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Objective. To identify the incremental value of magnetic resonance imaging (MRI) features beyond key molecular biomarkers for
the risk stratification of high-grade gliomas (HGGs).Methods. A total of 241 patients with preoperative magnetic resonance (MR)
images and clinical and genetic data were retrospectively collected from our institution and.e Cancer Genome Atlas/.e Cancer
Imaging Archive (TCGA/TCIA) dataset. Radiomic features (n� 1702) were extracted from both postcontrast T1-weighted (CE-
T1) and T2-weighted fluid attenuation inversion recovery (T2FLAIR) MR images. .e least absolute shrinkage and selection
operator (LASSO) method was used to select effective features. A multivariate Cox proportional risk regression model was
established to explore the prognostic value of clinical features, molecular biomarkers, and radiomic features. Kaplan–Meier
survival analysis and the log-rank test were used to evaluate the prognostic model, and a stratified analysis was conducted to
demonstrate the incremental value of the radiomics signature. A nomogram was developed to predict the 1-year, 2-year, and 3-
year overall survival (OS) probabilities of the patients with HGGs. Results..e radiomics signature provided significant prognostic
value for the risk stratification of patients with HGGs. .e combined model integrating the radiomics signature with clinical data
(age) and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status had the best prognostic value, with
C-index values of 0.752 and 0.792 in the training set and external validation set, respectively. Stratified Kaplan–Meier survival
analysis showed that the radiomics signature could identify the risk subgroups in different clinical and molecular subgroups.
Conclusion. .is radiomics signature can be used for the risk stratification of patients with HGGs and has incremental value
beyond key molecular biomarkers, providing a preoperative basis for individualized diagnosis and treatment decision-making.

1. Introduction

High-grade gliomas (HGGs) are the most common primary
adult brain malignancy of the central nervous system (CNS),
and they comprise 2 World Health Organization (WHO)
grades (grade III-IV gliomas) [1, 2]. .e prognosis of pa-
tients with HGGs is poor despite the best available therapies.
Patients with higher pathological grades experience a worse
prognosis; for those with grade III gliomas, the five-year
survival rates range from 27.3% to 52.2%, and for those with
grade IV gliomas, the five-year survival rate is just 5% [3].
However, some HGGs with the same pathological grade

have significant differences in curative efficacy and prog-
nosis, and this is closely related to tumour genotyping.
Tumours with isocitrate dehydrogenase (IDH) mutations
are associated with a better survival outcome than those with
wild-type IDH genes, independent of pathological grade
[4, 5], and patients with grade III gliomas with wild-type
IDHmay even have a worse prognosis than those with grade
IV gliomas with IDH mutations [6]. IDH has important
diagnostic and prognostic value, making it a classification
indicator in the WHO diagnostic criteria for gliomas [7]. In
addition, MGMT as a key DNA repair protein has assisted
chemotherapy decision-making and its methylation status is
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a prognostic predictor. HGGs with methylated MGMT
exhibited good responses to temozolomide (TMZ) che-
motherapy and are associated with improved survival out-
comes after treatment [8, 9]. At present, IDH andMGMTare
the most important molecular biomarkers for the prognostic
evaluation of patients with HGGs [10].

Parallel to developments in the molecular classification
of HGGs, magnetic resonance imaging (MRI), as a powerful
noninvasive diagnostic imaging tool, provides the potential
opportunity for preoperative risk evaluations in patients
with HGGs. Radiomics has recently emerged as a promising
field of research based on the hypothesis that quantitative
analysis of medical images can capture additional infor-
mation that helps infer phenotypes and gene-protein sig-
natures and provide prognostic information [11, 12]. More
recently, radiomics has been used to identify brain abscess
from cystic gliomas [13], predict the molecular subtypes of
HGGs (such as IDH [14, 15] and MGMT [16] status), assess
the antiangiogenic treatment response of recurrent glio-
blastomas (GBMs) [17], and stratify the risk of patients with
GBMs [18]. Previous radiomics analysis of GBMs has shown
that the radiomics signature holds better prognostic value
than clinical and radiological risk models in predicting
survival [18]. .e latest research further supports that the
radiomics signature improves the stratification of patients
with GBMs beyond the presence of MGMT molecular
biomarkers [19]. However, the prognostic value of the
radiomics signature has been demonstrated only in patients
with GBMs, and those with grade III gliomas were not
involved. Moreover, the key molecular biomarkers (IDH
and MGMT) were not compared or integrated into the
radiomics analysis. .e incremental prognostic value of the
radiomics signature needs further investigation through a
comprehensive and stratified risk analysis.

