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Abstract: The soil insect Bradysia odoriphaga (Diptera: Sciaridae) causes substantial damage to Chinese
chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga) have yet to be identified for
normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This
study was focused on identifying the expression stability of 12 candidate housekeeping genes in
B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping
genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed
by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15,
RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures;
RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb,
RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18
across all samples. The use of the most suitable reference genes versus an arbitrarily selected
reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in
B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to
the standardization of qRT-PCR and will also be valuable for further research on gene function in
B. odoriphaga.
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1. Introduction

Quantitative real-time PCR (qRT-PCR) is considered as a reliable technique for the gene
quantification [1–3]. However, gene expression can be affected by many confounding factors, such as
RNA extraction, reverse transcription, and qRT-PCR efficiency [4,5]. Therefore, housekeeping genes
are commonly used as “reference genes” to decrease the effects due to confounding factors and to
increase the accuracy of the quantification analysis related to the particular biological environment [6,7].
The reference genes overcome the whole steps of the analyses along with interest genes and suppress
the variations within the treatment group to the lowest level. Determining the number and identity of
the reference genes to be employed for count data of normalization factors (NF) among comparable
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samples is indispensable for the precise quantification of gene expression. Thus far, however, qRT-PCR
remains unreliable because of unquestioning selection of reference genes and random decision of the
number for data standardization. In most of the insect samples thus far studied, for example, the
expression levels of frequently used reference genes show unacceptable variability among tissues or
under different physiological conditions [8,9]. The use of such reference genes will lead to inaccurate
calculations and may hide true differences among samples or may indicate false differences [10].
Gutierrez et al. found that estimates of gene expression level can differ by 100-fold depending on the
selection of reference gene [11]. It follows that before a housekeeping gene is applied as a reference
gene, its stability should be evaluated in the particular tissue and under the particular experimental
conditions of the study [12,13]. In addition, at least two or three reference genes with stable expression
pattern should be selected [14–16].

Although qPCR has been frequently utilized for detecting expression in insects, there is still no
suitable housekeeping gene and stable gene quantification system for the chive gnat, Bradysia odoriphaga
Yang and Zhang (Diptera: Sciaridae). It has been reported that the chive gnat is a major soil pest
of Chinese chive, Allium tuberosum Rottler ex Sprengel [17–19]. With its high fecundity, overlapping
generations, and wide host range, the chive gnat occurs throughout China [20,21]. The chive gnat
commonly reduces the yield of Chinese chive by 40%–60% and in some cases destroys the entire
crop [22–25]. Quantitative examination of gene expression in B. odoriphaga (Bradysia odoriphaga) may
increase our understanding of the biology and control of this pest.

This study was focused on identifying suitable housekeeping genes for assessing gene expression
in B. odoriphaga under various experimental conditions that included differences in developmental
stage, temperature, population, pesticide exposure, diet, and photoperiod. We also assessed the
significance of variations by comparing different normalization strategies with the merits of using the
most appropriate versus a randomly selected reference genes under different temperature treatments.

2. Results

2.1. Amplification Efficiencies

Reverse transcription PCR (RT-PCR) showed that all 12 selected reference genes and one target
gene were observed in the B. odoriphaga samples. For each gene, an amplicon of the correct size was
evident. In order to estimate the amplification efficiency of the candidate genes, five-point standard
curves were drawn based on the known RNA standards concentration, and the melting curve showed a
single peak in each case (Figure 1). Amplification efficiencies ranged from 95.1% to 107.0%. Coefficients
of determination (R2) based on linear regression were >0.990 (Table 1).



