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Abstract
White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus
destructans is decimating the populations of several hibernating North American bat spe-

cies. Little is known about the molecular interplay between pathogen and host in this dis-

ease. Fluorescence microscopy ambient ionization mass spectrometry was used to

generate metabolic profiles from the wings of both healthy and diseased bats of the genus

Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were de-

tected on the wings of bats with WNS, but not on healthy bats. This work is among the first

examples in which microbial molecules are directly detected from an infected host and high-

lights the ability of atmospheric ionization methodologies to provide direct molecular insight

into infection.

Introduction
Fungal diseases of animals and plants have long been a feature of natural ecosystems, but evi-
dence suggests that incidences of mycoses are increasing in frequency and severity and that
these emerging infectious diseases pose a threat in terms of loss of biodiversity and food securi-
ty [1]. Mycoses have garnered a large amount of attention recently due to their detrimental im-
pacts on populations of organisms as varied as sea fans, turtles, bees, corals, frogs, crayfish, and
bats [1–7]. The fungal infection affecting hibernating North American bats, white-nose syn-
drome (WNS), has killed an estimated 5.7–6.7 million bats since it was first described in 2006
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and has spread to 25 states and five Canadian provinces [8–11]. The psychrophilic fungus iden-
tified as the causative agent of WNS, Pseudogymnoascus destructans, is believed to be an exotic
pathogen of European origin that was introduced to the U.S. through human activity [12–17].

The mechanism through which WNS induces mortality remains to be fully elucidated. It is
hypothesized that cutaneous infection of bat wing skin with P. destructans disrupts electrolyte
balance [18–19]. This imbalance or some other mechanism causes increases in the frequency
with which infected bats arouse from torpor during winter [19]. Frequent arousals may in turn
deplete fat stores and lead to death by starvation [20].

Identifying molecules that fungal pathogens use to interact with a host provides insight into
the mechanism of their pathogenicity. Better understanding these mechanisms may lead to im-
proved management strategies that account for the biology of the pathogen. We therefore set
out to directly profile the metabolic milieu on the wings of bats with WNS with a focus on fun-
gal molecules. We used fluorescent microscopy-guided ambient mass spectrometry to metabol-
ically profile the wings of bats of the genusMyotis that were healthy (n = 5) or showed signs of
WNS infection (n = 11). This will enable us to begin to establish a ‘molecular signature’ for
WNS and to determine if there are molecules that the fungus may use to facilitate infection.

Materials and Methods

Animal Collection & Tissue Sample Preparation
Five healthyMyotis lucifugus, 10M. lucifugus with WNS, and oneMyotis septentrionalis with
WNS were included in the analysis (Table 1). All bats were found deceased during routine
monitoring of maternity or hibernation roosts being conducted by state agency biologists. In
Pennsylvania, personnel of the Pennsylvania Game Commission collected the specimens in
compliance with Pennsylvania Statute Title 34, Section 322. Deceased bats collected in West
Virginia were collected by personnel of the West Virginia Department of Natural Resources
and no permits were required. Healthy bats were collected from 2004 to 2008 in Pennsylvania.
All but one of these bats were collected prior to the emergence of WNS in North America and
the bat collected after WNS emergence had no obvious signs of P. destructans infection (e.g.
cupping erosions) when evaluated microscopically. WNS bats were collected in 2011 in Penn-
sylvania and inWest Virginia during a WNS-associated mass mortality event. No bats were eu-
thanized for this study. Two 6 mm tissue punches were collected from the wings of each of the
deceased bats, affixed to 1x3 inch microscope glass slides, and stored at -80°C prior to mass
spectrometric analysis.