In this study, 241 patients with HGGs from our insti-
tution and the TCGA/TCIA dataset were retrospectively
investigated. We explored the possibility of using radiomic
features extracted from preoperative MR images to stratify
the risk of patients with HGGs and investigated the incre-
mental prognostic value of the radiomics signature beyond
key molecular biomarkers and clinical characteristics.
Furthermore, a radiomics nomogram that incorporated both
clinical and genetic factors and the radiomics signature was
developed to predict the overall survival (OS) probability of
individual patients with HGGs.

2. Materials and Methods

2.1. Patients. .is retrospective study included patients with
histologically confirmed WHO grade III-IV gliomas from
our institutions, including the First Hospital of Shanxi
Medical University (FHSXMU) and Shanxi Provincial
People’s Hospital (SPPH), and the TCGA/TCIA project.
.is retrospective study at our institution was conducted
following approval by the Shanxi Medical University in-
stitutional review board. Under TCGA/TCIA data-use
agreements, as the patients had been previously deidentified
and their relevant information was available for public
download, analysis of this cohort was exempt from

institutional review board approval. All 526 patients with
pathologically confirmedHGGs in our institution during the
period from 10/2011 to 7/2020 were enrolled and screened.
A total of 351 HGGs from two subdatasets of the TCGA/
TCIA project were collected and screened including the
TCGA-LGG and TCGA-GBM datasets. All the patients
identified in this study met the following criteria: (i)
pathologically confirmed grade III-IV gliomas according to
current WHO criteria, (ii) available preoperative MRI data
consisting of CE-T1 and T2FLAIR images, (iii) confirmed
IDH and MGMT statuses, and (iv) a follow-up time longer
than 2 years or an endpoint event (met the requirements for
overall survival analysis). Overall survival was calculated
from the time of the postoperative pathological diagnosis
until death or the last follow-up. Ultimately, 241 patients
who met the inclusion criteria (134 from FHSXMU/SPPH
and 107 from the TCGA/TCIA dataset) were enrolled in the
risk stratification study. A flowchart of the patients included
and the reasons for exclusion from the risk stratification
analysis are shown in Figure 1.

In addition, preoperative MRI was performed at our
institution with a 3.0T scanner (Signa HDxt, GE Healthcare,
USA) using an 8-channel array coil. .e acquisition protocol
included CE-T1 (repetition time/echo time, 195ms/4.76ms;
field of view, 240mm; thickness/slice interval, 5.0mm/
1.5mm; and matrix, 256× 256) and T2FLAIR (repetition
time/echo time, 8000ms/95ms; field of view, 240mm;
thickness/slice interval, 5.0mm/1.5mm; and matrix,
256× 256) images. .e CE-T1 was performed after the in-
jection of 0.1mmol/kg gadolinium chelate contrast medium.

