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ABSTRACT

The cytosine (C)-rich sequences that can fold into
tetraplex structures known as i-motif are preva-
lent in genomic DNA. Recent studies of i-motif—
forming sequences have shown increasing evidence
of their roles in gene regulation. However, most of
these studies have been performed in short single-
stranded oligonucleotides, far from the intracellular
environment. In cells, i-motif—-forming sequences are
flanked by DNA duplexes and packed in the genome.
Therefore, exploring the conformational dynamics
and kinetics of i-motif under such topologically con-
strained environments is highly relevant in predicting
their biological roles. Using single-molecule fluores-
cence analysis of self-assembled DNA duplexes and
nanocircles, we show that the topological environ-
ments play a key role on i-motif stability and dynam-
ics. While the human telomere sequence (C3TAA);C3
assumes i-motif structure at pH 5.5 regardless of
topological constraint, it undergoes conformational
dynamics among unfolded, partially folded and fully
folded states at pH 6.5. The lifetimes of i-motif and the
partially folded state at pH 6.5 were determined to be
6 £ 2 and 31 £+ 11 s, respectively. Consistent with
the partially folded state observed in fluorescence
analysis, interrogation of current versus time traces
obtained from nanopore analysis at pH 6.5 shows
long-lived shallow blockades with a mean lifetime of
25 + 6 s. Such lifetimes are sufficient for the i-motif
and partially folded states to interact with proteins to
modulate cellular processes.

INTRODUCTION

Cytosine-rich (C-rich) sequences that can fold into tetraplex
helical structures known as i-motif (1,2) are prevalent in ge-

nomic DNA (3,4), and there exists experimental evidence
for the role of i-motif in various biological processes such as
regulation of gene expression (5-9) and replication (10-12).
More importantly, recent biochemical studies have shown
experimental evidence for the existence of i-motif at physio-
logical pH (3,4) and in human nuclei (11,13). While there
are very few studies on the i-motif under biological con-
text such as molecular crowding (14-16) and negative su-
perhelicity (17-19), in vitro biophysical and spectroscopic
studies, such as NMR (2,20,21), UV/Vis, circular dichro-
ism (CD) (8,22,23), nanopore (24), Forster resonance en-
ergy transfer (FRET) (25) and optical tweezers (5,26) have
contributed significantly in understanding how their intrin-
sic properties relate to these biological functions (23,25,27—
30). However, in vitro studies so far have been mainly car-
ried out using short oligonucleotides as models under iso-
lation far from biologically relevant environments and have
been explored for various applications such as pH sensors
(31,32), nanomechanical machines (33-38), and other an-
alytical and biomedical applications (39-41). Much differ-
ent from isolated oligonucleotide, i-motif sequences in cells
are flanked by long stretches of duplex DNA, which could
change the topology as well as the thermodynamic and ki-
netic properties of i-motif (17,42).

While G-quadruplexes (tetraplex structures that are
formed in G-rich sequences) have been explored extensively
under various mechanically and electrophoretically con-
strained environments using single-molecule experiments
such as optical tweezers and nanopores (17,19,43,44), fewer
studies have been done on i-motif (12). Previous studies on
i-motif demonstrated a slow folding/unfolding kinetics of
the structure and showed that the dynamics heavily rely on
the sequences (20), solution pH (45,46) and whether or not
the complementary G-rich strand is present (46). For exam-
ple, the association equilibrium constant of i-motif is de-
creased by over 20-fold in the presence of complementary
G-rich strand. Using a 1:1 mixture of G-rich and C-rich se-
quences Phan and Mergny showed that the sequences pre-
dominantly fold into G-quadruplex and i-motif structures
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at acidic pH (21). However, they showed that at pH 7.0 and
100 mM NaCl, DNA duplex was the predominant species.
More interestingly, recent studies have shown that the other
intracellular factors such as crowding (15,16) and negative
superhelicity (17) destabilize the DNA duplexes and hence
favor the formation of i-motif in the C-rich strand and G-
quadruplex in the complementary G-rich strand even at
near neutral pH. Therefore, determining thermodynamic
and kinetic properties of i-motif under naturally occurring
environments where i-motif forming sequences have fewer
degrees of freedom and experience topological constraints
(18,26,47,48) would provide unprecedented insights toward
exploiting these structures for biological as well as mate-
rial applications (17,49,50). Further, with the recent finding
that i-motif can form inside cells (11,13), it is critically im-
portant to characterize the i-motif under such molecularly
constrained and strained conditions (49).