Microscopy Ambient Ionization Mass Spectrometry of Bat Wings
The mass spectrometric interrogation of bat wing skin was performed using a hybrid microsco-
py/ionization technique which combines an ambient nanospray desorption electrospray ioniza-
tion (nanoDESI) source and an inverted microscope as described [21] (Fig. 1A). Unlike previous
usage of these tools, our analysis incorporated the use of fluorescence. This allowed us to illumi-
nate the wings with UV light and visualize areas of fluorescence that correlate with the develop-
ment of cupping erosions due to infection with P. destructans [22] (Fig. 1B). We could then
directly target these areas with the nanoDESI probe for MS analysis (Fig. 1C). The sample slide
with wing punches was placed on the stage of a Nikon DIAPHOT 300 microscope and bright
field and fluorescent images of the tissue were captured using a CCD camera (Nikon D40 DSLR)
to confirm the presence or absence of fungal infection. The stage was then manipulated to move
the tissue sample to the desired position under the micrometer-sized liquid junction formed by
the two flame-pulled fused silica capillaries of the nanoDESI. The capillary tubes were flamed-
pulled from original 150/50 μm (O.D./I.D.) to ~60 μmO.D. and a voltage of 2.2 kV was applied
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to them throughout the experiment. The capillaries were aligned in a “V” configuration so that
they abutted one another at the bottom of the “V” and then angled 45° away from the point of
contact in either direction. A syringe pump was used to continuously deliver the solvent (either
acetonitrile in water (65/35, vol/vol) with 0.2% formic acid, methanol in water (50/50, vol/vol)
with 0.2% formic acid, or methanol, acetonitrile, and toluene (50/35/15, vol/vol/vol) with 0.2%
formic acid) at a rate of ~1.0 μL/min through 300/100 μm (O.D./I.D.) fused silica capillary tub-
ing to the primary flame-pulled capillary. This solvent was then aspirated by the secondary capil-
lary resulting in the formation of a dynamic liquid droplet of approximately 100 μm in diameter
at the junction of the two capillaries. The sample stage was raised until the tissue contacted the
liquid droplet and a continuous stream of solvent containing analytes desorbed from the tissue
was delivered to the inlet of the mass spectrometer (hybrid 6.4-T LTQ-FT; Thermo Electron,
North America) via electrospray ionization generated at the terminal end of the secondary capil-
lary. Multiple spots were sampled along each tissue slide.

Fungal Extraction for MS Analysis
Replicates of P. destructans were grown on ISP2 agar plates (4 g/liter yeast extract, 10 g/liter malt
extract, 4 g/liter dextrose, and 1.5 to 2% agar). Small plugs of agar and fungal biomass were col-
lected and combined with 100 μl of n-butanol in microcentrifuge tubes. Extractions were allowed
to proceed at room temperature for one hour. The organic layers were centrifuged and the su-
pernatant was subsequently analyzed. A Triversa nanomate-electrospray ionization source was
used to introduce the extracts (diluted in methanol in water (50:50) with 1% formic acid) directly
into the MS inlet. This was accomplished using a spray voltage setting of 1.3–1.45 kV and a pres-
sure of 0.35–0.5 psi as set with Chipsoft software version 7.2.0. Data were collected using Xcali-
bur software version 1.4 SR1 running the data-dependent method described below.

Mass Spectrometric Analysis
A 6.4 T Finnigan LTQ-FT-ICR MS (Thermo Electron, North America) was used to analyze tis-
sue samples and fungal extracts. The instrument was tuned to 816m/z using bovine

Table 1. Specimen information for the Myotis used in the study.

WNS Status Species Sex Collection Date Collection Location

Pre-WNS Myotis lucifugus unknown 11/12/08 Barton Cave, Fayette County, PA

Pre-WNS Myotis lucifugus female 8/15/05 Shaver’s Creek, Huntington County, PA

Pre-WNS Myotis lucifugus male 9/13/04 Harlansburg Cave Gate, Lawrence County, PA

Pre-WNS Myotis lucifugus female 4/16/05 Canoe Creek Mine, Blair County, PA

Pre-WNS Myotis lucifugus female 4/16/05 Canoe Creek Mine, Blair County, PA

WNS Myotis lucifugus female 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus female 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus male 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus male 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus male 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus female 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus female 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus male 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus male 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis lucifugus male 2/26/11 Hellhole Cave, Pendelton County, WV