2.2. IDH Genotyping and MGMT Methylation Testing.
For patients in the TCGA/TCIA cohort, IDH1/2 mutation
andMGMTmethylation data were downloaded from TCGA
and cBioPortal for Cancer Genomics (https://www.
cbioportal.org/study.do?cancer_study_%
20id=lgggbm_tcga_pub). For patients at our institution,
IDH1/2 mutation status was determined by Sanger se-
quencing. After dewaxing, each tumour specimen was
histologically investigated by microdissection to guarantee a
tumour cell content of at least 80%, while DNA was
extracted using the Simlex OUP® FFPE DNA extraction kit
(TIB, China) and quantified by spectrophotometry using a
NanoDrop 2000 (.ermo Fisher Scientific, USA). Genes
were amplified using PCR ABI9700 Life Technologies
(.ermo Fisher Scientific, USA). Gene-specific primers
(Primer-blast, NCBI) for IDH1 were F:
5′CGGTCTTCAGAGAAGCCATT3′ and R:
5′GCAAAATCACATTATTGCCAA3′ and those for IDH2
were F: 5′CAAGAGGATGGCTAGGCGAG3′ and R:
5′CAAGCTGAAGAAGATGTGGAAAAG3′. Sanger se-
quencing was performed by ABI3500 Life Technologies
(.ermo Fisher Scientific, USA). As described in our pre-
vious study [20], MGMT methylation was evaluated using
pyrosequencing analysis [21]. Bisulphite modification of the
extracted DNA was performed using the BisulFlash™ DNA
modification kit (Epigentek, USA). PCR amplification was
accomplished with a DRR006 kit (Takara, Japan) using a
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40 μl reaction volume. .e PCR conditions were as follows:
94°C for 2min; 50 cycles at 94°C for 20 s, 55°C for 20 s, 72°C
for 20 s, and 72°C for 5min. A 25 μl volume of the PCR
product was subjected to pyrosequencing on a PyroMark
Q96 (Qiagen, Germany). Pyrosequencing yielded data for 10
CpG sites within the MGMT promoter, and the percentage
methylation obtained for each CpG was averaged across the
10 CpGs in PCRs. Tumours were considered to be meth-
ylated if the average methylation was ≥8%, and unmethy-
lated cases had average methylation <8% [22].

2.3. Tumour ROI Segmentation. .e T2FLAIR MR images
were coregistered to the corresponding CE-T1 MR images
using affine transformation through FSL software (FMRIB
software library; FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSL). To ensure the region of interest (ROI) delineation
accuracy, manual segmentation was performed in a blinded
fashion by 2 radiologists with 10 and 15 years of work
experience..e final ROI was determined as the overlapping
area of the segmentation results from the two radiologists
and was validated by a senior radiologist with 20 years of
experience. For the ROI of the enhanced tumour, the en-
hanced rim was the border of the tumour area, and the ROI
of the tumour was delineated on CE-T1MR images and then
transferred to T2FLAIR MR images. For the ROI of
unenhanced tumours, the intensity of the tumour was lower
than that of peritumoral edema on CE-T1 MR images, and
the ROI of the tumour was delineated on CE-T1 MR images
and then transferred to T2FLAIR MR images. If the border
of the tumour area was not very clear both on either CE-T1
or T2FLAIR MR images, we combined DWI and ADC MR
images (if available) to define the borders. Tumour intensity
was higher than peritumoral edema intensity on DWI MR
images and lower than peritumoral edema intensity on ADC

MR images. An ROI segmentation example for enhanced
tumour and unenhanced tumour was shown in Figure 2 to
highlight the segmentation details. To evaluate the stability
and reproducibility of radiomic features, interrater analysis
was carried out based on the segmentation results by the
former two radiologists, and the interclass correlation co-
efficient (ICC) was used as a measure of the measurement
index.

