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To evaluate the hypothesis that quantitative EEG (qEEG) analysis is susceptible to detect early functional changes in familial
Alzheimer’s disease (AD) preclinical stages. Three groups of subjects were selected from five extended families with hereditary
AD: a Probable AD group (18 subjects), an asymptomatic carrier (ACr) group (21 subjects), with the mutation but without any
clinical symptoms of dementia, and a normal group of 18 healthy subjects. In order to reveal significant differences in the spectral
parameter, the Mahalanobis distance (𝐷2) was calculated between groups. To evaluate the diagnostic efficiency of this statistic
𝐷
2, the ROC models were used. The ROC curve was summarized by accuracy index and standard deviation. The 𝐷2 using the

parameters of the energy in the fast frequency bands shows accurate discrimination between normal and ACr groups (area ROC =
0.89) and between AD probable and ACr groups (area ROC = 0.91).This is more significant in temporal regions.Theses parameters
could be affected before the onset of the disease, even when cognitive disturbance is not clinically evident. Spectral EEG parameter
could be firstly used to evaluate subjects with E280A Presenilin-1 mutation without impairment in cognitive function.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
in the elderly characterized by progressive dementia [1,
2]. The disorder probably begins many years before the
first clinical symptoms are evident [3, 4]. Recent studies
have demonstrated that during the presymptomatic phase,
neuronal degeneration occurs even without the presence of
clinical symptoms [5].These make preclinical discrimination
between people who will and will not ultimately develop AD
critical for early treatment of the disease [6].

Neuropathological hallmarks of AD include macroscopic
change as reduced brain weight with cortical atrophy and
ventricular enlargements primarily due to neuronal loss in
the temporal and parietal structures [7]. At the microscopic
level, it can be found neurofibrillary tangles (intracellular
aggregations of tau protein filaments) and amyloid plaques
(extracellular aggregates of amyloid beta-peptides) that are

particularly concentrated in the hippocampus, entorhinal
cortex, and postcentral parietal neocortex. [2, 8, 9].

Recent advances in molecular genetics have allowed
identifying individuals carrying defective genes predisposed
to develop AD [10]. When the disease penetrance is high,
the examination of apparently asymptomatic subjects car-
riers of defective genes allows early evaluation of different
physiopathology’s processes [11]. Up to now, three genes
have been unequivocally related to familial forms of AD, the
Presenilin-1 (PS-1) gene, accounting for 15–50% of the cases,
the amyloid precursor protein (APP), and the Presenilin-2
(PS-2) mutation which have been identified in less than 1%
[10].

In a genetic analysis, the findings, of mutations that
produce an autosomal dominant formofAD, in a patientwith
dementia or in a family carrying dominant autosomic form
of the disease, allow a diagnosis with nearly 100% of certainty
[1].While the cause(s) of themost commonAD the late-onset
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form is unknown,mutations in Presenilin-1 causemany cases
of familial the early onset AD [13].

In a community based at Antioquia, Colombia, there is
a well-documented form of early onset familial AD related
with glutamic acid to alanina mutation at the codón 280 of
chromosome 14, in the Presenilin-1 gene [12]. This mutation
provides autosomal dominance inheritance, with virtually
100 % penetrance. Clinically, this phenotype cannot be dis-
tinguished from sporadic AD except for the early aged onset.
The patients had a mean age at onset of 46.8 years [12]. A
clinical diagnosis accuracy of approximately 85% of detection
rate is commonly achieved, by a procedure of exclusion after
structural or functional imaging tests including quantitative
electroencephalography, laboratory, and psychometric test
[13]. Annual conversion rate, from normality to dementia of
AD type, it ranges between 0.2% and 4% whereas, from mild
cognitive impairment to AD, is between 6% and 25%. It is an
open issue with important clinical implicationwhether or not
mild cognitive impairment is essentially prodromal stage of
AD [14–16].

In the aging brain—including the AD ones during pre-
clinical conditions—plastic compensatory remodeling guar-
antees functional maintenance, so that the neuronal and
synaptic death can occur in the absence of symptoms for an
unknownperiod of time thatmight last years or even decades.
This mechanism of “cognitive or brain reserve” motivates
the use of instrumental markers of AD in association with
standard assessment of cognitive functions [7]. Few studies
have assessed EEG measures over the course of dementia
progression.

