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Abstract

Electron microscopy (EM) continues to provide near-atomic resolution struc-

tures for well-behaved proteins and protein complexes. Unfortunately, struc-

tures of some complexes are limited to low- to medium-resolution due to

biochemical or conformational heterogeneity. Thus, the application of unbi-

ased systematic methods for fitting individual structures into EM maps is

important. A method that employs co-evolutionary information obtained

solely from sequence data could prove invaluable for quick, confident localiza-

tion of subunits within these structures. Here, we incorporate the co-evolution

of intermolecular amino acids as a new type of distance restraint in the inte-

grative modeling platform in order to build three-dimensional models of

atomic structures into EM maps ranging from 10–14 Å in resolution. We vali-

date this method using four complexes of known structure, where we highlight

the conservation of intermolecular couplings despite dynamic conformational

changes using the BAM complex. Finally, we use this method to assemble the

subunits of the bacterial holo-translocon into a model that agrees with previ-

ous biochemical data. The use of evolutionary couplings in integrative model-

ing improves systematic, unbiased fitting of atomic models into medium- to

low-resolution EM maps, providing additional information to integrative

models lacking in spatial data.
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1 | INTRODUCTION

The era of high throughput -omics data has transformed
our understanding of systems biology through the inter-
rogation of big data. The generation of this data has led
to an abundance of information in databases. UniProt,
for example, is flooded with over 180 million sequences,
most of which still lack complete structures or annota-
tions.1 Furthermore, advancements in algorithmic
approaches have illuminated the complexity of informa-
tion within a single protein sequence,2–4 and how, when
aligned with 100 s of other sequences, can produce a pre-
diction of functional sites or even a family of proteins.5–7

The use of this co-evolutionary information in a protein
sequence allows us to scour the depths of these databases
to uncover novel patterns that lead to robust biological
hypotheses. An exciting recent example of such an
approach is direct coupling analysis applied to residue
co-evolution.8

Residue co-evolution as it applies to structural biology
is based on the idea that amino acids close in three-
dimensional (3D) space within a protein structure exhibit
statistical coupling through the course of evolution, such
that mutations in one may occasionally be accompanied
by mutations to the other to compensate for the change
without altering the 3D structure.9 These couplings
between nearby residues can be distinguished based on
analysis of primary amino acid sequences in multiple
sequence alignments and used to predict 3D structures
from sequence information alone.10,11 Not only are evolu-
tionary couplings being used as a standalone structural
predictor, but they are also being used in various
machine learning algorithms to predict structure from
sequence. For example, Alphafold won the CASP13 and
CASP14 competition where they incorporated evolution-
ary data into their deep learning approach of ab initio
protein structure prediction.12 Moreover, when combined
with other pairwise distance restraints, such as, sparse
NMR data from larger proteins, evolutionary couplings
can be used to build more accurate and complete protein
structures.13,14 The dependency between residues that
evolutionary coupling relies on has also been used to pre-
dict mutation effects.15 This differs from conservation in
that it considers epistasis by modeling interactions of all
residue pairs, allowing for the quantification of multiple
mutations. As a result, this method can better capture
experimental mutational fitness landscapes.

Beyond intramolecular patterns, evolutionary cou-
pling has been used to detect intermolecular interactions.
This has been demonstrated between amino acids and
nucleotides as well as nucleotide/nucleotide interactions
in RNA-protein complexes.16 It has also been used to pre-
dict protein–protein interactions.17,18 Moreover, combined

methods of disentangling evolutionary couplings have
been applied across proteomes.19,20

When combined with other experimental techniques,
evolutionary couplings have the ability to improve struc-
tural predictions. The Integrative Modeling Platform21

can use distance restraints, including chemical crosslinks,
along with atomic models and electron microscopy data
to produce predictions of large molecular ensembles.22,23

These methods use curated scoring functions combined
with Monte Carlo sampling and simulated annealing to
produce ensembles of models that satisfy experimental
restraints. The ensemble is then evaluated via statistical
testing and validated against biological data such as
genetic or biochemical experiments. Additional distance
restraints derived from evolutionary coupling data have
the potential to provide useful information for systems
with few crosslinks and could potentially be used as the
only distance restraints when no other data are available.