2.4. MRI Radiomic Feature Extraction. To generate well-
defined input for the radiomic feature extraction, image
resampling and image intensity normalization were con-
ducted on CE-T1 and T2FLAIR MR images for all cases in
both our institution and the TCGA/TCIA dataset using an in-
house MATLAB (.e MathWorks, Natick, MA) process. A
total of 1702 radiomic features were extracted from the tu-
mour ROI of well-defined CE-T1 and T2FLAIR MR images.
Each MR sequence contains 851 features including 18 first-
order features, 14 shape features, 75 texture features (con-
sisting of 24 grey-level co-occurrence matrix (GLCM) fea-
tures, 14 grey-level dependence matrix (GLDM) features, 16
grey-level run length matrix (GLRLM) features, 16 grey-level
size zone matrix (GLSZM) features, and 5 neighbourhood
grey-tone dependency matrix (NGTDM) features), and 744
wavelet features derived from first-order and texture features
based on the wavelet filter MR image. Radiomic feature ex-
traction was carried out using the feature extraction function
of the open source software FAE (https://github.com/
salan668/FAE), which is based on the PyRadiomics pack-
age (https://github.com/Radiomics/pyradiomics).

2.5. Statistical Analysis. .e FHSXMU/SPPH data from our
institution were used as the training set to build the prog-
nostic model, and the TCGA/TCIA data were used as an

HGG for risk stratification analysis
(n = 134)

HGG for exteranal validation of our risk
stratification analysis

(n = 107)

HGG with IDH and MGMT status
(n = 225)

HGG with IDH and MGMT status
(n = 153)

HGG with preoperative MRI including
CE-T1 and T2FLAIR sequences with

good image quality
(n = 234)

HGG with preoperative MRI including
CE-T1 and T2FLAIR sequences with

good image quality
(n = 340)

FHSXMU/SPPH data of high-grade
gliomas(HGG from 10/2011 to 7/2020)

(n = 526)

High-grade gliomas in TCGA-LGG
and TCGA-GBM set

(n = 351)

�e following-up time was less than 2
years when the endpoint even did

not occur or missing overall
survival (OS) information (n = 91)

�e following-up time was less than 2
years when the endpoint even did

not occur or missing overall
survival (OS) information (n = 46)

Failed to obtain tissue wax
blocks of tumors (n = 115)

Missing at least one gene status
(IDH, MGMT) (n = 81)

Missing at least one MRI sequences
(CE-T1, T2FLAIR) or with obvious

motion artifacts (n = 117)

Missing at least one MRI sequences
(CE-T1, T2FLAIR) or with obvious

motion artifacts (n = 186)

Figure 1: Flowchart of the patients with HGG included and excluded for the risk stratification analysis.
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external validation set to further evaluate the prognostic
model. For continuous variables, Student’s t-test or the
Mann–Whitney U test was used to assess the statistical
significance of differences. For categorical variables, Pear-
son’s chi-square or Fisher’s exact test was used. We per-
formed the statistical analysis with SPSS, version 23.0 (SPSS
Inc., Chicago, IL, USA) and R software, version 3.4.1
(https://www.R-project.org). A two-sided p value less than
0.05 was considered statistically significant.

To verify the stability and robustness of the radiomic
features, features with an ICC lower than 0.8 were removed
for further analysis. .en, the remaining stable features were
normalized by a z-score transformation and screened as
follows: First, a univariate Cox regression analysis was used
to eliminate nonsignificant features with p values >0.05.
Subsequently, the least absolute shrinkage and selection
operator (LASSO) in the Cox proportional hazards re-
gression model was used to select the optimal features. .e
tuning parameter λ as the global regularization parameter
was identified via 10-fold cross-validation to shrink the
coefficients of useless features to zero. Ultimately, the se-
lected features were integrated into a radiomics signature,
and the radiomics score (Rad-score) was also calculated for
each patient via a linear combination of the final selected
features with their respective weight coefficients. .e
prognostic predictive performance was assessed on the
training set and validated on the independent external
validation set using the C-index. Kaplan–Meier survival
analysis and the log rank test were used to evaluate the
performance of the radiomics signature. Patients in the
training and validation sets were classified into low-risk and
high-risk groups according to a fixed cut-off value. In ad-
dition, a stratified analysis was conducted in different clinical
subgroups and molecular subgroups to demonstrate the
prognostic value of the radiomics signature on the training
and validation sets. .e above process was realized by using
the survival package and glmnet package of R software.