Int. J. Mol. Sci. 2016, 17, 1034 3 of 19

Int. J. Mol. Sci. 2016, 17, 1034 4 of 19 

 

0.34

0.29

0.24

0.19

0.14

0.09

0.04

65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.34

0.29

0.24

0.19

0.14

0.09

0.04

65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.39

0.34

0.29

0.24

0.19

0.14

0.09

0.04

65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.39

0.44

0.7

0.6

0.5

0.4

0.3

0.2

0.1

65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.8

0.0

0.5

0.4

0.3

0.2

0.1

65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0
65.0 70.0 75.0 80.0 85.0 90.0 95.0

1.9

1.4

0.9

0.4

65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0
65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.7

60.0

0.8

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.8

0.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0
65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0
65.0 70.0 75.0 80.0 85.0 90.0 95.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0
65.0 70.0 75.0 80.0 85.0 90.0 95.0

A

M

LKJ

IHG

FED

CB

D
er

iv
at

iv
e 

R
ep

or
te

r 
(-

R
n’

)

Temperature (℃) Temperature (℃)

Temperature (℃)  
Figure 1. Melting curve analysis of quantitative real-time PCR (qRT-PCR) amplification (using 
gene-specific primers) of 12 housekeeping gene and a target gene in B. odoriphaga: (A) ACTb; (B) EF1a; 
(C) GAPDH; (D) RPL18; (E) RPL28; (F) RPS15; (G) RPS18; (H) RSP5; (I) RPS13; (J) SDHA; (K) TUB;  
(L) UBCE; and (M) HSP23. 

Figure 1. Melting curve analysis of quantitative real-time PCR (qRT-PCR) amplification (using
gene-specific primers) of 12 housekeeping gene and a target gene in B. odoriphaga: (A) ACTb; (B) EF1a;
(C) GAPDH; (D) RPL18; (E) RPL28; (F) RPS15; (G) RPS18; (H) RSP5; (I) RPS13; (J) SDHA; (K) TUB;
(L) UBCE; and (M) HSP23.
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Table 1. Features of the 12 housekeeping genes and one target gene in B. odoriphaga (Bradysia odoriphaga) samples.

Gene Symbol Gene Name Forward Primer (51Ñ31) Reverse Primer (51Ñ31) Product Length (bp) Efficiency (%) R2 *

ACTb β-actin CGCCCCCGAAGAAATTGTTG GTCACGACCGGCAATGTCTA 128 107.01 1.000
EF1a Elongation factor 1 alpha TGCAACTGCACTGCGAAAAG ACACTTTGCCCTACCGTCTG 153 102.23 0.991

GAPDH Glyceraldehyde-3-phosphate GCTAGTGCCGGTGCTGAATA GACGCCACAGACGAACATTG 144 100.20 1.000
RPL18 Ribosomal protein L18 CCAACTGGCAAGGGAACTCT AGCTACGTCTGCGACCTCTA 160 101.26 0.998
RPL28 Ribosomal protein L28 CGTGCCCGACATTTTCATCA GACCAAGCCACTGTAACGGA 180 105.18 1.000
RPS15 Ribosomal protein S15 ATCGTGGCGTCGATTTGGAT CTCATTTGGTGGGGCTTCCT 164 101.03 0.997
RPS18 Ribosomal protein S18 AACGAGCTGGTGAATGTACCG TGGACGACGTCAATTGTGTG 144 101.84 0.999
RSP5 Similar to ubiquity family member TCTACCAAAGGCGCACACAT CAACCGCAAATCCACACGTT 116 103.85 1.000
RPS13 Ribosomal protein S13 AAGTACGTTTCGTCAGCGGT GTTTGCGAATAGCGACAGCC 117 97.35 0.999
SDHA Succinate dehydrogenase TTGCCTGCTGAACAATTGGC GTCGGTACGCCACCCATATT 134 95.10 0.998
TUB Alpha tubulin ACAGTGCAAGGGCTTACAGG GCTGTTGATACTCTGGGCGA 159 101.80 1.000

UBCE Ubiquitin-conjugating enzyme ACTACGGGCCGATTTAGCTG CATTTGGTCGCTTCTCGCTG 101 102.58 0.998
HSP23 Small heat shock protein GAGAGCTATGCATCGCGACA GCATTCTGCGGGTCGATTTC 140 106.86 0.997