During interpretation of low-resolution EM maps, the
reconstruction is often treated as an envelope where crys-
tal structures or homology models can be docked into
regions following either segmentation24 or localization of
specific tags within the map.25 While these methods are
effective in identifying an area of the low-resolution map
where a protein may be located, they do not provide
higher resolution information such as residue-residue
interactions that may give insight into orientation and
interaction interfaces on the individual protein subunits.
The combination of higher resolution data such as infor-
mation from amino acid evolutionary couplings with
lower resolution EM maps in integrative modeling could
produce an objective and unbiased configuration of pro-
tein subunits that satisfy residue-residue distance
restraints derived from evolutionary couplings and pro-
tein complex shape from EM. Here, we focus on develop-
ing a distance restraint for evolutionary couplings to be
used when fitting atomic structures into low-resolution
EM maps.

We demonstrate that information from evolutionary
couplings can be used as a distance restraint in the inte-
grative modeling of atomic structures into low-resolution
electron microscopy maps. We present a method for
selecting intermolecular couplings to be used for integra-
tive modeling based on internal structural controls as
well as a weighting of couplings that is tolerant of false-
positive pairs. We show that a lack of distance restraints
from evolutionary couplings results in a poor structural
prediction with the quinol-fumarate reductase complex.
We investigate evolutionary couplings in dynamic pro-
tein complexes that experience conformational changes
within the macromolecular machine and within individ-
ual subunits using the BAM complex. Finally, we build
an integrative model of the bacterial holo-translocon
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using evolutionary couplings between the six subunits, a
14 Å cryo-EM map, and a combination of X-ray crystal
structures and high-confidence homology models. We
validate our model against another independently
derived model as well as extensive data regarding the
mechanism, chemistry, and physics of the complex.

2 | MATERIALS AND METHODS

2.1 | Protein complex selection

We used the browse stoichiometry search in the Protein
Data Bank to select E. coli complexes with stoichiome-
tries ABC, ABCD, and ABCDE. Complexes for modeling
were selected based on Neff rating and shape of the cou-
pling plot. For example, complexes without high scoring
intramolecular couples cannot identify intermolecular
couples. Information on the complexes modeled can be
found in Table S1.

2.2 | Evolutionary coupling analysis

We computed the evolutionary coupling analysis using
the EV coupling Python framework.26 The sequence sea-
rch was performed using the uniref10027 database. We
used the best_hit protocol for the sequence alignment,
which pairs the sequences that have the highest percent
identity to the target sequence for each genome. The con-
figuration file with all of the run parameters is available
on the github page: https://github.com/marcottelab/
CoEVxIMP. We do an all-by-all coupling analysis for all
subunits in the protein complex. For example, if the com-
plex has subunits ABC, we calculate couplings between
three groups: AB, AC, and BC. Likewise, ABCDE cou-
plings are calculated between 11 groups. A complex of
size N has couplings between N! groups. For couplings
between each protein pair, we take the top 50,000 cou-
pling scores (cn scores) of all residue pairings; beyond
this, the couplings would not pass any selected threshold.
We selected a large number of couplings because our
method requires us to sample both positive and negative
examples as part of our internal structure-based calibra-
tion. Table S2 provides the effective number of sequences
for each individual protein. We select intermolecular cou-
plings based on a cutoff cn score, which is calculated
based on a 10-coupling, moving average of intramolecu-
lar distances. We took the cn score when the moving
average first exceeded the following three distances:
10, 15, and 20 Å. While atomic level contacts are known
to occur between 5 and 10 Å, evolutionary couplings do
not explicitly predict direct interactions, and there may

be compensatory mechanisms that exist at larger dis-
tances. Therefore, we incorporate this into our method
by considering moving averages at different distance
thresholds. We explored the relationship between the
number of intermolecular couplings selected using our
method, and the number of effective sequences for the
concatenated pairs (Figure S2). We calculated the dis-
tances between Cβ atoms because previous studies have
shown that side-chain atoms are more likely to be struc-
turally coupled than backbone atoms.28 Cβ atoms that
were not present in the structure such as the case with
missing amino acids or glycine residues were removed
from the moving average calculation.

2.3 | Evolutionary coupling analysis of
stoichiometric complexes

We handle more complex stoichiometries, such as A2B in
PDB: 4I98, by separating intramolecular contacts from
intermolecular contacts of the same protein. We calculate
a rolling mean and standard deviation of intramolecular
distance across 100 coupling increments. We use the
moving average of 100 couplings so that there is a larger
sample size for the standard deviation calculation, which
gives a better representation of the data. Any distance
that was greater than x�2s and cn score greater than the
10-Å cutoff, c0, was determined to be an intermolecular
coupling between identical subunits. These couplings
were then removed from the intramolecular structural
calibration and a new 10-Å cutoff, c1, was calculated. The
process was then repeated to identify more inter-
molecular contacts using the new cutoff until cn remains
constant.