In our sample, there are groups of asymptomatic carrier
which are going to develop the AD with 100% of accuracy
because his mutation in the Presenilin-1 gene provides auto-
somal dominance inheritance with virtually 100% of pene-
trance. Systematic studies of this familial AD have enabled
the identification of subjects that carry the mutation but
without clinical signs or symptoms [12].This condition allows
finding individuals at preclinical stages of AD, permitting
the early electrophysiological evaluationwith the quantitative
EEG measure.

Multiple techniques have been used to evaluate the
pathophysiological processes underlying early stages of AD.
Among them, the quantitative analysis of digital electroen-
cephalogram (EEG) has been introduced as a nonexpensive,
noninvasive, and objective tool for evaluating dementia.
Longitudinal analyses of brain EEG rhythms have provided
objective evidences of disease progression from MCI to AD
[17, 18]. Previous studies using the EEG in demented patients
have reported high sensitivity in detecting a diffuse organic
damage, but low specificity in determining an etiologic
diagnosis [19]. In the last years, several research groups have
started investigating the potentiality of electroencephalo-
gram for diagnosis AD. However, in our knowledge, there are
noprevious research usingEEG signal for the diagnosis ofAD
subjects to ensure 100%who develop the disease in the future
will develop the disease.

Many researches have shown that mild cognitive impair-
ment and AD cause EEG signals to slow down and mild
cognitive impairment and AD are associated with increase

of power in slow frequencies (delta- and theta-band) and
a decrease of power in fast frequencies (alpha- and beta-
band). Nevertheless, increased gamma-band power has been
reported in mild cognitive impairment and AD patients
compared to healthy age matched control subjects [20].

The most often electroencephalographic findings in AD
patients are (a) severe slowing of background activity with
an increased power in slow EEG activity [21–26] and (b) a
concomitant decrease of the power at fast (alpha and beta)
EEG frequency ranges [21, 27, 28]. Many researches also
hypothesize that the earliest modifications of the EEG occur
in the beta- and theta-bands, while changes in alpha and delta
bandwidths appear later in the time course of the disease
[2, 29]. However this pattern is not universally found [29, 30].
Several studies have shown a close relationship between an
increase in the slow frequency and the degree of cognitive
impairment in these patients [26, 31–35]. The quantitative
EEG has been also used to evaluate the treatment response
with cholinesterase inhibitors [36] and the dementia follow-
up [28, 37].

When compared to healthy normal elderly subjects, AD
patients evidence high power for delta and theta and low
power for posterior alpha (8–12Hz) and/or beta (13–30Hz)
frequencies [2, 7, 38–42]. Some of these EEG changes could
differentiate dementia diagnosis, as the strong decline of
posterior slow frequency alpha sources that occurs specifi-
cally formildADgroupwhen compared to vascular dementia
and normal elderly groups. In addition, abnormal wide theta
sources characterized cerebrovascular dementia patients [41].
EEG abnormalities were associated with altered regional
blood flow/metabolism and impaired global function as
evaluated by minimental state examination (MMSE) [2, 33,
43].

Nevertheless, in the earliest stages of AD, electroen-
cephalographic patterns have not been completely charac-
terized. Ambiguous results have been reported; Nobili et al.
[31] found no EEG alteration orworsening in 50%of early AD
cases in a one-year follow-up study. Other authors described
a delay in the peak of the dominant frequency [33, 44].
Different recording methods and analysis procedures have
been used. Normally, the classical frequency band analysis
has a poor resolution andmay overlook slight, but important,
changes in the spectra [33, 45]. This drawback may be solved
by the use of narrower bands.

Of note, early stages of AD (even preclinical) are
typically associated with slowing down resting occipital
alpha rhythms, namely, a decrease of the individual alpha
frequency (IAF) peak in power density [46]. The IAF peak,
defined as the frequency associated with the strongest EEG
power at the extended alpha range [47], should be always
taken into account in EEG studies in AD subjects, since
power changes in theta and alpha bands might be dependent
phenomena. Furthermore, the conventional partition of
EEG power into many conventional frequency bands allows
the comparison of the results with those of most of the field
studies but may prevent the separation of independent EEG
rhythms or sources [48].
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Table 1: Demographic and neuropsychological data of interest of normal, ACr, and probable AD subjects.