The gene source was transcriptome data in all cases. * Regression coefficient obtained according to standard regression curve.
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2.2. Expression Images of Candidate Reference Genes

To analyze mRNA expression level of the 12 candidate housekeeping genes, Ct values were
calculated for all samples in this study. As shown in Figure 2, the mean Ct values of the 12 candidates
were <30. The average Ct value was lowest for RPL28 (15.95) and highest for TUB (25.32).
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Figure 2. Expression profiles of the 12 housekeeping genes in all specimens of B. odoriphaga as 
indicated by cycle threshold (Ct) values. Samples were from the assays with developmental stages, 
temperatures, populations, pesticides, diets, and photoperiods. Values are means ± SD. 
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RPS15, RPL18, and RPS18 were considered suitable reference genes across developmental stages of 
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Figure 2. Expression profiles of the 12 housekeeping genes in all specimens of B. odoriphaga as indicated
by cycle threshold (Ct) values. Samples were from the assays with developmental stages, temperatures,
populations, pesticides, diets, and photoperiods. Values are means ˘ SD.

2.3. Stability of Reference Genes

The following results are based on analyses across the range of each factor. For developmental
stage, for example, stability is based on an analysis across all stages.

2.3.1. Developmental Stages

According to the four algorithms, TUB and EF1a were the least steady across developmental
stage (Table 2). The most stable genes (in order) were RPS15, RPL18, and ACTb according to the ∆Ct

method; RPS18, RPS13, and RPL28 according to BestKeeper; SDHA, ACTb, and GAPDH according to
NormFinder; and RPL18, RPS15, and RPS18 according to GeNorm (Table 2).

According to RefFinder, the order of the reference gene stability across developmental stages
was: RPS15 > RPL18 > RPS18 > SDHA > ACTb > RPS13 > GAPDH > RPL28 > UBCE > RSP5 > EF1a > TUB
(Figure 3A). GeNorm analysis results showed that the pair-wise values of V2/3 to V6/7 were all
above the cut-off value of 0.15 but that the pair-wise value of V7/8 was <0.15 (Figure 4); a value <0.15
indicates that the supplemental reference genes will not evidently change the normalization. Based
on the RefFinder recommendations for selection of reference genes and on convenience of operation,
RPS15, RPL18, and RPS18 were considered suitable reference genes across developmental stages of
B. odoriphaga (Table 3).
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Table 2. Expression stability of the 12 candidate housekeeping genes in B. odoriphaga under various experimental conditions.

Experimental Condition Rank
∆Ct BestKeeper NormFinder GeNorm

Gene Name Standard Value Gene Name Standard Value Gene Name Standard Value Gene Name Standard Value

Developmental stages

1 RPS15 1.460 RPS18 0.559 SDHA 0.455 RPL18/RPS15 0.429
2 RPL18 1.510 RPS13 0.628 ACTb 0.481
3 ACTb 1.520 RPL28 0.742 GAPDH 0.729 RPS18 0.530
4 SDHA 1.530 RPS15 0.745 RPS15 0.757 RPS13 0.626
5 GAPDH 1.620 RPL18 0.757 UBCE 0.810 RPL28 0.756
6 RPS18 1.620 SDHA 0.824 RPL18 0.927 SDHA 0.908
7 UBCE 1.640 GAPDH 0.856 RPS18 1.140 ACTb 1.020
8 RPS13 1.710 ACTb 0.970 RSP5 1.221 GAPDH 1.080
9 RPL28 1.770 UBCE 1.238 RPL28 1.264 UBCE 1.130
10 RSP5 1.950 RSP5 1.652 RPS13 1.273 RSP5 1.259
11 EF1a 2.860 EF1a 1.754 EF1a 2.514 EF1a 1.520
12 TUB 3.990 TUB 3.942 TUB 3.870 TUB 1.931

