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Abstract: Vitamin E (Vit E) is an essential lipophilic antioxidant and anti-inflammatory agent that
has potential as a neuroprotectant in newborn infants with brain injury. Vit E has shown promise in
many in vitro studies, but success in translation to in vivo animal studies and the clinical setting has
been mixed, with concern of adverse effects at high intravenous doses in preterm infants. However,
a recent rise in knowledge of the beneficial effects of fat emulsions containing higher levels of Vit
E, along with associated improved outcomes in some neonatal co-morbidities, has led many to
reconsider Vit E administration as a potential therapeutic modality to improve neurological outcomes
in the setting of neonatal brain injury. This narrative review discusses Vit E’s structure, mechanism(s)
of action, evidence in animal models, and association with health outcomes in neonates, including
both dietary and supplemental Vit E and their bioavailability and pharmacokinetics as it relates to
the brain. Lastly, long-term neurodevelopmental outcomes along with gaps in current knowledge are
critiqued, which to date suggests that additional translational studies in larger animal models and
assessment of safety profiles of different routes and doses of administration should be explored prior
to large clinical trials. Importantly, a greater understanding of the brain region(s) and cell type(s)
affected by Vit E may help to target the use of Vit E as a beneficial neuroprotective agent to specific
populations or types of injury seen in newborns.
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1. Introduction

Vitamin E (Vit E; α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienols) is an
essential lipophilic antioxidant and anti-inflammatory agent that has potential neuropro-
tective properties [1,2]. Neonatal neurological injury can manifest or be exacerbated by
oxidative stress and inflammation; therefore, finding a viable treatment to dampen these
delirious effects has led many to examine Vit E as a potential neuroprotective agent in
newborn infants with brain injury [3]. Furthermore, Vit E deficiency results in maldevel-
opment of the nervous system as Vit E is essential for normal embryonic development,
neurogenesis, and cognition [4]. However, to date, the evidence supporting the use of
Vit E as a neuroprotectant is mixed. Vit E has been investigated in many rodent models,
but these have varying efficacy when translated clinically [5,6]. In very low birth weight
(VLBW) infants, clinical studies using high dose intravenous Vit E have also reported
adverse effects [5]. In contrast, more recent positive evidence of Vit E as a neuroprotective
agent in a term in vitro ferret model of hypoxic ischemic brain injury suggests promise [7].
As advances in neonatal care are improving rates of mortality, it is imperative that we
continue to probe new therapeutic modalities to combat neurological injury in the neonatal
period [8]. The aim of this review is therefore to compile a comprehensive overview of Vit
E as it relates to neuroprotection in newborns.
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2. Structure and Isoforms

Vit E exists in nature as isoforms of tocopherol and tocotrienol. There are alpha (α),
beta (β), gamma (γ), and delta (∆) isoforms of both tocopherol and tocotrienol, resulting in
eight total Vit E chemical forms [9–11]. The most biologically active form is α-tocopherol,
which in its natural configuration of D-α-tocopherol (RRR- α-tocopherol) is susceptible
to oxidation; therefore, when made synthetically, the phenol group is converted to an
ester, making the configuration DL- α-tocopherol (all racemic α-tocopherol), which is
more stable [9]. However, the natural D-form of Vit E is more bioactive than racemic
synthetic form [12,13]. The enhanced activity of α-tocopherol is thought to be due, in
part, to α-tocopherol transfer protein (α-TTP), a cytosolic transport protein that facilitates
selective enrichment of α-tocopherol by transferring it into plasma lipoproteins [14]. Recent
evidence shows α-TTP expressing astrocytes control delivery of Vit E from astrocytes
to neurons and that this process is responsive to oxidative stress [15]. Although both
tocopherols and tocotrienols have antioxidant capacity, only α-tocopherol is retained, as
the other tocopherols and tocotrienols are excreted after reaching the liver in remnant
chylomicrons [16]. Interestingly, the type of α-tocopherol used in formula supplementation
may also alter the brain’s uptake and storage. For example, in a recent study of neonatal
primates exposed to formula supplemented with either naturally or synthetically derived
α-tocopherol demonstrated a 1.5x fold increase in the more biologically active form of Vit E,
RRR- α-tocopherol, in brain tissue in those fed naturally compared to synthetically derived
α-tocopherol [12]. Of the other Vit E isoforms, γ-tocopherol is the most abundant in the
western diet as it is present in soy and corn oil, but it is not biologically active [13]. By
comparison, α-tocopherol is predominately found in peanut, almond, and sunflower oils,
and is dietarily essential [11]. Humans can absorb all forms of Vit E but cannot interconvert
them; therefore, only α-tocopherol is thought to contribute to Vit E demands in humans [10].
As a result, measurements of neonatal levels and supplementation generally refer only to
biologically active α-tocopherol [5,6,10].