WNS Myotis septentrionalis unknown 1/7/11 Lincoln Cavern, Huntington County, PA

doi:10.1371/journal.pone.0119668.t001
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cytochrome c (charge state 15, Sigma Aldrich) in a 65/35 (vol/vol) acetonitrile/0.2% formic
acid aqueous solution with Tune Plus software version 1.0. Ion spectra from 150–2,000m/z
were collected in positive ion mode. In cases where there was a high background, the ion spec-
tra observation range was reduced. The automated instrument scan cycle consisted of two seg-
ments. The first segment had two profile mode MS1 scans: one full scan in the IT mode with
200 ms max fill time; one full scan in the FT cell (50,000 resolution) with 8 sec max inject time.
This was followed by an MS1-dependent tandem mass (MS/MS) acquisition which consisted of
9 scans in a cycle with a Δm/z = 3 isolation window. The top 9 most abundant peaks in the MS1

scan were sequentially isolated and fragmented by applying collision induced dissociation
(CID) energy using nitrogen as the collision gas. Ion peaks that had been selected twice were
excluded and not fragmented again in subsequent cycles in order to cover as many individual
ions as possible. These data-dependent MS/MS scans (IT mode, profile spectra) consisted of a
maximum 500 ms fill time, 35% normalized collision energy, 0.25 activation Q, and 0.05 s

Fig 1. Microscopy ambient ionizationmass spectrometry of bat wings. Tissue samples from the wings of healthy bats and individuals with white-nose
syndrome were subjected to microscopy ambient ionization mass spectrometry (A). Pseudogymnoascus destructans infection was confirmed by the
presence of fluorescent lesions when the tissue was excited with UV light (B). A nanoDESI source was used to desorb analytes from fluorescent tissue
regions for MS analysis (capillary junction making contact with the tissue surface, C).

doi:10.1371/journal.pone.0119668.g001
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activation time. Each scan contained 4 microscans and was recorded in average. Data were ac-
quired for 10 minutes.

Molecular Networking
The structural relationships between different masses in MS1 scans (precursor ions) were
mapped in Cytoscape version 2.8.3 based on the similarity of their tandemMS fragmentation
patterns as assessed through molecular networking using the web-based Global Natural Prod-
ucts Social Molecular Networking tool (GNPS; http://gnps.ucsd.edu/)[23–25]. A cosine cutoff
of 0.6 was selected for generation of the network. Background signals arising from solvents or
agar were subtracted during the network processing stage. The network was then imported
into Cytoscape for visualization. Precursor ions were represented by nodes and the similarity
between two precursor ions as determined by comparison of their fragments/cosine score was
represented as an edge between two nodes. The magnitude of the cosine score was represented
by edge thickness with pairs of compounds with high scores having thicker lines. A search of
the publicly curated GNPS standards library was also performed to determine if any of the
masses represented in the network matched to known compounds that we had not considered
in our analysis. All data files used in the generation of the network were deposited in the GNPS
MassIVE data repository and are publicly available (MassIVE ID MSV000078620).

Seeding the Network with Desferrichrome, Ferrichrome, and
Triacetylfusarinine C Standards
Iron-free ferrichrome (Santa Cruz Biotechnology), ferrichrome (Iron-free ferrichrome with the
addition of iron (III) chloride hexahydrate), and triacetylfusarinine C (EMC microcollections
GmbH) were used as standards to verify the molecular assignment of the siderophores in the
tissue samples through a process known as dereplication [25]. The solubilized standards were
introduced directly into the MS inlet with a Triversa nanomate-electrospray ionization source
and analyzed using the data-dependent method described above. A molecular network was
then generated using the data files from the standards, fungal extracts, and tissue samples. The
nodes correlated with the standard data files were examined to establish if they (1) clustered
with experimental nodes or (2) were incorporated into consensus nodes that also included ex-
perimental files. Following this neighborhood analysis, the spectra were manually examined
and the fragmentation of the raw spectra evaluated for similarity. Through this analysis it was
possible to definitively determine whether or not desferrichrome, ferrichrome and triacetylfu-
sarinine C were detected from the wing surfaces and/or from fungal cultures.