Normal ACr Probable AD Anova
𝑁 18 21 18

Age (years) 41.8 (±7.5 SE) 39.9 (±7.30 SE) 49 (±5.03 SE) F = 9.46, df = 2.54
P < 0.0002

Gender (F/M) 14/4 14/7 9/9

MMSE 28.8 (±1.23 SE) 28.2 (±1.84 SE) 21.1 (±2.44 SE) F = 67.52, df = 2.54
P < 0.0000

Education (years) 6.33 (±2.95 SE) 7.28 (±4.14 SE) 6.22 (±4.02 SE) F = 0.47, df = 2.54
P < 0.62

IAF 9.36 (±0.63 SE) 9.41 (±0.9 SE) 8.72 (±0.9 SE) F = 8.51, df = 2.54
P < 0.0006

MMSE: mini-mental scale examination; IAF: individual alpha frequency; SE: standard error; F: female; M: male; df: degree of freedom.

The aim of the present study is to evaluate the hypothesis
that quantitative EEG analysis is able to detect early func-
tional changes in preclinical stages of familial AD in ACr
and clinically normal subjects. We believe that this research
may help to identify an electroencephalographic pattern that
could distinguish which genetically predisposed subjects will
develop more rapidly the disease which in turn may in the
long term improve the reliability of EEG as a diagnostic tool
for AD.

2. Methods

2.1. Subjects. Three groups of subjects were selected from five
extended families affected by early onset AD due to an E280A
Presenilin-1 mutation [13]. These were as follows.

(i) A probable AD group: eighteen patients with the
E280A Presenilin-1 mutation are diagnosed as “prob-
able AD”, but still with mild symptoms of the disease
according to the minimental state examination [49]
(MMSE: 15–23, and the functional assessment stages
(FAST <5).

(ii) An ACr (asymptomatic carriers) group there are
twenty-one subjects, with the mutation but without
any clinical symptoms of dementia (MMSE: >23 and
FAST = 1).

(iii) A normal group there are eighteen healthy subjects
without history of neurological or mental disease, not
carrying the mutation (MMSE: >23 and FAST = 1).
The subjects of this group were selected from the
families in which there are any members with E280A
Presenilin-1 mutation with probable AD or ACr.

The exclusion criteria were severe physical illness, psychi-
atric or neurological disorders associated with potential cog-
nitive dysfunction, and other dementia conditions (fronto-
temporal dementia, dementia associated with Parkinsonism,
Lewy body disease, pure vascular or prion dementia, etc.).
Subjects with alcohol/drugs abuse, regular use of neurolep-
tics, antidepressants with anticholinergic action were also
excluded.

Informed consent for participation was obtained from
all subjects according to a general protocol approved by

the Human Subjects Committee of University of Antioquia,
Medellin, Colombia.

The presence of signs or symptoms of AD was assessed
using the criteria outlined by the National Institute of
Neurological and Communicative Disorders and the
Alzheimer’s disease and Related Disorders Association
(NINCDS-ADRDA) [50] and the DSM-IV criteria. Table 1
shows the mean values of demographic and clinical
characteristic of the probable AD, ACr and Normal groups
as well as the results of a one-way ANOVA for each of the
variables.

2.2. EEG Recordings. EEG recordings were obtained from
subjects comfortably resting with their eyes closed. Subjects
were continuously monitored in order to detect drowsiness.
EEG data were recorded from 19 electrodes positioned
according to the 10–20 international system. The ground
electrode was placed in Fpz. The short-circuited left and
right mastoid served as reference for all 19 channels. The
recordings were used offline to rereference to common
average. Electrode impedancewas kept below 5Kohms. EEGs
were recorded with the FENIX System (NEURONIC S.A),
they were amplified with a gain of 512, a filtering band pass
of 0.5–30Hz, and a sampling rate of 200Hz. A 60Hz notch
filter was also used.The EEGs were visually inspected offline.

2.3. EEG Analysis. For quantitative analysis, 24 artefact-free
epochs of 2.56 seconds duration were selected. The fast
Fourier transform was computed for each segment. Broad
band spectral parameters (absolute power, relative power, and
mean frequency) were calculated in four electroencephalo-
graphic classic bands: delta (0.5–3.5Hz), theta (3.5–7.5Hz),
alpha (7.5–12.5Hz), and beta (12.5–19.1 Hz)while narrowband
frequency model was computed with a frequency resolution
of 0.39Hz from 0.78 to 19.14Hz [51–53]. A logarithmic
transformationwas applied to the spectral estimates to obtain
an approximate Gaussian distribution. The spectral power at
each electrodewas normalized to the spectral power averaged
across all frequencies (0.5–19Hz) and electrodes.