3. Vit E Absorption and Pharmacokinetics

In order to be absorbed from the gut, Vit E and lipids must first form micelles in the
presence of bile salts. Once this step is complete, Vit E is absorbed via passive diffusion
in the small intestine [17]. For adequate absorption, neonates must therefore have intact
pancreatic function and adequate bile salt excretion and fat intake during enteral Vit E
administration [17]. Vit E is eliminated via fecal excretion or conjugation. As noted above,
α-tocopherol is the most bioavailable, and other forms of Vit E cannot be transformed
by the body. Furthermore, in pediatric patients with chronic cholestasis and thus poor
absorption of lipid soluable Vit E, comparable dosing of D-alpha-tocopheryl polyethylene
glycol 1000 succinate (TPGS1000), an aqueous solution, has been successful in safetly
optimizing Vit E levels [18,19]. Intravenous dosing bypasses any challenges to enteric
absorption; however, clinical studies suggest toxicity of Vit E at high doses intravenously,
showing associations with sepsis and necrotizing enterocolitis [5,6]. Alpha-tocopherol
achieves peak plasma concentrations at 4–6 h after enteral administration and at 1 h after
intravenous administration [1]. The half-life is not well characterized, and ranges from
2–20 h depending on isomer, population, and study; therefore, recommendations for twice-
daily dosing are encouraged [1].

4. Mechanism of Action
4.1. Anti-Oxidative Effects of Vit E

Vit E, as α-tocopherol, has been described as having anti-oxidative properties that
include recycling intracellular glutathione (GSH), scavenging reactive oxygen species
(ROS), inhibiting lipoxygenases (LOX), competing for polyunsaturated fatty acid (PUFA)
substrate binding sites, and scavenging hydroxyl group radicals. Much of Vit E’s protective
effect is thought to be as a result of inhibiting oxytosis-ROS-dependent cell death via a
lipophilic antioxidant effect on LOX. LOX enzymes are nonheme, iron-containing enzymes
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that catalyze deoxygenation of PUFAs [20,21]. Vit E inhibits LOX activity, which can
otherwise trigger oxytosis, by competing at the substrate-binding site and by scavenging
hydroxyl group radicals [20]. In addition, Vit E acts as a radical-trapping antioxidant
(RTA) molecule that stops the autoxidation of chain-propagating peroxyl radicals, further
aiding in its anti-oxidative properties [21,22]. Vit E is often described as an inhibitor
of ferroptosis, though this is generally thought to just be an iron-dependent subset of
oxytosis [20,21,23–25]. Similar to oxytosis more broadly, ferroptosis is also associated with
accumulation of lipid ROS and depletion of plasma membrane PUFAs. Therefore, Vit E is
thought to help stabilize and protect cell membranes [21,26]. Vit E’s ability to protect cells
against oxytosis-driven cell death has been well documented and may be secondary to this
protection of the integrity of cellular membranes from oxidative stress [24,25,27] (Figure 1).
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4.2. Anti-Inflammatory Effects of Vit E

Vit E has also been described as a suppressor of pro-inflammatory pathways [1,20–22,28,29].
The anti-inflammatory properties of Vit E are thought to be secondary to inhibition of the
secretion of inflammation-mediating molecules, such as interleukins 1 and 8, which are produced
by the action of enzymes such as cyclooxygenase-2 enzyme (COX-2) [22,29]. Vit E also acts via
suppression of pro-inflammatory signals downstream of nuclear factor kappa beta (NF-kβ) and
signal transducer and activator of transcription 3 (STAT-3)-mediated pathways [28,30], as well
as inhibiting the activation of hypoxia-inducible factor 1 alpha (Hif1 α) [28,31] (Figure 1).