Results and Discussion

Detection of fungal metabolites on bat wings by fluorescence
microscopy ambient ionization mass spectrometry and molecular
networking
Fluorescent microscopy ambient mass spectrometry of bat wings, extracts from cultured
P. destructans, and commercial standards generated a large number of MS/MS spectra. These
spectra were subjected to molecular networking [23,25] giving rise to a network comprised of
1,503 nodes representing precursor ions derived from intact chemical compounds and 2,463
edges representing their structural relationships (Fig. 2A; S1 Fig.). Each node was colored with
respect to the sample type(s) from which it derived. The resulting molecular network provides
a visual picture of the diversity and origin of MS/MS spectra that were collected.
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The network highlighted a number of molecules that were present on the wings of bats with
WNS that were not detected from healthy bats and vice versa. These distinct chemical signa-
tures were found to be due to the presence of fungal metabolites on the WNS wings. Individual
variation and a host response to infection likely also contribute the observed difference. Several
of the MS/MS spectra from the experimental samples matched those of known fungal metabo-
lites and these nodes were inspected in further detail.

In the first node we inspected, spectra from fungal extracts matched to a compound in the
GNPS standards library, the mycotoxin citrinin, indicating that P. destructans may have the ca-
pacity to produce citrinin or a citrinin-like molecule (S2A, S2B Fig.). This skin-permeable
nephrotoxin is known to be produced by fungi of the genera Penicillium,Monascus, and Asper-
gillus [26–27]. A protein blast of the P. destructans genome using the citrinin polyketide

Fig 2. Detection of siderophores on the wings of bats with white-nose syndrome via molecular networking.Molecular networking of the MS/MS data
was used to determine the structural relationships between the metabolites detected from wing surfaces, cultured Pseudogymnoascus destructans, and
commercial siderophore standards. The siderophores desferrichrome (m/z 710.324) and ferrichrome (m/z 763.230) were observed from the wings of bats
with white-nose syndrome and from cultured P. destructans and formed consensus nodes with commercial standards (A,B). Triacetylfusarinine C (m/z
928.344) was also present onWNS wings and in the P. destructans colony (C). None of the three siderophores were detected on the wings of healthy bats. In
A and C insets only the node with them/z of interest and its first and second neighbors have been displayed from the overall cluster for simplicity.

doi:10.1371/journal.pone.0119668.g002
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synthase fromMonascus purpureus as the query revealed a homologous sequence with 44%
identity. (S2C Fig.). It may be interesting to evaluate the overall ability of the fungus to produce
mycotoxins in the future and to evaluate the contributions of any such molecules
to pathogenicity.

Another node was a match for the fungal siderophore desferrichrome (m/z 710.324,
Fig. 2A). Siderophores are microbial iron-chelating molecules that are either retained intracel-
lularly as a means of iron storage or are of a diffusible type that gather ferric iron from the ex-
tracellular environment and are then retrieved by the organism [28]. The node incorporated
scans fromWNS wings, the cultured P. destructans colony, and the desferrichrome standard;
scans from the wings of healthy bats were not included (Fig. 2A). Manual inspection of the
MS/MS fragmentation data for these precursors confirmed that the pattern observed from the
WNS wings and the fungal colony matched that of the commercial desferrichrome standard
(S3 Fig.). This indicates that the masses observed from the cultured fungus and on the wing
skin of infected bats derive from desferrichrome and that, presumably, P. destructans is pro-
ducing this siderophore during its colonization of bats. When the signal for the siderophore
was analyzed in a targeted fashion, by performing MS/MS directly on the isolated parent ion
during microscopy nanoDESI analysis, desferrichrome was detected on 10 of the 11 WNS bats
and was virtually undetectable in all of the samples from healthy bat wings (ANOVA, p =
0.025; Fig. 3; S4 Fig.). In addition, the iron-chelated form of the molecule, ferrichrome, was de-
tected (m/z 763.230, Fig. 2B; S5 Fig.). This indicates that there is sufficient iron present on bat
wings to be chelated by the siderophore.