In this study, we demonstrate self-assembled DNA
nanostructures (Figure 1A) as molecular tools to study
i-motif dynamics under restricted and topologically
strained environments. Using fluorescently labeled
DNA nanoassemblies, we systematically compared
the folding and conformational dynamics of a 21-mer
(5-(CCCTAA);CCC) human telomere (hTel) sequence
present in either the terminal position of a DNA du-
plex, within DNA duplexes or embedded within DNA
nanocircles (Figure 1 and see Supplementary Table S1 for
sequences). The size of the nanocircles used in this study
closely resembles the DNA topology inside cells where the
dsDNA wraps around the histone in a helical fashion using
~146 bp for 1.65 turns (~89 bp for one full turn) (51).
Further, our choice of hTel i-motif as a model sequence
is motivated by its known structure and implications in
cancer diseases and aging (27). First, using smFRET,
we show that the hTel sequence assumes a fully folded
i-motif structure at pH 5.5 and remains unstructured at pH
9.0. However, at slightly acidic pH (pH 6.5) the sequence
undergoes equilibrium dynamics between i-motif, partially
folded and fully unfolded conformations. The kinetics of
switching between these species is different in different
nanoassemblies, revealing the effect of topological strain on
the conformational dynamics. Second, using a-hemolysin
(a-HL)-based nanopore analysis of the core 21-mer hTel
sequence without overhangs shows pH-dependent con-
formational transitions that are consistent with smFRET
results. Interrogation of current versus time (i—f) traces at
pH 5.5 show characteristic current blockades consistent
with formation of the fully folded state. Similar analysis
at pH 6.5 shows long-lived shallow blockades that are
consistent with the partially folded state observed in
smFRET and CD. While previous studies on telomeric
i-motif using a-HL nanopore (24) and smFRET (45) have
provided some insights into the switching kinetics between
fully folded and unfolded states, our study has provided
more detailed insights into the folding and dynamics of
various species including the partially folded state with and
without topological constraint. The lifetimes of i-motif and
partially folded species of an hTel C-rich sequence observed
here are sufficiently long to affect enzymes operating on
DNA (12,52-55).

MATERIALS AND METHODS
Chemicals

Tris(hydroxymethyl)-aminomethane (tris), boric acid,
acetic acid, KCI, EDTA, acrylamide/bisacrylamide (19:1),
ammonium persulfate (prepared as a 10% solution in
sterile water and stored at 4°C) and tetramethylethylene-
diamine (TEMED) were purchased from Fisher Scientific.
Magnesium chloride hexahydrate, 6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (trolox) and 30%
ammonia water were purchased from Arcos Organics.
Sodium chloride, ethidium bromide, streptavidin, protocat-
echuic acid (PCA), MES monohydrate, sodium hydroxide
and hydrogen peroxide were purchased from VWR. Bovine
serum albumin (BSA) was purchased from New England
Biolabs (NEB). Protocatechuate 3,4-dioxygenase (PCD)
was purchased from MP Biomedicals, and suspended in a
pH 8.0 PCD buffer (100 mM Tris-HCI, 50 mM KCI, 1 mM
EDTA, 50% glycerol) at 0.2 wM, sterile filtered and stored
at —20°C. Biotin-modified BSA was purchased from Peirce,
dissolved in sterile H,O at 1 mg/ml, sterile filtered and
stored at —20°C. Catalase from bovine liver and glucose
oxidase from Asperigillus niger were purchased from Sigma
Aldrich. For nanopore experiments, hexadecane, pentane,
potassium chloride and Tris were purchased from Sigma-
Aldrich. 1,2 diphytanoyl-sn-glycero-3-phosphocholine
(DPhyPC) lipid was purchased from Avanti polar lipids.
Alpha toxin from Staphylococcus Aureus was purchased
from List Biological.

DNA nanoassemblies

All of the DNA oligos (modified and unmodified) were
purchased from Integrated DNA Technologies (IDT) and
stored at —20°C until needed. The biotin, Cy3 and Cy5
modified oligos were purchased HPLC purified. We de-
signed our nanocircles according to the methods described
in previous publications (38,50). The DNA assemblies were
prepared by thermal annealing of the constituent ssDNA
oligos (Supplementary Table S1) at 1 wM concentrations
in 1 x TAE-Mg buffer, pH 7.4 (40 mM Tris, 20 mM acetic
acid, ] mM EDTA, 10 mM Mg?*). The thermal annealing
was carried out by ramping the temperature of the solution
from 95 to 4°C in a thermal cycler (Supplementary Table
S2) and checked with gel mobility shift assay as described
below.

Electrophoretic mobility shift assay (EMSA)