5. Neuroprotection in Preclinical Models

Preclinical studies to date have largely used various rodent in vitro and in vivo models
of brain injury, where Vit E has been shown to decrease both inflammation and oxidative
stress, with resulting neuroprotection [22,32–37]. These effects have been examined most
frequently in the hippocampus and cerebellum, with fewer studies looking specifically at
other regions such as the cortex and basal ganglia [7,38,39] (Figure 2). For example, Vit E
deficiency in rodents has been shown to result in axonal degeneration in the hippocam-
pus [38]. A recent study that used pentylenetetrazole, a GABA-A receptor antagonist, to
induce seizures in rats, demonstrated that Vit E (200 mg/kg) was able to reduce neuronal
ferroptosis by inhibiting LOX expression in the hippocampus [40]. Similarly, Vit E has been
shown to improve cell viability in glutamate-induced ferroptosis of HT22 hippocampal
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cells [41]. In cultured astrocytes derived from the brains of newborn rats and then ex-
posed hypoxic ischemic injury with oxygen glucose deprivation (OGD), Vit E (10 µg/mL)
improves cell viability, decreasing both LDH release and number of apoptotic cells [42].
Pretreatment with Vit E in the astrocyte OGD model resulted in increased antioxidant
capacity demonstrated through higher levels of heme oxygenase (HO)-1 and superoxide
dismutase (SOD)-1); however, it did not significantly reduce interleukin (IL)-6, IL-1β, or tu-
mor necrosis factor (TNF)-α [42]. Studies have also shown that inhibition of GSH recycling
with the Xc-inhibitor erastin results in uncontrolled lipid peroxidation, which can be either
masked or rescued in part by Vit E [25,43]. In a ferret organotypic brain slice model, Vit E
(25 IU/kg) administered after OGD decreased cytotoxicity and inhibited oxidative stress
by maintaining higher levels of GSH, and decreased transcription of genes responsible for
oxidative stress and inflammation [7]. Vit E is also thought to dampen microglia activation
in both mice and rats via decreased production of proinflammatory nitric oxide (NO),
IL-1α, TNF-α, and reduce the expression of inducible nitric oxide (iNOS), though this effect
has predominately been described in the hippocampus [2]. In rat cerebellar granule cells
exposed to the apoptosis-inducer 1-methyl-4-phenylpyridinium, Vit E has been shown
to inhibit cytochrome c release and decrease activation of caspase 3, resulting in fewer
apoptotic cells [39] (Figure 2).
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Figure 2. Proposed Neuroprotective Mechanisms of Vit E. (a) In mice and rat microglia, Vit E
dampens activation via decreased production of NO, IL-1α, TNF-α, and expression of iNOS. (b) In rat
astrocytes, Vit E improves cell viability and increases levels of antioxidant enzymes heme oxygenase
(HO)-1 and superoxide dismutase (SOD)-1. (c) In rat mesenchymal stem cells (MSCs) Vit E improves
cell viability, decreasing LDH release in a dose-dependent manner. (d) In rat cerebellar granule cells
Vit E inhibits cytochrome c release and decreases activation of caspase 3, resulting in fewer apoptotic
cells. (e) Vit E’s role in neuroprotection has been examined most often in the hippocampus and
cerebellum, with fewer studies looking at the cortex and basal ganglia.

Additional evidence for the mechanisms of action of Vit E is provided by model
systems outside of the brain. For instance, pretreatment of rat mesenchymal stem cells
(MSCs) with Vit E (50–100 µM) prior to hydrogen peroxide-induced oxidative stress resulted
in improved viability of cells and decreased LDH release in a dose-dependent manner [44].
In hemopoietic cells from mice who underwent ablation of glutathione peroxidase 4 (GPX4),
perturbated reticulocyte maturation from uncontrolled lipid peroxidation was seen, which
was reversed with supplementation of dietary Vit E (55 ppm) [45]. GPX4 is an enzyme
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that uses reduced glutathione as a substrate to scavenge lipid radicals [45]. In cultured
Pfa-1 fibroblasts, ferroptosis induced either by erastin or GPX4 depletion was rescued with
α-tocopherol (1 µM) to similar levels of cell viability as control cells after 24 h [43]. Vit E
(50 µM) has also been shown to inhibit microglial after stimulation with LPS, decreasing
the activity of NF-kβ and thereby decreasing iNOS expression and cytokine responses [46]
(Figure 2).