A second siderophore, triacetylfusarinine C, was also detected by molecular networking
(Fig. 2C). A node withm/z 928.344 incorporated scans from aWNS wing and the cultured
P. destructans colony and clustered with triacetylfusarinine C standard nodes. Manual inspec-
tion of the tandem mass spectra confirmed that the node derived from the fragmentation of
triacetylfusarinine C, although it failed to form a consensus node with the standard under the
molecular networking parameters selected (S6 Fig.). This indicates that this siderophore is also
produced by P. destructans during infection.

Interrogation of the P. destructans genome for secondary metabolite enzymes involved in
siderophore biosynthesis and imaging mass spectrometry of the cultured P. destructans colony
further support the production of ferrichrome and triacetylfuarinine C by the fungus
(S1 Supporting Information; S7 Fig.; S1 Table). In the absence of a controlled laboratory exper-
iment in which bats are analyzed before and after infection with P. destructans, it cannot be un-
equivocally stated that the observed metabolites are produced by P. destructans since other
fungi also have the ability to form these siderophores. However, this seems unlikely given the
marked difference we observe between WNS and healthy wings and we hypothesize that
P. destructans requires iron in order to grow and mount infection and therefore produces side-
rophores during its colonization of bats.

Microbes require iron as a cofactor in redox reactions involved in a variety of cellular pro-
cesses. Consequently, a large part of the host response to infection centers on limiting the
amount of iron available to invading microbes [29–32]. Because of this, the amount of available
iron is, in general, sub-optimal for microbial growth [30,33]. Whether this is the case for hiber-
nating bats is unknown.

High-affinity siderophores are important for satisfying microbial iron demand in the face of
host defenses and a number of investigations have demonstrated that they are essential for
growth and virulence [34–38]. In addition, production of hydroxamate siderophores is a fea-
ture of the dermatophytic pathogenic fungiMicrosporum and Trichophyton and ferrichrome-
type siderophores, specifically, have been demonstrated to be necessary for epithelial invasion
by C. albicans in an in vitromodel of oral candidiasis [39–40]. Our detection of fungal
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siderophores on wings of bats with WNS suggests that these molecules may have a role in in-
fection and/or tissue invasion.

Because of the importance of iron in microbial infections, a number of antimicrobial strate-
gies that target siderophores have recently emerged. These include efforts that link antibiotics
or antifungals to siderophores to mediate their uptake, inundation with irrelevant siderophores
that the organism cannot use or analogues that cannot bind iron, addition of iron chelators
such as EDTA, and disruption of endogenous siderophore pathways through the blocking of
biosynthetic enzymes or transporters [41–44]. We contend that such methods of iron depriva-
tion should be investigated for their effectiveness against P. destructans infection.

Conclusion
Here we used fluorescence microscopy ambient mass spectrometry in combination with mo-
lecular networking to detect metabolites directly from the wing skin of bats with WNS. The ap-
proach established the presence of fungal siderophores on infected bat wings. Siderophores are
important for fungal growth and virulence and methods that interfere with their biosynthesis
or activity may prove effective in limiting P. destructans infection.