2.4 | IMP integration

We selected complexes for integrative modeling with IMP
(Integrative modeling platform) based on the signal from
evolutionary couplings. Complexes that showed no corre-
lation within intramolecular contacts that is, low-scoring
intramolecular pairs that are close in distance are not
reliable for intermolecular interpretation. The low signal
can be a result of not having enough sequences or even
simply too much variation in sequences. We selected five
protein complexes that fit these criteria, PDB IDs: 1FFT,
1L0V, 5MRW, 5D0O, and 5D0Q.

We used the Integrative Modeling Platform Python
modeling interface29 to assemble the protein complexes
using atomic structures, excluded volume, sequence con-
nectivity, a synthetic EM map, and the evolutionary cou-
pling distance restraints (Figure 2). The atomic structures
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were taken from the PDB of the protein complex and
treated as rigid bodies, while the simulated EM map was
created by low pass filtering the PDB to 10 Å using
gmcovert.30 The maps were then approximated using a
Gaussian mixture model of 50 components.30 Groups of
20 residues of each subunit were also approximated by
Gaussian components. The evolutionary couplings
restraints were generated using the method described
above.

Each protein complex was subjected to three different
modeling runs. The first used intermolecular interactions
predicted from the 10-Å score cutoff couplings, the sec-
ond used 15-Å score cutoff couplings, and the third used
the 20-Å score cutoff couplings. The minimum distance
for the restraint was set to 0 Å and the maximum dis-
tance was the cutoff score distance used plus one stan-
dard deviation. This maximum distance was also used in
defining the true and false positive predicted couplings
(Figure 2 (d)). Each residue pairing distance restraint was
weighted as 10 x cn score. All runs were optimized using
Monte Carlo sampling and score based on excluded vol-
ume, sequence connectivity, evolutionary coupling dis-
tance, and EM map. Table 1 describes run parameters
used for each of the complexes.

2.5 | Validation

We validated our models using the sampling exhaustive-
ness approach.31 Good scoring models were selected

using hdbscan clustering.32 We then selected the cluster
that had both a high score based on satisfying input
restraints and a large number of models. Assessing sam-
pling exhaustiveness of our model involved testing the
convergence of our high-scoring models from the selected
cluster, confirming the similarity of the score distribution
between the two samples, testing that the models in the
structural clusters were proportional to each cluster's
size, and finally identifying structural similarity between
models from each sample. These tests are quantified
using sampling precision, Cramer's V test, and computing
localization densities for each subunit. To validate our
models against the input data, we used a cross-
correlation coefficient between the EM map used in the
modeling and the probability density to further evaluate
the predicted models and select which evolutionary cou-
pling threshold performed the best.

2.6 | Modeling the bacterial holo
translocon

The bacterial holo translocon (HTL) is made up of seven
subunits: SecY, SecE, SecG, YidC, SecD, SecF, and YajC.
Our modeling includes all subunits with the exception of
YajC due to the small size of YajC and its suspected insta-
bility within the HTL complex. Full-length YidC
(P25714), SecD (P0AG90), SecE (P0AG96), and SecG
(P0AG99) were modeled using I-TASSER.33 The E. coli
YidC crystal structure (PDB ID: 6AL2)34 and the

TABLE 1 Parameters used to

model complexes

PDB

Cutoff
threshold
(Å)

Number of
couplings

Number
of runs

Frames
per run

Cluster
size

Cluster
precision
(Å)

1FFT 10 19 4 10,000 31,349 11.255

1FFT 15 39 6 10,000 32,767 9.369

1FFT 20 63 6 10,000 32,393 11.526

1L0V 10 14 10 10,000 1,600 30.000

1L0V 15 54 10 10,000 9,884 15.000

1L0V 20 93 10 10,000 5,585 19.000

5D0O 10 45 10 10,000 2,053 9.000

5D0O 15 165 10 10,000 1,973 28.000

5D0O 20 202 10 10,000 6,500 27.000

5D0Q 10 31 10 10,000 25,007 21.672

5D0Q 15 47 10 10,000

5D0Q 20 123 10 10,000 38,753 17.632

5MRW 10 90 5 10,000 31,258 1.100

5MRW 15 140 10 10,000 13,271 2.151

5MRW 20 207 10 10,000 29,850 1.099
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homology model of Sec F from PDB ID: 5MG335 were
used. SecY and SecF were treated as rigid bodies; SecE,
SecD, and YidC were treated as chains of rigid bodies;
and SecG was treated as a combination of rigid bodies
held together with beads, to allow flexibility within the
peptide.