The individual alpha frequency (IAF), as an anchor
frequency, was selected according to literature [46]. The IAF
is defined as the frequency associated with the stronger EEG
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power at the extended alpha range. The frequencies bands
were adjusted individually for each subject, by using IAF as
the cut-off point between the lower and upper alpha band.

2.4. Statistical Analysis. In order to reveal difference between
groups the following steps were carried.

(I) The 𝑧 standardized statistic was calculated for all
spectral parameters

𝑧 =
𝑥 − 𝜇 (age,MMSE)
𝜎 (age,MMSE)

, (1)

where 𝜇 and 𝜎 are the mean and standard deviation (SD)
estimated in the normal group.The 𝑥 value is the observation
of each subject. As EEG power in the theta and alpha fre-
quency range has been described that is related to cognition
and memory [47, 54]. MMSE and age were included as
covariate for 𝑍 calculation. This was also supported by our
results where we found a significance difference between
mean values in each group in these covariates (Table 1). The
mean and standard deviation values were computed using
the regression functions obtained from the normal group
using the covariates aged and MMSE with crossvalidation
technique (leave one out) to compare a single individual to
a population of “normal” individuals. In order to identify the
measures that are deviant from normal and the magnitude of
deviation, the 𝑍 score was computed for all variables based
on his/her respective age, MMSE matched mean, and SD in
the normal group.

(II) The components of 𝑍 vector tend to be highly cor-
related. For example, parameters from left-right homologous
derivations tend to be symmetrical, the deviation of 𝑍 vector
from normal group. This was carried out by consideration
of the correlations between its components by means of
Mahalanobis distance (𝐷2). These represent the direction of
maximum deviation [55]. The formal definition is

𝐷
2
= 𝑍
𝑇
Σ
−1
𝑍, (2)

where 𝑍 is the vector according to step (I) and Σ−1 is the
inverse covariancematrix of the𝑍 vector. Following standard
math notation 𝑍𝑇 is the transpose of vector 𝑍.

The application of𝐷2 for broad band frequency has been
considered by John et al. in 1987 [56]. The 𝐷2 is useful
to combine deviations from the normal pattern in different
spectral feature enhancing slight deviation at different fre-
quency bands. This combination is in agreement with usual
practice in mapping studies which involves the subjective
analysis of deviation from the norm in multiple spectral
maps.

The 𝐷2 distance was calculated by selecting different
parameters of the 𝑍 vector as follows:

(1) taking in account all the parameters (here called
global𝐷2).

(2) considering all frequencies in a fixed region (five
regions were considered: frontal (F3, F4, F7, F8, Fz),

central (C3, C4, Cz), temporal (T3, T4, T5, T6),
parietal (P3, P4, Pz), and occipital regions (O1, O2).
(this was referred to as regional𝐷2),

(3) considering all regions in a fixed frequency interval.
Firstly, the classical broad bandmodel was considered
(delta, theta, alpha, and beta bands), and in a second
place, two news bands were defined slow and fast
band. The slow band contained frequencies from 0.5
to 7.5Hz and the fast band frequencies from 7.5 to
19.14Hz (here refered to as frequency𝐷2).

The𝑃 value observed under null hypothesis was corrected
by Bonferroni with 𝛼 adjusted of 0.0010.

3. Results

The average spectral logarithm was obtained for each group.
Figure 1 shows superimposed averaged log spectral power for
each group of the narrow band model. In temporal regions,
the probable AD group shows a higher increase of the power
in the theta band compared to the ACr and the normal
groups. On the other hand, the probable AD group showed
a decrease of the alpha power with respect to the other
two groups. The SD of the spectra for all frequencies and
derivations in the groups were normal group 0.55, ACr group
0.87, and probable AD 1.02. The difference between these
log spectral value should be demonstrated statistically, as a
significant difference between the accuracy of classified using
the individually distance to normal group (according to step
(II) in section statistical analysis).

3.1. Global 𝐷2. The 𝐷2 was computed using the 𝑍 log
spectra of the narrow band model. The histogram of the 𝐷2
(Figure 2) shows that themaximal distance (in decrease order
of magnitude) was reached in the Probable AD followed by
the ACr group and the normal group.

The discriminative accuracy of 𝐷2 was quantitative mea-
sured 𝑞 by means of the ROC area. The areas were estimated
between normal and ACr groups (area ROC = 0.90), normal
probable AD groups (Area ROC = 0.98), and ACr-probable
AD groups (area ROC = 0.92). That means that it is possible
to separate ACr and probable AD groups from the normal
group, but also that the diagnostic performance is higher to
separate ACr and probable AD groups.