.e univariate Cox model was used to assess the asso-
ciation between each clinical risk factor and OS. A multi-
variate Cox model with stepwise forward selection was
performed to construct a clinic-genetic model using the
minimum Akaike information criterion (AIC) as a model
selection criterion. .e C-index and net reclassification
index (NRI) were used to assess the incremental value of the
radiomics signature to clinic-genetic risk factors. Finally, a

radiomics nomogram was constructed by incorporating the
radiomics signature and independent clinic-genetic risk
factors into the multivariate Cox model. .e calibration
curve was used to assess the agreement between the pre-
dicted survival probabilities and the actual survival. Decision
curve analysis was performed to compare the clinical use-
fulness of the radiomics model, clinic-genetic model, and
combined model.

3. Results

3.1. Patient Characteristics. In this study, 134 patients from
our institution (FHSXMU/SPPH) and 107 patients from the
TCGA/TCIA dataset were included. .e characteristics of
the patients are shown in Table 1. .ere were no significant
differences between the training set and the external vali-
dation set in terms of age, sex, MGMTpromoter methylation
status, and OS (p� 0.212–0.986). However, there were sig-
nificant differences between the two datasets in pathological
grade and IDH genotype (p� 0.008 and p� 0.006, respec-
tively). .ese differences should be due to the uneven dis-
tribution of the data in the training set and external
validation set. GBM accounted for the majority (66.4%) of
the HGGs in the TCGA/TCIA dataset, while GBM
accounted for 49.3% of the HGGs in our dataset.

3.2. MRI Features and Radiomics Signature Construction.
Univariate Cox regression yielded 348 radiomic features for
CE-T1 MR images and 54 radiomic features for T2FLAIR
MR images. To select the best radiomic features and address
the issue of overfitting, a LASSO Cox proportional risk
regression model was adopted. Finally, at the minimum λ
value, 19 MRI radiomic features (9 features from CE-T1, 10
features from T2FLAIR) with nonzero coefficients were
retained (Figure 3), and the radiomics risk prediction model
was established (Figure 4).

.e constructed radiomics signature is as follows:
Signaturet1.post + flair � −0.19006∗ t1.post_original_

glszm_LargeAreaLowGrayLevelEmphasis+0.17586 ∗
t1.post _original_shape_Maximum2DDiameterColumn
+0.30471 ∗ t1.post_wavelet.HHH_glszm_LargeAreaHigh
GrayLevelEmphasis +1.09819 ∗ t1.post_wavelet.HHL_
glszm_GrayLevelNonUniformity +0.06513∗ t1.post_-
wavelet.HLH_glszm_SizeZoneNonUniformityNormalized
−0.00665 ∗ t1.post_wavelet.LHL_glszm_GrayLevel
NonUniformity +0.04822∗ t1.post_wavelet.LLH_
glcm_Imc1 +0.23107∗ t1.post_wavelet.LLH_ngtdm_Busy-
ness +0.44740478 ∗ t1.post_wavelet.LLL_glcm_Imc1
+0.21320 ∗ flair_original_firstorder_10Percentile
+0.25211∗ flair_original_firstorder_Minimum
-0.19597∗ flair_wavelet.HHH_glcm_Correlation + 0.07843
∗ flair_wavelet.HHL_gldm_LargeDependenceHighGray
LevelEmphasis +0.06384∗ flair_wave-
let.HHL_gldm_SmallDependenceLowGrayLevelEmphasis
−0.16457∗ flair_wavelet.HLL_firstorder_Mean −0.25002∗
flair_wavelet.LHL_gldm_DependenceNonUniformity Nor-
malized +0.16635∗ flair_wavelet.LHL_glszm_SizeZone-
NonUniformityNormalized +0.27067 ∗

Enhanced
tumor area

Unenhanced
tumor area

Figure 2: Delineation details of the ROI of enhanced and unen-
hanced tumours.
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Table 1: Patient characteristics in the training set and external validation set.