Temperatures

1 RPS15 0.640 RPL28 0.298 RPS15 0.307 RPL18/RSP5 0.476
2 GAPDH 0.680 RPS15 0.432 GAPDH 0.397
3 RPL28 0.690 UBCE 0.457 RPL28 0.415 RPL28 0.521
4 RSP5 0.720 SDHA 0.457 RSP5 0.478 GAPDH 0.564
5 RPS13 0.750 RPS13 0.468 RPS13 0.515 RPS15 0.581
6 UBCE 0.760 TUB 0.486 UBCE 0.522 EF1a 0.625
7 EF1a 0.770 RPL18 0.498 EF1a 0.544 UBCE 0.654
8 RPL18 0.800 GAPDH 0.564 RPL18 0.612 RPS13 0.674
9 ACTb 0.830 RSP5 0.585 ACTb 0.645 RPS18 0.696
10 SDHA 0.850 ACTb 0.608 TUB 0.682 ACTb 0.726
11 RPS18 0.860 EF1a 0.712 SDHA 0.683 SDHA 0.748
12 TUB 0.860 RPS18 0.721 RPS18 0.695 TUB 0.767

Pesticides

1 RPS15 0.550 SDHA 0.277 RPS15 0.297 RPL28/RPS15 0.300
2 RPL18 0.580 EF1a 0.305 RPL18 0.323
3 RPL28 0.580 ACTb 0.402 RPS18 0.356 RPL18 0.351
4 RPS18 0.600 TUB 0.496 RPL28 0.373 GAPDH 0.387
5 UBCE 0.610 RPS18 0.506 UBCE 0.385 UBCE 0.413
6 RPS13 0.620 RPL18 0.511 RPS13 0.387 RPS18 0.438
7 RSP5 0.630 RSP5 0.518 RSP5 0.424 RSP5 0.470
8 ACTb 0.670 RPS13 0.585 ACTb 0.471 RPS13 0.492
9 GAPDH 0.670 UBCE 0.632 GAPDH 0.536 ACTb 0.535
10 SDHA 0.750 RPS15 0.656 SDHA 0.591 SDHA 0.575
11 EF1a 0.830 RPL28 0.684 EF1a 0.704 EF1a 0.622
12 TUB 0.880 GAPDH 0.774 TUB 0.765 TUB 0.664
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Table 2. Cont.

Experimental Condition Rank
4Ct BestKeeper NormFinder GeNorm

Gene Name Standard Value Gene Name Standard Value Gene Name Standard Value Gene Name Standard Value

Photoperiods

1 RSP5 1.620 RSP5 0.526 RSP5 0.324 RPS18/UBCE 0.542
2 RPS15 1.680 ACTb 0.700 SDHA 0.363
3 SDHA 1.720 RPS18 0.967 RPL28 0.442 RPL18 0.580
4 RPL28 1.740 SDHA 0.998 RPS15 0.523 RPS15 0.655
5 RPL18 1.760 RPL28 1.035 RPS18 0.849 GAPDH 0.746
6 UBCE 1.770 UBCE 1.047 UBCE 0.850 RSP5 0.903
7 RPS18 1.780 RPS15 1.212 RPL18 0.899 SDHA 1.009
8 GAPDH 1.900 RPL18 1.335 GAPDH 1.071 RPL28 1.074
9 ACTb 2.040 GAPDH 1.592 ACTb 1.337 ACTb 1.225
10 TUB 3.040 TUB 1.874 TUB 2.899 TUB 1.564
11 EF1a 3.090 EF1a 2.075 EF1a 2.956 EF1a 1.778
12 RPS13 4.370 RPS13 4.172 RPS13 4.300 RPS13 2.210