The formation of nanoassemblies was analyzed by native
polyacrylamide gel electrophoresis (PAGE). A 6% native
polyacrylamide gel was cast in 1x TBE (89 mM Tris, 89
mM boric acid, 2 mM EDTA) and immersed in a buffer
system consisting of 1 TBE at pH 7.4. The 100 base-pair
ladder was used as a molecular weight (MW) marker. The
gel apparatus was run at 50 V for 1 h 40 min before being
stained with ethidium bromide (EtBr) and imaged using a
UV transilluminator (254 nm).
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Figure 1. Schematic representation of DNA nanoassemblies and experimental setup for smnFRET and a-hemolysin nanopore. Eprgr represents the FRET
efficiency. (A) DNA constructs with the hTel i-motif either at the terminal position of a dsDNA (7-i-motif) or embedded within a DNA duplex (i-duplex),
96 bp circle (i-Cir96) and 75 bp circle (i-Cir75). The i-motif line drawing is based on PDB 1ELN. Note that the PDB structure was obtained without 5'-end
thymine overhang. The hemiprotonation of cytosine™-cytosine (CH* eC) is shown in T-i-motif. Cy3 and CyS5 fluorophores are shown in green and red,
respectively. (B) Experimental setup for the smFRET analysis of hTel i-motif. The biotin-labeled DNA nanoassemblies were surface-immobilized on a
quartz slide through biotin/streptavidin interaction. It is expected that the hTel sequence folds into an i-motif structure (high Errgr) at acidic pH and
unfolds to random coil (low Efprgr) at basic pH. The typical intensity—time (i—#) traces and the corresponding smFRET traces are shown for the fully folded
(high EFRrEgT, left panel) and fully unfolded states (low ErrgT, right panel). (C) Nanopore analysis of hTel sequence at various pH using a-hemolysin. The
i-motif strand translocates through the pore when fully unfolded but stays in the nanopore when fully folded into i-motif structure.

Circular dichroism (CD)

DNA oligonucleotides prepared in a concentration of ~10
pwM in 1x TAE (pH 6.0, 6.5, 7.0, 7.4 and 9.0) and MES
buffer (pH 5.5) were heated at 95°C for 5 min and trans-
ferred to an ice bath. The CD spectra were collected (af-
ter ~1 h of incubation at room temperature) at a scan rate
of 100 nm/min in a 1 mm quartz cuvette at room temper-

ature with a Jasco-1500 spectrometer. The reported mean
spectra are the average of three scans, blank corrected and
smoothed using a Savitzky—Golay function.

Single-molecule florescence microscopy

Preparation and functionalization of flow cell.  The flow cell
was prepared using standard microscope quartz slides and
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cover slips as described in the Supplementary Data. Thus,
prepared flow cells were functionalized by sequential incu-
bation with 1 mg/ml biotinylated BSA (bBSA) for ~5 min
and 0.2 mg/ml streptavidin for ~2 min. Then, the flow cells
were flushed with ~300 wl of 1 x TAE-Mg buffer.

Single-molecule imaging of i-motif nanoassemblies. The
bBSA /streptavidin modified flow cell was incubated with
20-30 pM solution of i-motif nanoassemblies dispersed in
a given buffer for ~1 min before being flushed with the same
buffer to remove the unbound nanoassemblies. A 300 .1 so-
lution of imaging buffer (1x MES-10 mM Mg for pH 5.5;
I1x TAE-10 mM Mg buffer for pH 6.5, 7.4 and 9.0) con-
taining 2x oxygen scavenger system (OSS) was injected and
incubated for ~5 min before recording the movies. Of note,
since the same OSS system did not work for the entire pH
range, OSS solution consisting of 5 mM PCA, 50 nM PCD
and 2 mM Trolox was used for pH 7.0, 7.4 and 9.0, and the
OSS solution consisting of 2 mg/ml glucose oxidase, 2800
U/ml catalase, 4 mM trolox and 0.8% glucose was used for
pH 5.5 and 6.5. While the Cy3 fluorophore was continu-
ously excited using a 532 nm laser, fluorescence emission
from both Cy3 and CyS5 fluorophores was simultaneously
recorded for the green and red channels (512 x 256 pixels)
by an EMCCD camera (iXON 897, Andor) at 100 ms time
resolution using a custom-built prism-based total internal
reflection fluorescence (pTIRF) microscope (56). Please re-
fer to Single Molecule Instrumentation section in the Sup-
plementary Data for instrumentation details. To confirm
the presence of an active FRET pair, a 639 nm red laser was
turned on toward the end of the movies. All single-molecule
experiments were performed at room temperature (23°C).

Single-molecule data analysis

Acquired movies from the single-molecule experiments
were processed using IDL and MatLab scripts from the sm-
FRET data acquisition and analysis package available from
the Ha Lab (https://cplc.illinois.edu/software/). Briefly, the
single-molecule intensity traces generated by these scripts
were manually selected for subsequent analysis based on
the following features: (i) single-step photobleaching; (ii) to-
tal fluorescence of Cy3 and Cy5 exceeding 200 counts per
frame and (iii) evidence of both Cy3 and CyS5 signals. The
intensity—time traces exhibiting one-step photobleaching of
each Cy3 and Cy5 fluorophores represent single molecules,
and thus we analyzed only those molecules. The FRET effi-
ciency (Errer) Was calculated using a well-established equa-
tion as:

Iz
ErRpr = —— 1
FRET = (D

Where I and Ip stand for the background-corrected fluo-
rescence intensities of acceptor and donor, respectively (57—
59). The inter-dye distance (R) was then calculated using the
following equation:

2

Errer = ———
1+ (%)

Where R is the inter-dye distance and Ry is the inter-dye
distance at 50% Eprgt. The R( value used for the Cy3/Cy5
pair is 5.4 nm (58,60,61).