6. Neuroprotection in Neonates
6.1. Role Prenatally

Vit E has been shown to be involved in implantation, development of the embryo,
maturation of the placenta, and protection of the fetus against oxidative stress [11]. There
is low placental transfer of Vit E, though the naturally occurring RRR- α-tocopherol form
has been shown to move more readily across the placenta than the racemic α-tocopherol
synthetic form [47]. When looking at Vit E supplementation during pregnancy, a 2008
Cochrane review found no benefit in mothers supplemented with antioxidant treatments,
including Vit E, during pregnancy for incidence of prematurity, small for gestational age
(SGA) birth, or pre-eclampsia compared to placebo; however, Vit E was not studied alone
nor was it part of every regimen included in the meta-analysis [48]. A Cochrane review
in 2015 examining the effect of Vit E supplementation in pregnancy on perinatal events
found no benefit, except for decreased placental abruption. This analysis also found that
Vit E appeared to increase pre-labor fetal rupture of membranes [49], which itself has
been associated with neurodevelopmental impairment (NDI) [50] (Figure 3). However,
subsequent smaller individual studies examining growth and Vit E have found that higher
maternal levels of Vit E are associated with improved fetal growth [51], and low Vit E levels
have been associated with SGA birth [52] (Figure 3). If Vit E does improve fetal growth,
one major presumed mechanism would be that higher Vit E levels improve the ability to
mitigate inflammatory and oxidative stressors in utero; however, better overall nutritional
status may also play a role [51,52]. Since fetal growth restriction, which is associated with
low Vit E levels, is a known risk for NDI [53,54], maintaining adequate maternal Vit E levels
appears prudent in order to optimize neurodevelopmental potential.

Life 2022, 12, x 5 of 13 
 

 

perturbated reticulocyte maturation from uncontrolled lipid peroxidation was seen, which 
was reversed with supplementation of dietary Vit E (55 ppm) [45]. GPX4 is an enzyme that 
uses reduced glutathione as a substrate to scavenge lipid radicals [45]. In cultured Pfa-1 fi-
broblasts, ferroptosis induced either by erastin or GPX4 depletion was rescued with α-to-
copherol (1 μM) to similar levels of cell viability as control cells after 24 h [43]. Vit E (50 μM) 
has also been shown to inhibit microglial after stimulation with LPS, decreasing the activity 
of NF-kβ and thereby decreasing iNOS expression and cytokine responses [46] (Figure 2). 

6. Neuroprotection in Neonates 
6.1. Role Prenatally 

Vit E has been shown to be involved in implantation, development of the embryo, 
maturation of the placenta, and protection of the fetus against oxidative stress [11]. There 
is low placental transfer of Vit E, though the naturally occurring RRR- α- tocopherol form 
has been shown to move more readily across the placenta than the racemic α-tocopherol 
synthetic form [47]. When looking at Vit E supplementation during pregnancy, a 2008 
Cochrane review found no benefit in mothers supplemented with antioxidant treatments, 
including Vit E, during pregnancy for incidence of prematurity, small for gestational age 
(SGA) birth, or pre-eclampsia compared to placebo; however, Vit E was not studied alone 
nor was it part of every regimen included in the meta-analysis [48]. A Cochrane review in 
2015 examining the effect of Vit E supplementation in pregnancy on perinatal events 
found no benefit, except for decreased placental abruption. This analysis also found that 
Vit E appeared to increase pre-labor fetal rupture of membranes [49], which itself has been 
associated with neurodevelopmental impairment (NDI) [50] (Figure 3). However, subse-
quent smaller individual studies examining growth and Vit E have found that higher ma-
ternal levels of Vit E are associated with improved fetal growth [51], and low Vit E levels 
have been associated with SGA birth [52] (Figure 3). If Vit E does improve fetal growth, 
one major presumed mechanism would be that higher Vit E levels improve the ability to 
mitigate inflammatory and oxidative stressors in utero; however, better overall nutritional 
status may also play a role [51,52]. Since fetal growth restriction, which is associated with 
low Vit E levels, is a known risk for NDI [53,54], maintaining adequate maternal Vit E 
levels appears prudent in order to optimize neurodevelopmental potential. 

 
Figure 3. Clinical Studies of Vitamin E in Neonates for results where (a) Vit E is associated with a 
decreased risk of factors that are associated with NDI, and (b) Vit E is associated with an increased 
risk of factors that are associated with NDI. 

Figure 3. Clinical Studies of Vitamin E in Neonates for results where (a) Vit E is associated with a
decreased risk of factors that are associated with NDI, and (b) Vit E is associated with an increased
risk of factors that are associated with NDI.