Diets

1 ACTb 0.850 RPS15 0.596 ACTb 0.333 RPL18/RPS18 0.470
2 RPS18 0.860 EF1a 0.604 RPS18 0.435
3 RPS15 0.920 GAPDH 0.638 RPS15 0.550 ACTb 0.546
4 RPL18 0.960 TUB 0.665 RPL18 0.621 RPL28 0.613
5 RPL28 0.980 ACTb 0.777 RPL28 0.683 RPS13 0.673
6 RPS13 1.020 RPL28 0.803 GAPDH 0.728 RPS15 0.719
7 GAPDH 1.050 RPS13 0.805 RPS13 0.735 UBCE 0.752
8 UBCE 1.060 RPS18 0.864 UBCE 0.801 GAPDH 0.825
9 TUB 1.130 RSP5 0.928 TUB 0.870 TUB 0.900
10 RSP5 1.160 SDHA 0.956 RSP5 0.920 EF1a 0.945
11 EF1a 1.190 UBCE 0.980 EF1a 0.977 RSP5 0.984
12 SDHA 1.340 RPL18 1.056 SDHA 1.154 SDHA 1.042
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Table 2. Cont.

Experimental Condition Rank
4Ct BestKeeper NormFinder GeNorm

Gene Name Standard Value Gene Name Standard Value Gene Name Standard Value Gene Name Standard Value

Populations

1 RPS13 0.760 RPL28 0.200 RPS13 0.189 EF1a/RSP5 0.405
2 RPS15 0.770 SDHA 0.214 RPS15 0.247
3 GAPDH 0.770 GAPDH 0.366 RPL28 0.324 GAPDH 0.430
4 RPL28 0.790 RPS13 0.404 GAPDH 0.364 ACTb 0.457
5 RSP5 0.810 ACTb 0.406 RSP5 0.445 RPS15 0.498
6 SDHA 0.830 RPS15 0.473 SDHA 0.448 RPS13 0.527
7 EF1a 0.860 EF1a 0.474 EF1a 0.525 RPL28 0.551
8 ACTb 0.860 RPS18 0.503 ACTb 0.546 SDHA 0.567
9 RPS18 0.960 RSP5 0.517 RPS18 0.604 RPS18 0.625
10 UBCE 1.080 RPL18 0.834 UBCE 0.830 UBCE 0.694
11 RPL18 1.550 UBCE 0.937 RPL18 1.472 RPL18 0.829
12 TUB 1.740 TUB 1.576 TUB 1.674 TUB 0.981

All samples

1 RPS15 1.630 RPS18 0.744 ACTb 0.565 RPL28/RPS15 0.893
2 ACTb 1.650 ACTb 0.811 RPS15 0.668
3 RPL18 1.660 RPL28 0.828 RPS18 0.763 RPL18 0.926
4 RPS18 1.670 SDHA 0.917 RPL18 0.768 RPS18 0.968
5 RPL28 1.710 RPS15 0.925 UBCE 0.810 ACTb 1.054
6 SDHA 1.730 RPL18 1.039 SDHA 0.826 SDHA 1.095
7 GAPDH 1.740 GAPDH 1.057 RPL28 0.848 GAPDH 1.127
8 UBCE 1.760 UBCE 1.069 GAPDH 0.868 UBCE 1.171
9 EF1a 2.330 EF1a 1.192 EF1a 1.116 EF1a 1.354
10 TUB 2.990 RSP5 2.125 TUB 2.623 RPS13 1.620
11 RPS13 3.030 TUB 2.210 RPS13 2.774 TUB 1.857
12 RSP5 3.320 RPS13 2.274 RSP5 3.062 RSP5 2.101
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Figure 3. The stability of the 12 housekeeping genes in B. odoriphaga based on the Geomean method 
of RefFinder and measured across: (A) developmental stages (from adult to pupa); (B) temperatures; 
(C) pesticides; (D) photoperiods; (E) diets; (F) B. odoriphaga populations; and (G) all samples. For  
(B–F), 4th-instar larvae were used. 