The smFRET histograms were prepared after combining
the single-molecule data of several molecules (identified as
N in the histograms) for the first 1040 s observation time
depending on the movies. The histograms were acquired af-
ter binning the raw data to 0.05 FRET window and fitted
with Gaussian function to determine the mean FRET levels
of visually apparent populations in Origin 2017.

Hidden markov model (HMM) analysis of dynamic FRET
traces

Hidden markov model (HMM) analysis was performed
on the dynamic traces observed at pH 6.5 using HaMMy
(62,63) to calculate the rate of transitions between the
FRET levels to determine the interconversion rates of the
various conformers (fully folded, partially folded and fully
unfolded states).

Nanopore construction and data analysis

Nanopore data were collected on a horizontal bilayer
membrane apparatus described previously (64). Briefly,
a DPhy:PC bilpid membrane is formed via the paint-
ing method over a 50 wm hole preformed in a 20 um
thick Teflon partition (Eastern Scientific LLC). A single
a-hemolysin channel is inserted into the membrane and
DNA is either ejected near the hole with a prefabricated mi-
cropipette tip or premixed in the buffer solution in the top
chamber. An applied transmembrane potential (typically
100 mV) drives DNA into the nanopore and current is mea-
sured with an Axopatch 200B headstage amplifier (Molecu-
lar Devices). The signal is digitized (Digidata 1440, Molec-
ular Devices) at 50 kHz and filtered with a lowpass four-
pole Bessel filter with a 3dB frequency of 10 kHz. The data
are processed with either homemade software (Labview 11)
or packaged software (IGOR 6) and details on the thresh-
old algorithm are described elsewhere (65). To calculate the
percent translocations, the blockade events were deemed to
be translocations if they exhibited a transient deep block-
ade or a transient shallow blockade followed by a transient
deep blockade. In other words, a current blockade that led
to a deep blockade from the open state or from a partially
blocked state was treated as a translocation event. The fact
that a lower percentage of events yielded translocations at
pH 6.5 as compared to pH 8.0 indicates that the DNA was
folding into a partially folded or intermediate structure at
pH 6.5 while the ‘infinite’ blockade at pH 5.5 indicates the
formation of the i-motif structure.

RESULTS AND DISCUSSION

i-motif within DNA duplexes and nanocircles—design and as-
sembly

A number of previous studies have reported that the
DNA duplexes as well as mini/nanocircles made up of
short oligonucleotides can be used to mimic in vivo
topological properties of nucleic acids (38,66,67). In this


https://cplc.illinois.edu/software/

study, we investigated the stabilities and dynamics of i-
motif forming sequence from human telomere (hTel, 5'-
CCCTAACCCTAACCCTAACCC) that is either flanked

by a dsDNA or sandwiched between two dsDNA segments.
The designed DNA constructs contain the hTel sequence
either at the terminal position of a DNA duplex (7—i-
motif), embedded between two DNA duplexes (i-duplex),
or within DNA nanocircles (i-Cir96 and i-Cir75, where 96
and 75 represent the total number of base-pairs (bp) of the
double-stranded portion of the nanocircles). Additionally,
in all of these assemblies, the hTel sequence was flanked
by a single thymine (T) nucleotide on both sides of the
sequence to allow some flexibility on i-motif folding. The
DNA nanoassemblies (Figure 1A) were prepared by ther-
mal annealing of an equimolar mixture of corresponding
single-stranded DNA oligonucleotides (see Supplementary
Table S1 for the sequence details and Supplementary Ta-
ble S2 for the annealing protocol) in 1 x TAE buffer con-
taining 10 mM Mg”>* (1 x TAE-Mg, pH 7.4). Native poly-
acrylamide gel electrophoresis showed a slower mobility of
nanostructures with their increasing molecular weight, sug-
gesting a successful formation of the nanoassemblies (Sup-
plementary Figure S1).

Single-molecule setup and characterization

To determine the conformation and folding/unfolding ki-
netics of the hTel i-motif using smFRET, a donor (Cy3)
and an acceptor (Cy5) fluorophore was incorporated into
the DNA nanoassemblies as shown in Figure 1A (see Sup-
plementary Table S1 for sequence details). The detailed mi-
croscope setup as well as the flow cell design, assembly
and surface functionalization are described in the Supple-
mentary Data (Supplementary Figure S2). In these experi-
ments, we acquired FRET movies by monitoring the fluo-
rescence emissions of both Cy3 and Cy5 fluorophores while
the molecules are excited by a green laser (532 nm). Since
the hTel sequence is known to fold into an i-motif structure
at acidic pH and unfold into a random coil conformation
at basic pH (68) (Figure 1B), we monitored this behavior at
various pH. Depending on the conformations of the hTel se-
quence, different inter-dye distances (R) are expected, lead-
ing to different FRET efficiencies, Errgr (Equations 1 and
2). Such a design is optimal for determining conformations
and dynamics of nanoscale (<10 nm) nucleic acid structures
using SmFRET (69-72). We also employed another single-
molecule approach called resistive-pulse nanopore sensing
to characterize the hTel i-motif at various pH (Figure 1C).
Nanopore sensing captures faster dynamics that are not
easily accessed by smFRET due to averaging (typically
~50-100 ms in smFRET). In this regard, an a-hemolysin
nanopore was prepared by embedding the protein into a
lipid bilayer (see ‘Materials and Methods’ section), which
gives a well-defined nanohole through which current can
flow when potential is applied across the opening (Figure
1C). The nanocavity (~3.0 nm) in the a-hemolysin (73) is
optimal to trap hTel i-motif (~3.1 nm x 2.0 nm) (68) with-
out letting it translocate, giving an opportunity to interro-
gate its pH-dependent response.
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pH-dependent folding of the hTel i-motif