3.2. Regional 𝐷2. In order to determinate the accuracy
according to the regions and frequency bands,𝐷2 was cal-
culated for selected component of the 𝑍 log spectra in five
different regions: frontal (F3, F4, F7, F8, Fz), central (C3, C4,
Cz), temporal (T3, T4, T5, T6), parietal (P3, P4, Pz), and
occipital (O1, O2).

ROC areas were obtained for five regions (see Table 2).
Figure 3 shows 𝐷2 the histogram obtained for temporal and
frontal regions. The maximal difference among the normal
group and the other groups (in decrease order of magnitude)
was localized in temporal, frontal, central, occipital and
parietal regions. In the other hand, the best diagnostic
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Figure 1: Averaged spectral power in the three groups. In y-axis are represented the values of the logarithm of the spectrum for each value
of frequencies and derivation.

performance between ACr and probable AD groups was
obtained at the temporal region (area ROC = 0.94).

3.3. Frequency𝐷2

3.3.1. Classic Bands. The𝐷2 applied to the broad-bandmodel
considered (delta, theta, alpha, and beta bands). The ROC
areas were also obtained for each band of the broadband
model (see Table 2).

The discrimination index using𝐷2 showed that beta band
was more accurate to discriminate between normal and ACr
groups (area ROC = 0.89) and between probable AD and
normal groups (AreaROC=0.99) than the rest of the classical
bands.

3.3.2. Slow and Fast Bands. Figure 4 shows the𝐷2 histogram
for the slow and fast bands. The accuracy of classification
in the fast band was higher than that in the slow frequency
bands. In decrease order of magnitude, the best indexes were
among normal probable AD groups (area ROC = 0.98), ACr

probable AD groups (area ROC = 0.91), and normal ACr
groups (area ROC = 0.89) (see Table 2).

4. Discussion

The goal of the present study was to determine the possible
impact of spectral EEG analysis to detect early functional
changes in preclinical stages of familial AD.Themain finding
of the present research was the presence of beta-bands
alteration in ACr groups in the absence of clinical sign.
Fast frequency bands change mainly in gamma-frequencies,
in people with clinical sign of mild cognitive impairment.
Other researches [57] also found a significant decrease of EEG
power in the 14–18Hz and 18–22Hz in AD patients. Reduc-
tion of beta band power was correlated with severe cognitive
dysfunction.The researcher suggested that a reduction of beta
power is not only due to ageing, but may reflect an alteration
of AD especially in the early stage, [58] This change in the
EEG could be found in another dementia, but generally the
subjects have clinical sign of cognitive disorders. However,
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Figure 2: Histograms of 𝐷2 calculated for the 𝑍 log spectra of the
narrow bandmodel.The x-axis shows the values of theMahalanobis
distance for each subjects. Y-axis shows the observed frequencies
(number of subjects).

the findings of difference in beta band activity in ACr when
compare with normal group suggest the possibility that this
disturbance in the cholinergic system begins before cognitive
impairment appears. This finding could imply that beta
band could be affected before the alteration in the gamma
described in subjects with mild cognitive impairment. It is
possible that early modifications in beta band as found in
this study are not sufficient to produce clinical cognitive
impairment but could be an early sign to develop the disorder
in the future. The modification in delta and alpha bands
observed in this study was similar to that previous reports in
subjects with AD [59–61].

The importance of high frequency for cognitive process
has been recently stressed in several studies [62–64]. Claus
et al. [64] reported that loss of beta band power is an
independent predictor of unfavorable prognosis in AD. Stam
et al. [65] suggested that loss of beta band power may also be
important for early diagnosis of AD.

Besides a corticocortical uncoupling progression, a
decrease of synaptic coupling is likely to contribute selectively
to reducing EEG coherence for faster rhythms, as observed
in healthy humans by transient use of a cholinergic synap-
tic blocker like scopolamine [66]. Animal models suggest
that acetylcholine reduction produces a decrease of high
frequency EEG coupling and an increase of slow frequency
coupling [67]. Significant drop in EEG synchronization in
faster rhythms has also been correlated with decreased
MMSE scores in MCI and AD patients [68]. Our findings
suggest a decrease of functional connectivity in beta band
in ACr. This may be explained by a loss of intracortical
connections, which are essential for interactions between
brain regions. These connections are known to be affected in
AD.