Life 2022, 12, 1083 6 of 12

6.2. Role in Preterm Neonates

In premature infants, Vit E mitigates the downstream effects of oxidative stress and
inflammation in multiple disease processes [5,6,37,55–57]. Clinical data has shown that Vit
E has varying degrees of benefit in parenteral nurtrition associated liver disease (PNALD),
retinopathy of prematurity (ROP), intraventricular hemorrhage (IVH), and bronchopul-
monary dysplasia (BPD) [5,6,55–57], the latter three being tied to later neurodevelopmental
outcomes (Figure 3). More specifically, clinically attenuated inflammatory responses are
associated with higher α-tocopherol levels. In one study, 60 preterm neonates (gesta-
tional age 26–32 weeks) were randomized to receive either medium-chain triglycerideω-3
polyunsaturated fatty acid (MCT/ω-3), PUFA-enriched intravenous fat emulsion (IVFE)
(intervention group), or soybean oil-based IVFE (control group) [37]. The α-tocopherol
content in the PUFA-enriched IVFE was 200 mg/L, whereas the α-tocopherol of the soybean
oil-based IVFE was 38 mg/L [37]. Samples taken at consecutive timepoints demonstrated
significantly lower levels of the pro-inflammatory cytokines IL-6 and IL-8 in the inter-
vention group at 15 days and 30 days after birth, with concurrently higher α-tocopherol
levels [37]. As PUFA-enriched IVFE has been reported to be associated with attenuated
inflammatory markers in preterm neonates compared to Vit E-deficient soybean oil-based
lipids, Vit E may therefore play a crucial role as part of this effect [37]. In a randomized
double-blind, parallel-group study in preterm neonates <1500 g and <32 weeks, higher
antioxidant markers and higher Vit E levels were found in infants given a combination lipid
emulsion of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) com-
pared to standard fat emulsion intralipids. Specifically, 38 infants were studied and those
that received SMOF lipid fat emulsion compared to standard fat emulsion had significantly
higher levels of Vit E and total antioxidant potential (TAP) when measured at consecutive
time points (day 0, 7, 14, and at discharge) [36]. These findings again give plausible support
for the role of Vit E role in lowering oxidative stress and inflammation. Furthermore, since
inflammation and oxidative stress markers have been shown to inversely correlate with
NDI [58], Vit E’s role as a neuroprotective agent may mitigate these stressors. For example,
oxidative stress and inflammation have been shown to affect vulnerable cell populations
in the neonatal brain, including the subplate neurons and oligodendrocyte precursors
involved in early development, perhaps becoming a target for Vit E [59].

6.3. Role in Term Neonates

Vit E is critical for CNS function beyond the gestational period of development, and
its deficiency has been linked to neurodevelopmental delay [11]. Vit E deficiency in term
infants as well as into childhood can lead to progressive neurological disorders, including
sensory deficits and hyporeflexia in addition to spinocerebellar ataxia [11,60,61]. The
above-mentioned anti-oxidative and anti-inflammatory properties of Vit E may provide
neuroprotection both postnatally and after hypoxic ischemic injury [62]. One of the most
devastating neurological injuries in term infants is hypoxic ischemic encephalopathy (HIE),
secondary to perinatal asphyxia, where inflammation and oxidative stress are significant
components of the pathogenesis [3]. As the brain continues to mature, neurogenesis and
angiogenesis respond to ischemic changes differently [59], thus dampening those effects
may give a plausible mechanism for neuroprotection with Vit E in term infants. Although
this has not been assessed clinically, term-equivalent studies such as those performed in
ferret organotypic brain slices exposed to OGD suggest that Vit E is neuroprotective after
hypoxic-ischemic injury in the term-equivalent brain [7].

7. Vit E Supplementation in Neonates

Postnatal Vit E supplementation is vital for healthy CNS development in newborns
since only small amounts are thought to accrue in utero [47]. Vit E is considered safe in
preterm and term infants at serum concentrations of 8.5–59 µmol/L (0.5–3.5 mg/L) [56]. A
recent 2022 systematic review found that α-tocopherol levels ranged from 3.9 to
8.5 µmol/L in the preterm infant and 4.9 to 14.9 µmol/L in the term infant [11]. Al-