Figure 3. The stability of the 12 housekeeping genes in B. odoriphaga based on the Geomean method
of RefFinder and measured across: (A) developmental stages (from adult to pupa); (B) temperatures;
(C) pesticides; (D) photoperiods; (E) diets; (F) B. odoriphaga populations; and (G) all samples. For (B–F),
4th-instar larvae were used.
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Figure 4. Pair-wise variation (Vn/Vn + 1) analysis of the number of candidate reference genes in  
B. odoriphaga. Pair-wise variation was analyzed by GeNorm software. A value <0.15 indicates that the 
normalization could not be dramatically changed by additional reference genes. 
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most stable candidates were RPL18, RSP5, and RPL28, and the least stable were TUB, SDHA, and 
ACTb (Table 2). 

According to RefFinder, the order of reference gene stability across temperatures was: RPS15 > 
RPL28 > GAPDH > RSP5 > RPL18 > UBCE > RPS13 > EF1a > SDHA > ACTb > TUB > RPS18 (Figure 3B). 
The GeNorm data predicted that the pair-wise values from V2/3 to V3/4 were <0.15 (Figure 4). 
Therefore, RPS15, RPL28, and GAPDH were considered stable candidate genes across the tested 
temperatures (Table 3). 

2.3.3. Pesticides 

TUB, GAPDH, and EF1a were regarded as the least steady genes across pesticide treatments by 
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Table 3. Recommended reference genes in B. odoriphaga under various experimental conditions.

Experimental Condition Reference Genes

Developmental stages RPS15 RPL18 RPS18
Temperatures RPS15 RPL28 GAPDH

Pesticides RPS15 RPL18
Photoperiods RSP5 RPS18 SDHA

Diets ACTb RPS18 RPS15
Populations RPS13 RPL28
All samples RPS15 ACTb RPS18

2.3.2. Temperatures

According to the ∆Ct method and NormFinder, the most steady candidate genes across
temperature treatments were RPS15, RPL28, and GAPDH, and the least stable were RPS18, SDHA,
and TUB (Table 2). According to BestKeeper, the most stable candidate genes were RPL28, RPS15, and
UBCE, and the least steady were RPS18, EF1a, and ACTb (Table 2). According to GeNorm, the most
stable candidates were RPL18, RSP5, and RPL28, and the least stable were TUB, SDHA, and ACTb
(Table 2).

According to RefFinder, the order of reference gene stability across temperatures
was: RPS15 > RPL28 > GAPDH > RSP5 > RPL18 > UBCE > RPS13 > EF1a > SDHA > ACTb > TUB > RPS18
(Figure 3B). The GeNorm data predicted that the pair-wise values from V2/3 to V3/4 were <0.15
(Figure 4). Therefore, RPS15, RPL28, and GAPDH were considered stable candidate genes across the
tested temperatures (Table 3).

2.3.3. Pesticides

TUB, GAPDH, and EF1a were regarded as the least steady genes across pesticide treatments by
the ∆Ct method and by GeNorm and NormFinder but not by BestKeeper (Table 2). According to the
comparative ∆Ct method and GeNorm, the most stable candidates were RPS15, RPL18, and RPL28
(Table 2), while they were RPS15, RPL18, and RPS18 by using NormFinder and were SDHA, EF1a,
and ACTb according to BestKeeper (Table 2).

Based on RefFinder, the order of reference gene stability across pesticide treatments
was: RPS15 > RPL18 > RPL28 > RPS18 > SDHA > UBCE > ACTb > RPS13 > RSP5 > EF1a > GAPDH > TUB
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(Figure 3C). The GeNorm analysis showed that the pair-wise value of V2/3 was <0.15 (Figure 4).
Therefore, RPS15 and RPL18 were considered suitable candidate genes across the tested pesticide
treatments (Table 3).

2.3.4. Photoperiods

According to the four algorithms, the least stable genes across photoperiod treatments were
RPS13, EF1a, and TUB (Table 2). The most stable genes were RSP5, RPS15, and SDHA according to the
comparative ∆Ct method; RSP5, ACTb, and RPS18 according to BestKeeper; RSP5, SDHA, and RPL28
according to NormFinder; and RPS18, UBCE, and RPL18 according to GeNorm (Table 2).