We used the 10-Å score cutoff for the selection of
intermolecular couplings. In total 15 couplings were used
between six subunit pairs, in which each subunit had at
least one coupling to another subunit. Each coupling was
weighted according to the method described above. We
used the 14-Å resolution cryo-EM map (EMDB-3506) for
our modeling of the HTL. The map was approximated by
a Gaussian mixture model (GMM) of 50 components.
Each atomic model was approximated by a GMM for
every 20 residues. 200,000 models were computed from
10 initial positions. Clustering based on scores gave a
high-scoring cluster of 10,000 models that satisfied the
restraints used in the sampling. Clustering the models
selected gave a sampling precision of 37 Å with 90.27% of
the high-scoring models included in the final cluster.

3 | RESULTS

We were interested in utilizing co-evolutionary informa-
tion that is available in the form of sequence data to
guide the modeling of molecular assemblies. Specifically,
we wished to develop a systematic method for fitting
atomic structures into medium- to low- resolution elec-
tron microscopy maps using information from evolution-
ary coupling data to illuminate subunit orientation and
protein–protein interaction sites. To do this, we focused
on building a distance-based restraint for evolutionary
couplings into the Integrative modeling platform (IMP)
that can use several lower-scoring couplings but is still
tolerant of some false-positive pairs.

3.1 | Calibrating intermolecular
couplings based on structurally-consistent
intramolecular couplings

The determination of a score cutoff is essential when
making intermolecular contact predictions based on evo-
lutionary coupling data. This is due, in part, to the nature
of the evolutionary coupling analyses that look at every
pair of amino acids, both intra- and intermolecular, and
assign a score based on the assumption that most pairs
are not coupled, and those that are, are outliers that lie in
the tail of the distribution.17 Previous studies have
suggested different score cutoffs,17,36,37 however, we were
interested in leveraging the information contained in a

known individual atomic structure of a protein to guide
the intermolecular coupling score cutoff. For this reason,
we use a known X-ray crystal structure (or a high confi-
dence homology model) as an internal control for
selecting intermolecular contacts. This is done by plotting
the cn score against distance for the intramolecular con-
tacts for each protein pair being analyzed. We then com-
pute a 10-coupling, moving average of intramolecular
distances and choose the cn score cutoff where the mov-
ing average exceeds 10, 15, and 20 Å (described in Mate-
rials and Methods). This results in testing all-by-all
residue couplings across all subunit pairs (Figure 1). A
benefit of this method is that it recalibrates the score cut-
off for each protein pair, allowing flexibility with the
score cutoff, as it reflects the data used and, in some
cases, extracting lower-scoring data.

We demonstrate the utility of this structural calibra-
tion approach with the E. coli ubiquinol oxidase complex
(Figure 2). The intramolecular contacts that are mapped
onto the crystal structures (Figure 2(a)) are used to set
the score cutoff for the intermolecular contacts mapped
onto the known complex structure (Figure 2(b)). It is evi-
dent from the known structure that subunits B and C do
not contact each other, and this is supported by the graph
of the cn score against the distance (Figure 2(c)). The
intermolecular couplings that are selected using the
structural calibration help to stitch the subunits together
to form the complex.

3.2 | Inter- vs intra-molecular couplings
can be distinguished within homomeric
assemblies

As protein assemblies often involve complex stoichiome-
tries, we specifically tested if a variant of this general
approach could distinguish intermolecular coupling
between homomeric interaction partners from intramo-
lecular couplings within the proteins. To do this we con-
sidered all intramolecular couplings that are calculated to
fall outside of the distance of two standard deviations
above the moving average and score greater than the cal-
culated 10-Å cutoff score. This is repeated until there is
no change in the cutoff score (described in Materials and
Methods). We hypothesized that this method could be
used to identify both the obvious outliers and more subtle
contacts.

We tested this approach by applying it to the symmet-
ric condensin Smc homodimer in the context of their
interaction with the protein kleisin, forming a 2:1 Smc:
kleisin assembly38 (PDB: 4I98) (Figure 3). We plotted dis-
tances for intramolecular contacts that were selected
using this method and the changing 10-Å cutoff score
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(Figure 3(top)). When those intramolecular distances for
the selected outlier are computed between the identical
subunits rather than within a subunit, the distance
decreases for 92% of the couplings selected (Figure 3(bot-
tom)). Thus, the structural calibration of intramolecular
couplings on a 3D structure can help determine if an
intramolecular contact truly lies within the protein or
instead comprises an intermolecular contact between
copies of the protein.