Characteristic Training set (N� 134) Ex-validation set (N� 107) p value
Age (year) 54 (43–62) 53.93± 15.54 0.212
Gender 0.216
Female 52 (38.8%) 50 (46.7%)
Male 82 (61.2%) 57 (53.3%)

Histology 0.008
Non-GBM 68 (50.7%) 36 (33.6%)
GBM 66 (49.3%) 71 (66.4%)

IDH genotype 0.006
Wild type 76(56.7%) 79 (73.8%)
Mutation 58(43.3%) 28 (26.2%)

MGMT promoter 0.986
Unmethylation 54 (40.3%) 43 (40.2%)
Methylation 80 (59.7%) 64 (59.8%)

Overall survival (day) 466.5 (253.75–927.25) 508 (254v958) 0.816
Note. GBM: glioblastoma; IDH: isocitrate dehydrogenase; MGMT: O6-methylguanine methyltransferase. .e training set was from our institution, and the
external validation set was from the TCGA/TCIA dataset. A p value <0.05 was considered a significant difference.
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Figure 3: Dimension reduction of radiomic features in the LASSO Cox model.
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Postcontrast axial T1-weighted (CE-T1)� t1.post; T2-weighted fluid attenuation inversion recovery (T2FLAIR)� flair.
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flair_wavelet.LLL_firstorder_Minimum +0.16745∗
flair_wavelet.LLL_glcm_Idmn

3.3. Evaluationof the Prognostic Performance of theRadiomics
Model. .e prognostic predictive performance of the
radiomics model, as evaluated by the C-index, was 0.745 on
the training set and 0.750 on the independent external
validation set. .e radiomics risk score of each patient was
calculated according to the radiomics signature, and the
patients were divided into a high-risk group and a low-risk
group based on a cut-off value (median� 1.071).
Kaplan–Meier survival analysis, combined with the log-rank
test, showed that the radiomics model achieved significant
prognostic value in stratifying the high-risk and low-risk
groups (p< 0.0001 for both the training set and the inde-
pendent external validation set) (Figure 5).

3.4. Establishment of a Clinical-Genetic Model and Com-
parison with the Radiomics Model. A clinical-genetic model
was constructed by using the multivariate Cox regression
model with the minimum AIC as the model selection cri-
terion. .e clinical and genetic variables finally selected are
shown in Figure 6, and the C-indexes of the clinical-genetic
model were 0.660 and 0.730 with the minimum AIC in the
training set and external validation set, respectively..eNRI
was used to compare the 3-year survival prediction gains of
the radiomics model and the clinical-genetic model. .e
patients were divided into high-risk and low-risk groups by
the median (0.792) of the predicted values of the radiomics
model..e NRI was 0.127 (95% CI: −0.005–0.398, p< 0.001)
in the radiomics model versus the clinical-genetic model.

3.5. Stratified Kaplan–Meier Survival Analysis of the Radio-
mics Model. When the stratified analysis was performed,
significant discrimination of the radiomics model between
the OS of the high-risk and low-risk groups was observed in
different clinical subgroups and molecular subgroups
(Figure 7). Based on different clinical (age and grade) and
molecular (MGMT promoter methylation status and IDH
genotype) risk factors, the radiomics model could further
stratify the high-risk and low-risk groups in the training set
and external validation set, and significant differences were
observed with the log-rank test. Among the subgroups based
on gender, tumour grade, andMGMTpromotermethylation
status, the p values in the training set and validation set were
all less than 0.0001. In the training set of the age subgroup,
the p value was less than 0.0001 for the younger group and
0.0043 for the older group. In the validation set of the age
subgroup, the p value for the younger group was 0.0087, and
that for the older group was 0.0017. In the IDH subgroup,
the p values for the wild-type IDH groups in the training set
and the validation set were both less than 0.0001, while for
the IDH mutation group in the validation set, the p value
was 0.24.