Next, we systematically studied the pH-dependent
folding/unfolding behavior of i-motif in various DNA
nanoassemblies (Figure 2). The typical raw intensity—time
traces and corresponding FRET traces are shown in
Figure 3A and Supplementary Figure S3. The smFRET
histograms acquired for these nanoassemblies at various
pH are shown in Figure 2. When compared, the sm-
FRET histograms show only one population for each
nanoassembly (7—i-motif, i-duplex, i-Cir96 and i-Cir75)
at pH 5.5 (Figure 2). The consistently high mean Egggr
(~0.80) at pH 5.5 demonstrates that regardless of the DNA
topological environments the hTel sequence folds into an
i-motif structure at this pH. Interestingly, a slightly lower
mean Erggr value (~0.75 instead of ~0.85) was observed
for i-Cir96 and i-Cir75. These results indicated that, unlike
in linear constructs, the hTel sequence experiences an
outward tension in circular constructs resulting in an
extended conformation of thymine spacers protruding
from the core of the fold that are used to provide flexibility
on i-motif folding (Supplementary Figure S4, left panel).
The control experiment without the thymine spacers in
i-Cir75 at pH 5.5 yielded a major population (~66%) with
an Eprgr value of ~0.92 along with a mid-FRET (~16%)
and low-FRET (~18%) states (Supplementary Figure S5).
While the slight increase in the Epggr value without the
thymine spacers (Eprer = ~0.75 in the presence of spacers
to ~0.92 without spacers) is expected due to increase in
donor/acceptor proximity, the emergence of the mid- and
low-FRET states suggest that the thymine spacers indeed
help alleviate the constraint allowing the i-motif folding.
The same nanoassembly containing a randomized hTel
sequence with the same base content (Supplementary Table
S1) showed a broad distribution of Epggr that was signif-
icantly shifted to a lower FRET region than for i-motif,
suggesting that the randomized sequence was incapable of
forming an i-motif structure (Supplementary Figure S6A).
CD experiments of the randomized hTel sequence did not
show any signature for i-motif (Supplementary Figure
S6B), suggesting that the broad Epgrgr observed in the
single-molecule experiment is possibly due to non-i-motif
interactions between protonated cytosines at pH 5.5.

Next, we examined all of the nanoassemblies at pH 6.5
(Figure 2). Interestingly, we observed new FRET states at
~0.6 and ~0.2 in addition to ~0.8 for 7-i-motif and i-
duplex. These results suggest that, in addition to fully folded
(~0.8) and fully unfolded (~0.2) states, the hTel sequence
exhibits at least one partially folded state. Our assessment
of a partially folded state (Errgr = ~0.06) is consistent with
the formation of a triplex-like structure (discussed in de-
tail later) as reported previously in other i-motif forming
sequences (Supplementary Figure S4 and Supplementary
Note 1) (5,74). While T-i-motif and i-duplex show approxi-
mately similar Ergrpr distributions, the high FRET popula-
tion (~0.8) was absent in i-Cir96 and there was an emer-
gence of a new population with a mean Eprgr value of
~0.4. These results suggest that the hTel i-motif experi-
ences an outward strain in i-Cir96 and thus destabilizes the
folding. We attributed that the decrease in the mean Errgr
value from 0.6 in i-duplex to 0.4 in i-Cir96 is due to the
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Figure 2. Single-molecule analysis of the hTel i-motif under different topological environments and pH. smFRET histograms of 7-i-motif (first row), i-
duplex (second row), i-Cir96 (third row) and i-Cir75 (fourth row). All histograms were fitted with one-, two- or three-peak Gaussian functions (depicted
by curves) to determine the mean Eprgr and their corresponding populations. Since the y-axis scale varies in some histograms, we have identified the
percentage population of the unfolded state at pH 6.5 and 7.4 for an easy comparison when multiple populations were observed. The mean Eprgr are
identified by the vertical dotted lines. The N values depict the number of single-molecule traces in each histogram. All measurements were performed at

room temperature (23°C).

extended conformation of thymine spacers in i-Cir96. This
assignment is self-consistent with our observation that the
i-Cir96 exhibited a slightly lower Eprgr (~0.75) than that
of T-i-motif and i-duplex (~0.8) at pH 5.5. We also per-
formed circular dichroism (CD) experiments of hTel 23-mer
oligonucleotide and other control sequences at various pH
(Supplementary Figure S7). The CD experiments show gen-
eral agreement with our smFRET results that the i-motif is
formed at acidic pH (characteristic peak at ~285-288 nm
and trough at ~260 nm) (22). The CD spectrum of a trun-
cated sequence with three intact C-rich stretches also sup-
ported the formation of a partially folded state at acidic pH
(Supplementary Figure S7C). However, CD being an en-
semble measurement, it was not possible to extract the de-
tailed insight into the dynamic behavior of the i-motif and
partially folded state.