3.3 | An evolutionary coupling restraint
for integrative modeling

Incorporating the evolutionary coupling data into IMP
involves expressing the pairs as a weighted distance
restraint. We use our internal control method to select
the score cutoff for each protein pair. Each of the cou-
plings is represented as a basic distance restraint in IMP,
where it is weighted based on the cn score, weighting
high scoring couples more heavily in the model scoring.
It is worth mentioning that while the lower score cutoffs
may increase false-positive contacts, this is balanced by
the weighting of each coupling, and the distribution out-
liers will still be given a larger weight in the scoring func-
tion (Figure 2(d)). To evaluate this method, we tested the
couplings determined for three different bacterial com-
plexes (PDBs: 1FFT, 1L0V, 5MRW) and one dynamic
complex (PDBs: 5D0Q, 5D0O) using the IMP scheme
(Figure 4). To create the simulated EM map, each of the

complexes was low-pass filtered to a resolution of 10 Å.
Ubiquinol oxidase (PDB: 1FFT) and KdpFABC (PDB:
5MRW) were heavily coupled (Appendix S1) and as a
result produced robust predictions with clustering preci-
sions of <11.5 and < 2.2 Å, respectively (Figure 5(a)).

We show the importance of including the evolution-
ary coupling distance restraint in our model for quinol-
fumarate reductase (PDB: 1L0V) (Figure 5(b)). We were
not able to detect any significant couplings between sub-
unit A and any other subunit in the complex. This is fur-
ther supported by the shape of the graphs, where there
are no high scoring outliers that can be separated from
the rest of the data (Figure 5(b)). In the final models, it is
clear that the X-ray crystal structures, simulated EM
map, and limited coupling did not provide enough spatial
restraints to properly orient subunit A with respect to the
remainder of the complex, and as a result, the remaining
subunits struggled to find the global minimum that satis-
fied the restraints.

3.4 | Evolutionary couplings in modeling
the dynamic BAM complex

To assess the ability of the evolutionary coupling
restraints to capture protein complex dynamics, we built
integrative models for the highly flexible E. coli BAM
complex, again, using only X-ray crystal structures, evo-
lutionary couplings, and 10-Å low-pass filtered PDB
models to simulate EM maps. The BAM complex exists

FIGURE 1 Structural score calibration from intramolecular couplings. The cn score cutoff for a pair of proteins is determined

based on the agreement of the coupling scores with the individual protein structures. This is done by plotting the atomic distance of the

coupling pair against its cn score and determining the point at which the score is low and the distances are large (described in Materials and

Methods). The determined score cutoff is then used to select all intermolecular couplings above this value
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FIGURE 2 Selecting intermolecular evolutionary couplings. Evolutionary couplings are computed between amino acid pairs using

the EVcouplings python package.26 Intermolecular couplings are selected using a score cutoff determined by an internal control, the

intramolecular coupling distances of each individual subunit in the complex. (a) Intramolecular couplings selected based on a score cutoff

determined from the moving average of Cβ distances (<10 Å) between amino acids shown on the subunits of ubiquinol oxidase (PDB:

1FFT). (b) The score cutoff determined from the internal control in A was used to select intermolecular couplings shown on the ubiquinol

oxidase complex structure (PDB:1FFT). (c) Intramolecular moving average distances of 10, 15, and 20 Å were used to determine different

score cutoffs for intermolecular couplings for each pairing of the subunits. (d) Confusion matrix values determined for intermolecular

couplings selected using our structural-calibration method. Correct predictions are defined as those that are within the distance restraint

maximum in the modeling
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in a lateral-open state (PDB: 5D0Q) and an inward-open
state (PDB: 5D0O) where the inward-open state has con-
formational shifts of each protein and includes an addi-
tional subunit.39 The conformational changes of each
protein lead to slightly different intermolecular pairs. The
conformational changes of subunits D and E lead to
slightly different couplings being selected (Figure 6).
Comparison of the structures show how these structural
changes could result in different amino acid pairs due to
the new intramolecular distances. Despite the structural
shift and additional subunit, the evolutionary couplings
integrated into the IMP scheme were able to predict the
lateral-open state and inward-open state with sampling
precisions of 21.7 and 9.0 Å, respectively.