Life 2022, 12, 1083 7 of 12

though there is no certainty as to what should be considered Vit E deficiency, most studies
agree that α-tocopherol levels <12 µmol/L are inadequate. As a result, depending on the
study, 19% to 100% of newborns may have insufficient levels of Vit E [11,63]. Since Vit E
already has a known safety profile and is a component of neonatal intravenous lipids and
routine neonatal oral supplementation [6,56,64] (Figure 4), it could be an ideal pharmaco-
logical agent to promote neuroprotection in neonates if it is proven to be neuroprotective
in humans, and the optimal dose, route, and concern regarding risks with high-doses in
VLBWs is better delineated [65].
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7.1. Vit E in Human Milk and Formula

Vit E is a component of human milk, and the level of Vit E in human milk has been
shown to be decreased with maternal obesity, smoking, and preterm birth [63]. Importantly,
pasteurization of donor breast milk does not alter its Vit E levels [66]. It is recommended
that lactating mothers supplement with Vit E to obtain their daily allowance of 19 mg,
though women with higher intakes of PUFAs have higher content of α-tocopherol in their
breastmilk, which is consistent with literature around the linear relationship between Vit E
and the oils, from which most dietary PUFAs are derived [63,67]. Alpha tocopherol levels
in breastmilk vary over time; colostrum contains the most at approximately 8.5–11.5 mg/L,
breastmilk one to two weeks postpartum contains 3.5 to 5.4 mg/L, and breastmilk more
than 2 weeks postpartum contains only 2.1–3.8 mg/L. (Figure 4) [10,63]. Interestingly,
hindmilk has been shown to have higher Vit E levels than foremilk. Maternal supplemen-
tation with Vit E 400 IU day in lactating mothers only made modest increases in levels in
breastmilk, which may suggest a need for higher supplementation [63]. By comparison,
the α-tocopherol content of infant formula ranges between 2.2 and 12.5 mg/L, with the
upper end potentially ~10× fold greater compared to average breastmilk Vit E content
(Figure 4) [63], the outcome of which is uncertain.

7.2. Vit E in Oral and Intravenous Supplementation

Current literature recommendations for α-tocopherol supplementation are
2.5–11 mg/kg/d for VLBWs and 2.5–3.5 mg/kg/d for term neonates [13,68]. Therefore,
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preterm neonates are frequently given oral or intravenous supplementation due to higher
requirements. Infants on enteral feeds are supplemented with oral solution, either as a
multi-vitamin that provides 2–3 mg/mL and/or different formulations of Vit E solution
that provide 16–105 mg/mL to ensure adequate supply [11] (Figure 4). Vit E has been given
to preterm neonates at doses up to 50 IU/kg (22.5 mg/kg); a study in 2013 gave a one-time
50 IU/kg dose of dl-α-tocopherol acetate enterally via nasogastric/orogastric tube at 4 h
after birth and found increases in serum α-tocopherol levels within the outlined safety
profile at 24 h, but these levels did not persist [6].

The Vit E level in intravenous supplementation depends on the amount of PUFAs
in the fat emulsion, with α-tocopherol found in higher concentrations in SMOF lipids
compared to soybean oil-derived Intralipid [56] (Figure 4). As noted above, preterm
neonates given SMOF have been shown to have a more favorable cytokine profile [37]. Vit
E in oil lipid emulsions have also been shown to reduce PNALD in preterm pigs; a recent
study demonstrated that Vit E supplementation in intralipid prevented serum and liver
increases in biliary and lipidemic markers of PNALD, which is a common side effect of
parenteral nutrition [57]. Similarly, in pediatric clinical populations, SMOF has been shown
to decrease the prevalence of intestinal failure-associated liver disease from 32% to 12%
compared to Intralipid [69] (Figure 4).

8. Long Term Neurodevelopmental Outcomes

There is some data suggesting that Vit E status is tied to long-term neurodevelopmental
outcomes [70]. Studies have shown that prolonged deficiency of Vit E is associated with
cognitive impairment in early childhood and supplementation improved performance IQ
in school-aged children born with extremely low birth weight (ELBW) [70,71]. In the latter
study, 259 school-aged ELBW children were analyzed in three groups: those that received
no Vit E supplementation, those with Vit E supplementation until <6 months of age, and
those with Vit E supplementation for >6 months of age. Supplementation consisted of
20 mg/kg/day of racemic α-tocopherol starting at either 3 or 4 weeks after birth. They
found that those supplemented for more than 6 months had the best outcome. Interestingly,
multivariable regression analysis found that the association between duration of Vit E
supplementation and IQ was dose-dependent [71] (Figure 3).