To unequivocally determine that the DNA nanocircles
indeed impose a topological strain on i-motif, we further
decreased the size of the nanocircles from 96 bp (i-Cir96)
to 75 bp (i-Cir75). The topological strain is expected to in-
crease with decrease in the size of nanocircles. Interestingly,

i-Cir75 indeed showed further decrease in the mid-FRET
(~0.4) population and increase in the low-FRET (~0.2)
population. When compared, the low-FRET (~0.2) pop-
ulation is monotonically increased from T-i-motif (26%) —
i-duplex (34%) — i-Cir96 (35%) — i-Cir75 (59%) confirm-
ing: (i) the existence of an outward strain in nanocircles and
(i1) the strain significantly hinders folding. Further, having
a small single-stranded region within i-Cir96 (created by
truncation of the middle strand by 10 nucleotides), we ob-
served a slight shift in the mid-FRET population toward
higher Egggr state at pH 6.5 (Supplementary Figure S8).
This result corroborates our conclusion that the nanocircles
exhibit topological constraint on i-motif.

We then analyzed these nanoassemblies at pH 7.4 and
9.0. While all the nanoassemblies show a mid-FRET state
at pH 7.4 (Figure 2 and Supplementary Figure S3), only
a fully unfolded state with a low Eprgr value (~0.3) was
observed at pH 9.0, except for T-i-motif. We reason that,
unlike in other nanoassemblies, the hTel sequence in 7-i-
motif adopts a random coil conformation due to its free
end, leading to a mid-FRET state (~0.5) (75). Consistent
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with CD (Supplementary Figure S7D), our control exper-
iment in the presence of complementary G-rich strand at
pH 9.0 using i-duplex showed a slightly lower mean Errgpr
value of ~0.2 (compared to ~0.3 without G-rich strand)
suggesting the formation of dssDNA (Supplementary Figure
S9). The formation of the partially folded state at pH 7.4 is
supported by the fact that the Errgr at this pH was consis-
tently higher than for the unfolded state at either pH 6.5 or
9.0 (Figure 2) and for randomized hTel at pH 7.4 (Supple-
mentary Figure S10). It is possible that the partially folded
state observed here was stabilized by the topological con-
straint caused by flanking DNA duplexes or nanocircles,
but it needs further investigation. In addition to the partially
folded states (Errgr = ~0.4 and ~0.6), a fully unfolded state
(ErreT= ~0.3) is also observed in the circular constructs
(i-Cir96 and i-Cir75) (Figure 2), showing that there is an
outward strain in the nanocircles. The increased population
of the fully unfolded state in i-Cir75 compared to that of
i-Cir96 further confirms the higher topological strain expe-
rienced in i-Cir75. Overall, these results demonstrated that
the folding and conformational dynamics of hTel sequence
are significantly affected by the biomimetic topological en-
vironments. Interestingly, we also observed that the fully un-
folded state of hTel sequence at pH 6.5 consistently exhibits
a slightly lower Errgr compared to that at basic pH (~0.2
at pH 6.5 versus ~0.3 at pH 7.4 and 9.0). Previous studies
show that the effect of pH on fluorescence emission of sym-
metrical cyanine dyes (like Cy3 and Cy5 used in this study)
is minimal (76); therefore, slightly higher Eprgr observed
for the unfolded state at basic pH indicates that the pH has
an effect on the hTel conformation when unfolded, which
can be a subject of future study. In addition, the experi-
ment performed in the presence of complementary G-rich
sequence (1 wM) using i-duplex at near neutral pH (pH 6.5)
showed no evidence of folding (Supplementary Figure S9),
suggesting that the G-rich strand obviates the formation of
i-motif at this pH. However, this experiment does not rule
out the formation of i-motif inside cells where DNA expe-
riences other factors including crowding (14-16).

