significantlty reduced, whereas the Os-

cillospira and Clostridium were increased by heat stress.

The finding of Bacteroides is consistent with our previous

study on chicken, whereas the result of Oscillospira is

contrary [7]. Results of KEGG community function

prediction annotation demonstrated that the carbohydrate

metabolism, amino acid metabolism, and membrane

transport gene expression was more active with heat stress.

Lactobacillus produce acetylcholine and c-amino butyric

acid, Bacteroidetes produce c-amino butyric acid and are

important in glucose homeostasis of hosts; and Oscillospira

are the butyrate producer, which may be the key for the gut

microbiome to affect host metabolism and biological

Fig. 1 The composition changes of gut microbiota based on PCoA

with weight Unifrac. a The PCoA with weight in 3 h; b the PCoA

with weight at day 1; c the PCoA with weight at day 3; d the PCoA

with weight at day 7. PC1and PC2 are the two principal coordinate

components. The red plot is the HS group and the blue is the control

group
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functions [48, 49]. Gut microbiota and their secretions

affect the nervous system, and regulate the intestinal

motility and sensory afferent signal to the brain [50].

Central nervous system and neuroendocrine activity, in

particular stress response, may in turn affect the

composition of gut microbiota by changing the abundance

of bacterial species and bacterial virulence factors [51].

Diseases can affect the composition of gut microbiome,

and then in turn leading to deterioration of the body, which

may be a process of circulatory action.

Fig. 2 The composition changes of gut microbiota based on PCoA

with unweight Unifrac. a The PCoA with unweight in 3 h; b the

PCoA with unweight at day 1; c the PCoA with un weight at day 3;

d the PCoA with unweight at day 7. PC1and PC2 are the two principal

coordinate components. The red plot is the HS group and the blue is

the control group
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Fig. 3 The relative abundance

of gut microbiome at the

phylum level by heat stress in

rats. All phyla were defined as

1, and the proportion of each

phylum is defined as percent

relative abundance. H represents

HS group and C represents

control group

Fig. 4 The relative abundance of gut microbiome at the genus level

by heat stress. a The relative abundance of Lactobacillus; b the

relative abundance of Bacteroides; c the relative abundance of

Oscillospira; d the relative abundance of Clostridum. All genera were

defined as 1, and the proportion of each genus is defined as percent

relative abundance
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Conclusions

In conclusion, our results showed that the structure of gut

microbiome in rats was altered by heat stress. Particularly,

the key genera of Lactobacillus, Bacteroides, Oscillospira

and Clostridium, which can produce metabolites, were

changed by heat stress. Consequently, based on KEGG,

multiple biological functions of the body reaction path

were regulated. Taken together, one of the mechanisms of

heat stress may be the altered gut microbiota, which may

lead to the change of metabolism, and then affect the

biological function and nervous system. Future research

will be needed to understand the role of metabolites pro-

duced by gut microbiome in the brain gut axis.
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