9. Gaps in Knowledge

The ability of Vit E to penetrate into the central nervous system (CNS) has been
identified as a potential barrier for neuroprotection. Vit E is thought to cross into the CNS
after peripheral transport by lipoprotiens, but is found at ~100× lower concentration in
the brain compared to the blood [27]. Although it may have some effect on peripheral
immune responses, the ability of exogenous Vit E to increase Vit E levels in the CNS is
paramount for it to be effective as a neuoprotective agent. Therefore, determining the
CNS penetration and safety of Vit E at doses targeted for neuroprotection remains of
critical importance. Formal in vivo pharmacokinetic and dose–escalation studies would
be required to determine an optimal dose and timing in different models—both preterm
and term—since Vit E absorption and CNS penetration via the blood brain barrier has led
to variability in CNS concentrations of Vit E [6,64]. Further factors that may affect CNS
delivery include the requirement of adequate lipoproteins for Vit E to bind to in order to
cross blood brain barrier, though this may be offset by an increase in blood brain barrier
permeability in prematurity and after HI injury [6,72]. Overcoming barriers to Vit E uptake
in the brain may also require a more selective synthetic transport.

The exact mechanism(s) by which Vit E may mitigate injury to certain brain regions or
cell types has yet to be fully elucidated. Accumulation of Vit E in the cortex, hippocampus,
basal ganglia and cerebellum has been described in murine and primate brains, suggesting
Vit E may play a specific regional role in neuroprotection [27,39,73,74] and in the ferret Vit
E improves cytotoxicity selectively in the hippocampus and cortex [7]. Further studies are
needed to focus on Vit E effects by cell type to help delineate its potential neuroprotective
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effects, such as regional differences in treatment response to local microglial responses to
injury [75]. This may be a plausible reason for why the hippocampus, one of the brain
regions most densely populated with microglia [76], showed a significant decrease in
cytotoxicity after Vit E exposure post-injury.

Interestingly, differences have been seen in animal models between males and fe-
males, with males appearing to be more responsive to the neuroprotective effects of Vit E
compared to females. In the ferret model, Vit E more effectively improves cell death after
hypoxic ischemic injury in whole organotypic slice culture in males greater than females [7].
This may be secondary to sex differences in cellular signaling pathways of neurological
injury, where females are relatively more resilient to ROS-mediated injury due to higher
antioxidant enzyme defense systems [77]. At higher doses, antioxidants (including Vit
E) can become pro-oxidant, with saturation perhaps seen earlier in female with higher
baseline antioxidant defenses [77–80]. This specific vulnerability of males to oxidative
stress suggests males may benefit to a greater extent from antioxidant treatments, such as
Vit E, following neurological injury.

In summary, although Vit E is a promising neuroprotective agent for newborn infants,
further studies will be critical to the translation of Vit E. Scenario-specific pharmacoki-
netic, dose–response, and safety studies are required to better understand optimal dosing
windows and confirm any sex-dependence or off-target effect before clinical trials can be
safely implemented.

10. Conclusions

Although many studies suggest that Vit E has a range of promising anti-inflammatory
and anti-oxidative effects, it is not known whether these properties are effective in promot-
ing clinical neuroprotection. In a recent review published in 2019, the authors concluded
there is no data to support use of Vit E for perinatal neuroprotection; however, the authors
cite a Cochrane Review from 2003 [3]. In the past two decades, new emerging studies on
Vit E have provided a number of beneficial results, though evidence of neuroprotection is
still largely limited to preclinical models. Recent adult studies have also shown promise in
Vit E’s ability to mitigate inflammation and oxidative stress, further imploring the question
of whether neonatal populations would also benefit [81]. The use of Vit E at enterally at
current routine doses appears safe in both term and preterm infants; however high dose
intravenous in VLBWs would not be recommended. The unique regional and sex-based
properties of Vit E remain to be fully elucidated but may be exploited to target specific
populations or patterns of brain injury that could benefit from it. Answering some of these
questions in clinically relevant animal models may help to delineate a target that can be
implemented in human randomized clinical trials. Additional clinical studies are also
needed to decipher whether Vit E levels in neonates correlate with decreasing risk of NDI.

In summary, if Vit E is used via the appropriate route and dose, and an appropriate
population is targeted to exploit its beneficial properties, it could serve as a safe neuropro-
tective agent in newborn infants, either alone or in combination with other therapeutics.
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