Conformational dynamics of hTel i-motif

While the FRET traces at pH 5.5, 7.4 and 9.0 were static
(Supplementary Figure S3), visually distinct low-, mid- and
high-FRET states (Figure 3A) were observed at pH 6.5, sug-
gesting an equilibrium switching between fully unfolded,
partially folded and fully folded states respectively at this
pH. Partially folded intermediate states of i-motif forming
sequences have been reported in the literature (5,74,77,78).
The typical traces for each nanoassembly are presented in
Figure 3A. The switching rates obtained from the well-
known HMM analysis (62,63) (see ‘Materials and Meth-
ods’ section and Supplementary Figure S11) are summa-
rized in Figure 3B. The kinetic analysis of these data re-
vealed some interesting insights of the behavior of hTel se-
quence. The switching rates of various species were different
from one another in different nanoassemblies ranging from
0.01 to 1.00 s~!. The lifetimes for the partially folded and
fully folded states (overall from all the linear and circular
constructs) were calculated to be 31 = 11 sand 6 + 2 s, re-
spectively, at pH 6.5. The lifetime for the hTel i-motif deter-

mined here is in good agreement with the reported lifetime
of ~3 s at neutral pH (longer lifetime is expected at pH 6.5
compared to neutral pH) (55). It is possible that the con-
formational switching observed here is due to the dynamic
proton exchange between the i-motif and solution (79). This
result suggests that the local change in pH inside cells could
trigger transient formation of i-motif. Further, the analy-
sis of equilibrium constant K.y, defined as kon/kosr Where
kon represents the folding and kg represents the unfolding
rate, showed that the i-motif is only transiently formed in
non-circular constructs. The downward trend of K.q from
fully unfolded (Errgr = ~0.3) to partially (Eprer = ~0.4
or 0.6) or fully folded (Egrgt = ~0.8) states going from 7-i-
motif — i-duplex — i-Cir96 — i-Cir75 (Figure 3C) suggests
that the folding is hindered when both ends of the hTel se-
quence are flanked by DNA duplexes. This effect is more
pronounced in nanocircles than in linear constructs (7-i-
motif and i-duplex), suggesting that the topological strain
is dominant in nanocircles. In addition, the mean lifetime
of the partially folded state in the circular constructs (26 s)
is shorter than in linear constructs (35 s), suggesting that
the hTel sequence indeed experiences topological strain in
circular constructs. These analyses corroborate our conclu-
sion in Figure 2 that the folding of hTel i-motif is restricted
in the circular constructs. Furthermore, the switching be-
tween the fully folded and partially folded (relaxed Egrgr
= ~0.6 and extended Epgrgr = ~0.4) states showed similar
but low K4 values suggesting that the extended conforma-
tion is preferred except in T-i-motif at pH 6.5 (Figure 3C).
Similar analysis was not possible in i-Cir75 due to rare tran-
sitions between those FRET states.

The smFRET experiments at pH 7.4 showed a mid-
FRET state in all of the nanoassemblies (Figure 2). This
observation was surprising because at least two possible
partially folded states, each of which is formed by three
of the four C-rich stretches (Supplementary Note S1), are
expected (5,74). However, both of these states will pro-
vide similar Erggr values in the FRET experiments mak-
ing it impossible to resolve any conformational switching.
Also, the smFRET experiments at our time resolution of
100 ms cannot rule out the possible fast dynamics between
the partially folded and unfolded states. To further investi-
gate this dynamical behavior of hTel sequence, we turned
to nanopore experiments where we can measure thousands
of single-molecule events in short periods to assess the rela-
tive abundance of fully unfolded, partially folded and fully
folded states as a function of solution pH and applied
transmembrane potential. When the plain i-motif sequence
with no overhangs was analyzed by an a-hemolysin (a-HL)
nanopore at various pH (Figure 4), we found a general
agreement with the FRET data and supporting evidence of
the existence of partially folded states at near neutral pH
(pH 6.5).

The current versus time (i—t) traces show pH-dependent
blockades when the i-motif is present in the a-HL nanocav-
ity. At pH 8.0 and 6.5, the DNA molecules yielded short
downward spikes in the current (Figure 4A and B) and a
zoomed in view of these spikes showed three distinct block-
ades (Figure 4C) that were different from the long-lived
blockades at pH 5.5 (Figure 4D). Two of the three yielded
deep current blocks, which correspond to translocations
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in the vicinity of the pore from a pre-positioned microcapillary tip. Except in panel (E), all measurements were taken in 3 M KCl under a 100 mV applied
transmembrane potential at room temperature (23°C).

through the pore (Figure 4C) and the third results from a
DNA molecule ‘bumping’ into the pore for a short time
and exiting the pore from the same side it entered. These
bumping events could occur from unfolded DNA enter-
ing and exiting the pore on the same side or from partially
folded DNA that does not translocate through the pore.

more likely to ‘bump’ off the pore rather than translocate
through. The two deep blockade types most likely resulted
from either fully unfolded or partially folded DNA states.
However, it is not possible to distinguish the DNA states
from these types of blockades. In both cases, the single-
stranded portion of the DNA enters the pore and is pulled

This second scenario is supported by the data in Figure 4E
that show the number of bumping events is higher at pH
6.5. This is consistent with our hypothesis that lowering the
pH yields intermediate or partially folded states that are

through under a sufficient transmembrane potential. In ad-
dition to the short-lived blockades at pH 6.5, we also ob-
served longer lived blockades that most likely correspond
to partially folded states. Figure 4F shows the long-lived
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blockade time distribution with a mean blockade time of
25 s, which is consistent with the lifetime of the partially
folded state in the FRET data from Figure 3. Finally, Figure
4D shows that lowering the pH to 5.5 eliminates the short-
lived blockades and only produces the long-lived blockades.
These blockades reside permanently in the pore so no life-
time measurement was possible. At this pH, it appears that
the fully folded state is stable as seen in the smFRET data
(Figure 2, pH 7.4). The nanopore data in Figure 4 support
the smFRET results that show a partially folded state dom-
inates at near neutral pH (pH 6.5 and 7.4, Figure 2 and Sup-
plementary Figure S4), whereas the i-motif is predominant
at pH 5.5 (24).