3.6. Nomogram of the Combined Model. .e nomogram
incorporating the radiomics signature, MGMT promoter

state, and age for OS prediction is illustrated in Figure 8..e
Schoenfeld residuals method was used to test the nomo-
gram’s proportional hazards assumption, and the results
were χ2 � 26.643 and p� 0.183. Calibration curves showed
good agreement between the predicted 1-year, 2-year, and 3-
year survival probabilities and the actual outcomes for the
combined model, especially in the validation set (Figure 9).
Compared with the clinical-genetic model (C-index of 0.660
and 0.73 in the training set and validation set, respectively),
the radiomics model had higher C-indexes (0.745 and 0.750
in the training set and validation set, respectively). .e
multivariate Cox model combining the radiomics signature
and clinical-genetic factors had the best prognostic pre-
diction performance (C-index of 0.752 and 0.792 in the
training set and validation set, respectively) (Figure 10).
Furthermore, the integration of the radiomics signature into
the clinical-genetic model yielded an NRI of 0.153 (95% CI:
0.009–0.396; p< 0.001), which showed improved classifi-
cation accuracy for survival prediction.

Decision curve analysis showed that if the threshold
probability was higher than 25%, the predictive performance
was highest for the combined model, followed by the
radiomics model and then the clinical-genetic model
(Figure 11).

4. Discussion

In our study, a comprehensive radiomics analysis integrating
MRI features, clinical characteristics and genetic informa-
tion was performed to preoperatively predict the risk
stratification of patients with HGGs..e results showed that
the radiomics signature provided significant prognostic
value for HGGs, and the combined model integrating the
radiomics signature with age and MGMT promoter meth-
ylation status achieved the best prognostic predictive per-
formance. Moreover, the incremental prognostic value of the
radiomics signature beyond key molecular biomarkers and
clinical characteristics was also confirmed through a strat-
ified analysis. Finally, a nomogram incorporating both the
clinical-genetic characteristics and radiomics signature was
established to individually predict the survival probabilities
for patients with HGGs.

HGGs, as the most common primary adult brain ma-
lignancy of the CNS, have a poor prognosis [1]. Risk
stratification plays an important role in obtaining individual
diagnoses and making treatment decisions. Recently, re-
search has increasingly suggested that IDH [4–6] and
MGMT [8, 9], which are critical molecular biomarkers, are
strong prognostic factors in patients with HGGs; further-
more, MRI radiomics provides another means for the risk
stratification of HGGs [23]. A previous study showed that
the radiomics signature has better prognostic value than
clinical and radiological risk models to predict survival and
stratify GBM patients [18], even having incremental value
beyond MGMT molecular characteristics [19]. However,
some limitations still exist. First, radiomics analysis was only
performed on GBMs, and grade III gliomas were not in-
volved; thus, the prognostic value of the radiomics signature
in HGGs needs to be investigated. Second, the key
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prognostic factors (IDH and MGMT) were not compared
and integrated in the radiomics analysis, and the incre-
mental prognostic value of the radiomics signature needed
further investigation through a comprehensive and stratified
risk analysis.

In our comprehensive radiomics analysis, the multi-
variate Cox model showed that age and MGMT promoter
methylation status were the risk factors that should be used
to establish a clinical-genetic model. .is result may conflict

with some previous studies showing that the prognostic
value of MGMT promoter methylation states in HGGs
depends on the IDH genotype [24]. Radiomics analysis
showed that quantitativeMRI features extracted fromCE-T1
and T2FLAIR MRI images had important prognostic value,
and most of these features were texture features and high-
dimensional features that represented noise removal and
edge enhancement. A radiomics signature combining these
features from multiple sequences had an improved
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predictive performance. .is observation emphasizes that
using a signature combining different imaging features that
describe different aspects of tumour appearance might
capture hidden characteristics, offer insight into the het-
erogeneity of the tumour microenvironment, and thus
create a more accurate model to predict the prognosis of
patients with HGGs. Our radiomics signature showed su-
perior prognostic value compared to the clinical-genetic risk
factors (C-index values of 0.745 vs. 0.660 and 0.750 vs. 0.730
in the training set and external validation set, respectively).
Furthermore, this technique has some special advantages,
such as its noninvasive, low cost, and real-time prediction,
which make it more suitable for clinical practice than the