3.5 | Integrative modeling of the
bacterial holo-translocon using
evolutionary couplings

After evaluating the accuracy of combining evolutionary
distance restraints and EM maps, we were interested in
using this method to systematically model the structure
of the bacterial holo-translocon (HTL). The bacterial
HTL is an assembly of three subcomplexes -SecYEG,
SecDF-YajC, and YidC. It is responsible for protein secre-
tion across the membrane and membrane protein inser-
tion. While partial structures are available for each of the
subcomplexes, capturing the structure of the full complex
is difficult due to the transient association of the sub-
complexes.40 While isolation of the complex from the
membrane environment provides an additional chal-
lenge, advances in cryo-EM have made such tasks
possible.

Recently, a 14-Å resolution cryo-EM map for the bac-
terial HTL was published. While this map cannot be used
for de novo model building, it still provides spatial infor-
mation regarding the shape of the complex.35 In addition,
all subunits of the complex have X-ray crystal structures
or could be modeled with high confidence, and we were
able to use our structural calibration to extract evolution-
ary coupling between subunits to provide distance
restraints between subunits. In our model, we treat each
protein as a rigid body or chain of rigid bodies (for multi-
domain proteins) and omit information regarding the
subcomplexes that are formed prior to the HTL associa-
tion (used later for validation). The central ensemble
model and subunit probability densities were computed
from 9,027 final models in the cluster (Figure 7(a)). The
location of each of the subunits in our model agreed with
that of a previous model built using the same EM map,
SANS data, and biochemical information (Figure S1),
providing an independent confirmation of the model.

The cross-correlation coefficient between the probability
density and the cryo-EM map was 0.88.

In addition to validating our model against the cryo-
EM map used, there is agreement between a high-scoring
model from the final ensemble and the intermolecular
evolutionary couplings used in the modeling (Figure 7
(a)). We used the strictest threshold of 10 Å in selecting
the score cutoffs for the model. However, many of the
evolutionary couplings specific to the 15-Å and 20-Å cut-
off groups were also satisfied in the model, even though
they were not used in the construction of the model
(Figure 7(b)). We also see that at these lower score cutoffs
there are a number of couplings that were not satisfied.
This is consistent with the observation that the lower
scores are closer to the center of the distribution, which
is likely to have more false-positive couplings.

SecYEG is believed to form the membrane pore that
works with YidC to insert hydrophobic protein segments
into the lipid bilayer, which is accelerated by SecDF-yajC.
When the probability densities for each of the subunits
are combined into their prospective subcomplexes, we
see a distinct localization of the subcomplexes, a feature
that was not an input to the model (Figure 7(c)). A
hydrophobic channel formed by the SecYEG and YidC
subunits is evident in the high-scoring model (Figure 7
(c)), where red indicates higher hydrophobicity and blue
indicates higher hydrophilicity. This is consistent with
the role of the sub-complexes in transporting hydropho-
bic polypeptides across the membrane.41

4 | DISCUSSION

Here, we introduce an integration of evolutionary cou-
pling data into an integrative modeling framework. Many
previous reviews on integrative structural modeling
methods have suggested the use of evolutionary coupling
data would greatly benefit the models as a source of addi-
tional input information.42–44 Our goal was to create a
systematic method for selecting intermolecular couplings
between proteins and utilize the residue couplings as a
distance restraint in IMP. Because the evolutionary cou-
plings are a source of free information, this method could
greatly aid the fitting of crystal structures into medium-
to low-resolution EM maps. We show this by modeling
various protein complexes using only evolutionary cou-
pling data paired with low-resolution EM maps. We
include a negative control where we show that the same
approach, with the exclusion of evolutionary couplings,
results in divergent models that differ from the true struc-
ture of the complex (Table S3). While we do not explore
the application of our evolutionary coupling distance
restraint combined with other distances restraints
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(i.e., chemical crosslinks), we believe the couplings would
only help to improve other experimental data sets.