We further examined the formation of partially folded
states by changing the fourth C-rich stretch of the hTel se-
quence to adenines (Partially Mutated, abbreviated as ‘Part.
Mut’: C;TAAC;TAAC;TAAA3). In the smFRET exper-
iment using i-Cir75, we observed a mean Epgpr state of
~0.49 at pH 5.5 (Figure 5A), which is consistent with the
partially folded state observed for the same nanoassem-
bly at pH 6.5 (Figure 2). Additionally, mutation of all of
the C-rich stretches of the hTel sequence provided an ex-
pected mean Epggr of ~0.3 (Figure 5B) at pH 5.5. This
observation was consistent with the ~0.3 Errgr observed
for the hTel sequence at various pH for the fully unfolded
state. To unequivocally examine the formation of the par-
tially folded state, we ran nanopore experiments for the
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Part. Mut. and Truncated (fourth C-rich tract deleted) se-
quences (Figure 5C). Both of these sequences at pH 8.0 ex-
hibited high, open-pore, current with transient dips in the
i~t curves, demonstrating quick translocations (lack of fold-
ing) of the oligonucleotides (Figure 5C, top panel).
However, the same sequences at pH 5.5 show evidence
of folding as they lead to two types of long-lived block-
ade states (i) dynamic two-state fluctuations and (ii) single
state. For the ‘Part. Mut.” sequence, a majority of molecules
(~65%) show long-lived deep blockades and some two-state
fluctuations (35%). In contrast, the majority of molecules
(70%) show two-state fluctuations for the truncated se-
quence. These observations strongly suggest that both the
Part. Mut. and Truncated versions of the hTel sequences as-
sume some sort of folded structures (otherwise they would
translocate as observed in pH 8.0). For the higher fraction
of long-lived deep blockades in Part. Mut. sequence, it is
possible that the single-stranded overhang (polyA tail) at

the 3’-end gets inserted into the nanopore blocking the cur-
rent. Since such polyA tail was absent in the truncated se-
quence, we surmised that the two-state fluctuations are due
to tumbling of the partially folded structure (as it is not
strongly pulled as with the polyA tail) inside the nanopore
cavity.

Overall, both smFRET and nanopore data demonstrated
that the hTel sequence exhibits a fully unfolded state at basic
pH, fully folded state at pH 5.5 and partially folded states
at pH 6.5 (Figure 6B). In linear constructs, where the topo-
logical restriction is either absent or minimal, the i-motif
forming sequence assumes a relaxed, partially folded state
(Eprer = ~0.6). However, an extended form of the par-
tially folded state (Eprgt = ~0.4) is predominant in circular
constructs at near neutral pH (pH 6.5 and 7.4). Our results
thereby provide a more detailed understanding on the fold-
ing behavior of hTel sequence under biologically relevant
microenvironments.



7210 Nucleic Acids Research, 2019, Vol. 47, No. 14

CONCLUSIONS

We have systematically studied the folding and conforma-
tional dynamics of the hTel C-rich sequence at the single-
molecule level, directly revealing the effect of topological
constraint/strain from flanking dsSDNA and DNA nanocir-
cles. Regardless of the topological constraint, we show that
the hTel sequence adopts a fully folded state at pH 5.5 and
a fully unfolded state at high pH (8.0 and 9.0). However,
the sequence undergoes conformational dynamics among
fully unfolded, partially folded and i-motif structures at pH
6.5 on a topological environment-dependent manner. Using
nanopore analysis, we determined the relative abundance
of fully unfolded, partially folded and fully folded states
as a function of pH and applied transmembrane poten-
tial. Nanopore analysis of the plain i-motif sequence with
no overhangs at pH 6.5 provided evidence for a partially
folded state that is consistent with the smFRET and CD
data. Given that the nanocircle framework provides condi-
tions closer to cellular environments, our approach has a
high potential to be used in studying the interaction of small
molecule ligands and proteins such as transcription factors,
revealing biologically relevant information. In the future,
the study can be performed on ligated nanocircles to explore
the effects of increased rigidity on the i-motif stability and
conformational dynamics. Furthermore, the molecular ap-
proaches developed here for studying i-motif are simple and
can be easily adopted to study other nucleic acids structures
and these nanoassemblies may find applications in studying
proteins that interact with cytosine-rich sequences.
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