clinical-genetic model based on molecular testing. Despite
this, the purpose of our study was not to replace molecular
testing but to help radiologists better understand the
quantitative MRI features associated with the prognosis of
patients with HGGs and identify the most valuable risk
factors by comparing the discriminative performances of
clinical characteristics, molecular biomarkers, and radiomics
signatures.

We also investigated the incremental value of the
radiomics signature beyond the clinical characteristics and
molecular biomarkers. Stratified Kaplan–Meier survival
analysis and log rank tests were performed using the
radiomics signature to further identify different risk
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Figure 9: .e calibration curves evaluated the agreement between the predicted survival probabilities of the nomogram and actual survival
probabilities in the training set (a) and external validation set (b).
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subgroups among different clinical subgroups (younger or
older, male or female, GBM or non-GBM) and molecular
subgroups (IDH mutation or wild-type, MGMT promoter

methylation or nonmethylation). Significant discrimination
between the OS of the high-risk and low-risk groups was
observed in both the training set and the external validation
set for these subgroups, while the small sample size of the
IDH-mutation subgroup in the validation set led to inef-
fective discrimination of the radiomics signature for risk
stratification. Even so, our study demonstrates the incre-
mental value of radiomic features in identifying risk sub-
groups for patients with HGGs based on different clinical
features and molecular biomarkers, although these pre-
liminary results need to be further validated with a larger
dataset.

A combined model integrating clinical characteristics,
MRI features, and genetic information was also established
in our study. .e results showed that the combined model
incorporating the radiomics signature, age, and MGMT
promoter methylation status yielded an excellent prognostic
value in both the training set and external validation set
compared with the clinical-genetic model and radiomics
model alone. .is observation emphasizes that incorpo-
rating radiomics analysis into clinical practice along with
analyses of clinical characteristics and genetic information
could further improve the prognostic evaluation of patients
with HGGs. Furthermore, to assist clinicians in predicting
the survival of patients with HGGs in a more convenient and
quantitative manner, a nomogram was established to predict
1-year, 2-year, and 3-year OS probabilities using age,
MGMT promoter methylation status, and the radiomics
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signature. .e calibration curves showed good agreement
between the predicted and actual survival probabilities in
both the training set and the external validation set. .is
comprehensive radiomics analysis provides a potential tool
to guide individual diagnosis and treatment decisions for
HGGs.

Although the proposed comprehensive radiomic anal-
ysis has some advantages over traditional clinical and mo-
lecular risk factors, the limitations of our study merit
discussion. First, our model was trained and validated based
on different datasets retrospectively collected from the
FHSXMU/SPPH and TCGA/TCIA projects, and the het-
erogeneity of multicentre imaging parameters could not be
controlled. Second, our radiomics analysis was only per-
formed on conventional scanning sequences. As our dataset
increases in size, more sequences (such as DWI, dynamic
susceptibility contrast (DSC) imaging, susceptibility
weighted imaging (SWI), diffusion tensor imaging (DTI),
and diffusion kurtosis imaging (DKI)) will be included in the
radiomics analysis to mine for valuable prognostic infor-
mation hidden in theseMR images to improve the predictive
performance.

5. Conclusion

In conclusion, our MRI radiomics signature provides a
potentially noninvasive biomarker for the risk stratification
of patients with HGGs, and it has incremental prognostic
value beyond the key molecular biomarkers and clinical
characteristics. .e combined model integrating clinical
characteristics, MRI features, and genetic information has
the best predictive performance and may serve as a potential
tool to guide individual diagnosis and treatment decisions,
although this needs further verification in multicentre and
large-scale studies before widespread implementation in
clinical practice.
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