Fig 3. Statistical analysis of desferrichrome daughter ion intensity among healthy and diseased bat
wings. Analysis of variance (ANOVA) of the absolute intensities of the desferrichrome daughter ion,m/z 650
(neutral loss of C2H4O2), observed onWNS and healthy bat wings (See also S4 Fig.). A ± 3m/z ion window
was allowed when selecting the precursor,m/z 710. Differences in the absolute intensities of the daughter
ions among 10 of the 11WNSwings and 5 healthy wings were statistically significant (p = 0.025). On the
eleventhWNS wing, no ions within them/z 710 ± 3m/z range was selected for fragmentation by the
automatic data-dependent method due to low ion intensity and the sample could therefore not be included in
the plot.

doi:10.1371/journal.pone.0119668.g003

Metabolomic Profiling of Bats with White-Nose Syndrome

PLOSONE | DOI:10.1371/journal.pone.0119668 March 17, 2015 8 / 12



Supporting Information
S1 Table. Comparison of known siderophore biosynthetic enzymes to putative Pseudogym-
noascus destructans proteins.
(XLSX)

S1 Fig. Molecular network composition. The molecular network was composed of nodes that
incorporated MS/MS scans from only a single sample type as well as consensus nodes that in-
corporated spectra from different experimental sample types. The number of nodes in each cat-
egory and their relationships to each other are conveyed in a Venn diagram.
(TIF)

S2 Fig. Potential for production of the mycotoxin citrinin by Pseudogymnoascus destruc-
tans. A comparison of the data to a library of standards from the Global Natural Products So-
cial Molecular Networking database resulted in a putative match, citrinin, to the P. destructans
culture extract (A,B). A protein blast of the P. destructans genome using the polyketide
synthase responsible for citrinin biosynthesis as the query returned a homologous amino acid
sequence (C).
(TIF)

S3 Fig. Comparison of desferrichrome fragmentation among standards and samples.MS/
MS of the desferrichrome standardm/z 710 (A). The MS/MS fragmentation patterns from the
P. destructans colony (B) and WNS wing (C) matched the fragmentation of the
standard precursor.
(TIF)

S4 Fig. Variation in the intensity of desferrichrome daughter ionm/z 650 detected from
white-nose syndrome wing samples. In cases where desferrichrome precursor ions display
high intensities relative to other metabolites, their fragmentation patterns will be less compli-
cated and they will have a greater cosine correlation with the standard (A). When the intensi-
ties of the desferrichrome ions are less intense, background noise or peaks from other
compounds of similar mass may be fragmented along with them resulting in more complicated
MS/MS spectra and a lower cosine correlation with the standard even though the molecule is
present (B).
(TIF)

S5 Fig. Comparison of ferrichrome fragmentation among standards and samples. FT-MS/
MS of ferrichrome Fe3+ complex standardm/z 763 (A). The IT-MS/MS fragmentation patterns
form/z 763 from the P. destructans colony (B) and WNS wings (C) matched the fragmentation
of the standard precursor.
(TIF)

S6 Fig. Comparison of triacetylfusarinine C fragmentation among standards and samples.
FT-MS/MS of triacetylfusarinine C Fe3+ complex standardm/z 928 (A). The IT-MS/MS frag-
mentation patterns form/z 928 from the P. destructans colony (C) and WNS wings (D)
matched the fragmentation of the standard precursor.
(TIF)

S7 Fig. Imaging mass spectrometry of Pseudogymnoascus destructans colonies. P. destruc-
tans was grown directly on ISP2 agar (Ai) or on top of a permeable membrane overlaid on agar
(Aii) which was later removed for IMS analysis. Colonies and agar were excised and placed on
a MALDI target plate along with a portion of plain agar which served as a negative control (B).
Aerial hyphae were removed from the P. destructans colony grown directly on the agar, and
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the membrane and P. destructans colony were removed from the second sample to reveal the
agar underneath (C). Several metabolites were observed to be associated with the fungal colony
(Di) or secreted into the agar underneath it (Dii). Among the metabolites for which ions were
observed were the siderophores desferrichrome and triacetylfusarinine C.
(TIF)

S1 Supporting Information. Supporting Methods and Results for Imaging Mass Spectrom-
etry and Genomic Analysis.
(PDF)
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