In building the evolutionary coupling distance
restraint, it was imperative that we had a universal
method for selecting the residue pairs from the coupling
data, and that we were somewhat judicious in doing so,
as to allow for the appropriate selection and weighting of
lower-scoring pairs. Previous use of evolutionary

coupling data has shown to be effective in supplementing
lower resolution data such as SAXS and EM maps; how-
ever, the selection criterion varies across studies.36,37 Our
method allows for the recalibration of the score cutoff
based on how well it fits the known, high confidence
data. This structural calibration allows for us to select
more pairs than a generalized score cutoff. In our test
cases, we see a score cutoff as low as 0.027. We then

FIGURE 3 Disentangling intramolecular couplings from intermolecular couplings of homomeric interaction partners.
Intramolecular couplings were computed and plotted against their distance in the reference protein X-ray crystal structure (PDB: 4I98). (top)

The moving average is shown with 2 standard deviation distance above and below (light grey). The intramolecular couplings with a cn score

greater than the 10-Å cutoff score with distances above the grey region are shown in dark green. After removal of the outliers, the 10-Å

cutoff score is recomputed (c0, c1, c2, c3, c4, c5). The intramolecular couplings removed are illustrated on the x-ray crystal structure. (bottom)

The distance of the selected intramolecular couplings from the top panel are recomputed as intermolecular distances between the identical

subunits. These couplings are again illustrated on the x-ray crystal structures, showing the smaller, more compatible distances relative to the

interacting subunits
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balance this more tolerant selection method by weighting
the evolutionary coupling used in modeling by their cn
score, assuring that the highest-scoring pairs are priori-
tized over the lower. This increased tolerance selects a
recommended score cutoff17 as compared to our three
cutoffs, which vary for each pair (Figure 2(c)).

As a result of our selection method, we will likely
have more false-positive couplings as compared to other
more conservative score cutoffs. In the early days of resi-
due co-evolution for protein–protein interactions, the
goal was to maximize the precision of the prediction,
which may be done by using a stricter cutoff. The

FIGURE 4 Integrative modeling platform (IMP) scheme for validating the evolutionary coupling restraint. Following the
IMP protocol,20 data are converted into spatial restraints. The evolutionary coupling restraint is included as a distance restraint and weighted

by its coupling score. The dark blue boxes represent experimental data, in this case evolutionary couplings and a synthetic 10-Å resolution

EM map. The orange boxes show crystal structures, statistical inferences, and physical properties. The gold box displays the sampling and

scoring of the models. The models are analyzed via an initial clustering to select a high scoring group of models from various simulation

runs followed by sampling exhaustiveness29 (pink boxes). The light blue boxes show the ensemble validation against the data used in the

modeling, the probability density for each subunit, and a comparison against the known structure
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authors; however, urge users to explore lower cutoffs.17

Here, the use of lower cutoffs works well due to the scor-
ing in IMP, where convergent high-scoring models are
selected. In addition, in incorporating the evolutionary
coupling distance restraint, there is no penalty for non-
interacting proteins being in close spatial proximity. For
the cases in which there is a false-positive pair with a
high-score, the other couplings and the EM map help
serve as a control. It is possible that this may also help to

reduce the effects of paralogs in the sequence alignments;
however, we do not explore that relationship directly in
this study.

While the co-evolutionary information stored in pro-
tein sequences is rich for predicting these pairwise con-
tacts, it is important to note that the contact predictions
are dependent on the depth of the sequence data. A limi-
tation exists for those proteins that do not have sufficient
coverage, as the recommended number of sequences is

FIGURE 5 Evaluation of
evolutionary coupling
restraints on known
structures. (a) Different
distance thresholds are tested

for three complexes (PDBs:

1FFT, 5MRW, 1PRC) with

varying degrees of evolutionary

coupling coverage (details in

supplemental materials). The

IMP model ensembles are

shown next to the crystal

structures of the complexes.

(b) An example of a complex

without sufficient evolutionary

coupling coverage (PDB: 1L0V).

The graphs show that subunit A

has no couplings with any of the

other subunits. The EM map

combined with the other

coupling information was not

sufficient to produce an accurate

ensemble of models
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about one-third of the length of the sequence of interest.
Nonetheless, there are now metagenomics databases45

with abundant information that may be used in combina-
tion with the sequences found on UniProt. The use of
metagenomics in evolutionary couplings analyses has
already been explored for building models of protein fam-
ilies with unknown structure and cannot be modeled
using comparative modeling methods. This was able to
generate models for 614 protein families with unknown

structure.46 While this has been used for intramolecular
contacts and structure determination, we expect that the
ability to predict couplings using metagenomics would
carry over for the intermolecular couplings, such as, with
sequence data, and provide a supplemental source of
sequence data for those proteins lacking sequence depth.