Table 2: The ROC areas and standard deviation for the different
estimated𝐷2.

Groups ROC values SD

Global𝐷2
Normal ACr 0.90 0.054
Normal probable AD 0.98 0.024
ACr probable AD 0.92 0.048

Regional𝐷2

Frontal
Normal ACr 0.85 0.065
Normal probable AD 0.98 0.024
ACr probable AD 0.91 0.050

Central
Normal ACr 0.84 0.067
Normal probable AD 0.98 0.024
ACr probable AD 0.90 0.053

Temporal
Normal ACr 0.89 0.056
Normal probable AD 0.98 0.024
ACr probable AD 0.94 0.041

Parietal
Normal ACr 0.68 0.089
Normal probable AD 0.98 0.024
ACr probable AD 0.67 0.088

Occipital
Normal ACr 0.82 0.071
Normal probable AD 0.98 0.024
ACr probable AD 0.84 0.066

Bands𝐷2
(Classic bands)

Delta-band
Normal ACr 0.77 0.079
Normal probable AD 0.98 0.024
ACr probable AD 0.88 0.058

Theta-band
Normal ACr 0.86 0.063
Normal probable AD 0.98 0.024
ACr probable AD 0.90 0.053

Alpha-band
Normal ACr 0.86 0.063
Normal probable AD 0.98 0.024
ACr probable AD 0.85 0.064

Beta-band
Normal ACr 0.89 0.056
Normal probable AD 0.99 0.017
ACr probable 0.98 0.024

Bands𝐷2 (slow
and fast bands)

Slow bands
Normal ACr 0.84 0.067
Normal probable AD 0.98 0.024
ACr probable AD 0.90 0.053

Fast bands
Normal ACr 0.89 0.056
Normal probable AD 0.98 0.024
ACr probable AD 0.91 0.050

On the other hand, our research showed changes in the
EEG spectral parameters in frontal and temporal region likely
the most early and sensible than other regions. A related
study further supports the role of EEG as a noninvasive tool
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Figure 3: Histograms of 𝐷2 for 𝑍 log spectral values in two regions of the three groups. In x-axis are represent the values of Mahalanobis
distance for each subject. y-axis represents the observed frequencies.
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Figure 4: Histograms of 𝐷2 calculated in (a) slow (delta theta) and (b) fast (alpha beta) frequencies for all regions of the three groups. The
x-axis shows the values of the Mahalanobis distance for each subjects. Y-axis shows the observed frequencies (number of subjects).

used in the early identification of dementia demonstrated
the earliest subcortical and cortical changes, associated with
neural decline [67] According to Başar and Güntekin [69],
the left fronto parietal connections are highly affected by
ADpathology primarily occurringwithin the parietal regions
during the early stages of the disease.

In summary, our results suggest that the modification in
the qEEG of subjects with genetic predisposition to develop
AD is characterized by change in beta frequency band

and modification in fronto-temporal regions of the spectral
parameters before clinical sign of cognitive impairment
appears in subjects with E280A Presenilin-1 mutation but
this finding needs to be finding with increase of the number
of subjects with this mutation and corroborates in another
genetic form of dementia.

These results should be carefully handled because it has
been reported that familieswith PS-1mutation present amore
severe clinic syndrome than families with PS-2 mutation or
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another genetic form of dementia. Nevertheless, these results
open a possibility to recognize an electroencephalographic
pattern that could distinguish which genetically predisposed
subjects will develop more rapidly the disease and perhaps
which subjects with mild cognitive impairment or sporadic
AD form could suffer a quick deterioration in their cognitive
function through functional disturbances that are indirectly
present in the EEG activity. Another important issue is
to quantify the severity of the disease using spectral EEG
analysis to provide patients, ACr subjects, and their families
with a more reliable prediction of the disease’s course. An
appropriate clinical treatment, even at early stages, begins
with several actions by means of cognitive rehabilitation and
planning for necessary social resources.

(III) To evaluate the diagnostic efficiency of𝐷2, receiving
Operate Curves (ROC) models were used. The ROC curve
was summarized by its accuracy index and SD, respectively.
This is a measure of the probability to perceive abnormality
between two groups. High ROC area values reflect higher
accuracy.

However, many crucial issues will need to be addressed
before using EEG in the clinical practice as a tool for diag-
nosing AD. This research field offers sufficient opportunities
for exciting and clinically relevant research and opens the
possibilities to increase the number of subjects with this or
another genetic form of dementia.
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