In our implementation of the evolutionary coupling
distance restraint in IMP, we explore the combination of
the restraint with medium- to low-resolution EM maps as

FIGURE 6 Evaluation of
evolutionary coupling
restraints on a dynamic
structure. The BAM complex

illustrates the robustness of

evolutionary couplings against

conformational changes in

dynamic complexes. The BAM

complex exists in a lateral-open

state (PDB: 5D0Q) and an

inward open state (PDB: 5D0O),

which includes an additional

subunit. (a) The internal control

selected slightly different

couplings based individual

subunit conformational changes

of BamD and BamE. (b) The

inward-open state is shown with

the lighter yellow (BamD) and

purple (BamE), outward the

darker. (c) The combination of

the EM map and evolutionary

couplings was enough data to

produce each of the states as

compared to the crystal

structures
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a systematic method of stitching together protein sub-
units. We show that despite a lack of topological features
in the maps, the information provided is sufficient to pro-
duce a convergent, accurate model of the structure of a
protein complex (Figure 5). This is also demonstrated in

the dynamic BAM complex example (Figure 6) where we
represent the complex in two discrete conformations, the
lateral-open state, and the inward-open state. However,
in a real data set, it is likely that the 3D reconstructions
could have particles that are in intermediate states, In

FIGURE 7 Integrative modeling of the bacterial holo-translocon. (a) The model ensemble (middle) and subunit probability

density (right) determined by integrative modeling using homology models, evolutionary coupling restraints, and an experimental 14-Å

resolution cryo-EM map (EMDB: 3506). (b) A high-scoring model from the ensemble is fit into the experimental map used for modeling

(left). The evolutionary couplings used in modeling (10-Å distance threshold) plotted on the high-scoring model (middle). Intermolecular

distances for each distance threshold (15- and 20-Å distances were not used in modeling) on the high-scoring model (right). (c) The model

agrees with other experimental information not used in sampling and analyzing the data. The probability density for the three subcomplexes

are grouped together in our model (left). The hydrophobic surface is shown for the high-scoring model exposing the hydrophobic (red) cavity

in the complex's core (right)
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this case, the user may wish to consider changing the
weighting of the EM map to better compensate for the
possible errors in the 3D reconstruction.

Using our method, we built an integrative model for
the bacterial holo-translocon. While this model was built
exclusively using the evolutionary coupling data at the
10-Å score cutoff and 14-Å resolution cryo-EM map,
there are extensive experimental studies that support the
model. The study that generated the cryo-EM map we
used built a model for the complex using SANS data, the
cryo-EM map, and biochemical information.35 Our model
agreed with this model on the localization of each sub-
unit within the cryo-EM map (Figure S1); however,
because the full structure was not modeled, there were
some areas of unassigned density in their map. Interest-
ingly, in their study, they hypothesize that this
unassigned density next to the SecYEG subcomplex cor-
responds to the N-terminal domains of SecE or YidC. In
our model, which has 100% sequence coverage, we
indeed see the N-terminal of SecE occupying this area of
unassigned density.

Our model is also supported by previous protein–
protein interactions studies via chemical crosslinks and
deletion analysis. Deletion studies in YidC have shown
that YidC interacts directly with SecDF, in particular
with SecF.47 Our model not only places the SecDF sub-
complex together, but it has YidC directly interacting
with SecF. Additionally, these studies showed that resi-
dues 24–346 are required for YidC to interact with SecF,
which is located on our interaction interface, and the
mutant YidC with residues 527–548 deleted was still
capable of binding SecF, a region that was not on the
interaction interface of our model. Crosslink studies have
also illuminated the interaction interface between YidC
and SecY, another direct interaction we see in our
model.48 The strong cross-linked product residues of SecY
had an average distance of 18 Å from YidC, while the
weak cross-linked residues had an average distance of
17 Å from YidC and the non-cross-linked residues were
31 Å from YidC (all between Cɑ atoms) (Figure S1). Tak-
ing these various independent experiments together, they
provide us with confidence in our model.

In this work, we have developed a distance restraint
based on evolutionary coupling data to be used in IMP.
We have rigorously benchmarked appropriate thresholds
that account for noise in the data through an internal,
structural score calibration. We have tested this approach
on complexes of varying complexity including complexes
with conformational changes and additional subunits.
Finally, we applied this method to building an integrative
model of the bacterial holo-translocon that agrees with
previous experimental data. We believe that because this
restraint is built using co-evolutionary information and

does not require any additional experiments, it will be
useful for assembling atomic structures into medium- to
low-resolution EM maps, providing additional restraints
to integrative models when required.
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