According to RefFinder, the order of reference gene stability across photoperiod treatments was:
RSP5 > RPS18 > SDHA > UBCE > RPS15 > RPL28 > RPL18 > ACTb > GAPDH > TUB > EF1a > RPS13
(Figure 3D). The GeNorm analysis data showed that only the pair-wise value of V7/8 was below
the cut-off value of 0.15 (Figure 4). RSP5, RPS18, and SDHA were considered to be the most stable
candidate genes across photoperiod treatments (Table 3).

2.3.5. Diets

Both NormFinder and ∆Ct method results shared the same stable genes (ACTb, RPS18, and RPS15)
across diets and confirmed SDHA, EF1a, and RSP5 as the least steady genes across diets (Table 2).
According to BestKeeper, the most steady genes were RPS15, EF1a, and GAPDH, and the least stable
were RPL18, UBCE, and SDHA (Table 2). According to GeNorm, the most stable genes were RPL18,
RPS18, and ACTb, and the least stable were SDHA, RSP5, and EF1a (Table 2).

According to RefFinder, the ranking order of reference gene stability across diets
was: ACTb > RPS18 > RPS15 > RPL18 > RPL28 > GAPDH > RPS13 > EF1a > TUB > UBCE > RSP5 > SDHA
(Figure 3E). The GeNorm analysis showed that the pair-wise value of V4/5 was <0.15 (Figure 4).
Therefore, ACTb, RPS18, and RPS15 were considered fitted reference genes across diets (Table 3).

2.3.6. Populations

Across B. odoriphaga populations, TUB, RPL18, and UBCE were identified as the least stable genes
by all the four algorithms (Table 2). The most stable genes were RPS13, RPS15, and GAPDH according
to the comparative ∆Ct method; RPL28, SDHA, and GAPDH according to BestKeeper; RPS13, RPS15
and RPL28 according to NormFinder; and EF1a, RSP5, and GAPDH according to GeNorm (Table 2).

According to RefFinder, the order of reference gene stability across populations
was: RPS13 > RPL28 > GAPDH > RPS15 > RSP5 > EF1a > SDHA > ACTb > RPS18 > UBCE > RPL18 > TUB
(Figure 3F). The GeNorm analysis showed that V2/3 value was <0.15 (Figure 4). Therefore, RPS13 and
RPL28 were considered suitable reference genes for gene expression (Table 3).

2.4. Ranking of Reference Genes for All Specimens

Across all samples, the three computational programs, and the comparative ∆Ct method ranked
RSP5, RPS13, and TUB as the least stable genes (Table 2). The most stable genes were RPS15, ACTb, and
RPL18 according to the ∆Ct method; RPS18, ACTb, and RPL28 according to BestKeeper; ACTb, RPS15,
and RPS18 according to NormFinder; and RPL28, RPS15, and RPL18 according to GeNorm (Table 2).
Based on RefFinder, the order of reference gene stability across all samples was: RPS15 > ACTb > RPS18
> RPL28 > RPL18 > SDHA > UBCE > GAPDH > EF1a > TUB > RPS13 > RSP5 (Figure 3G). The GeNorm
analysis showed that only the pair-wise values of V6/7 to V7/8 were less than the cut-off value of 0.15
(Figure 4). Therefore, RPS15, ACTb, and RPS18 were regarded as the most suitable reference genes for
qRT-PCR (Table 3).
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2.5. Target Gene Expression

The selection failure of internal controls led to remarkable differences in quantification target
genes. The relative expression level of HSP23 significantly differed among temperature treatments
(4, ´5, or ´10 ˝C) when normalized by the most stable reference genes (such as RPS15) (Figure 5).
Similar changes observed in analyzing relative expression level of HSP23 with the normalization of
two reference genes (such as RPS15 and RPL28) (Figure 5) or three reference genes (such as RPS15,
RPL28, and GAPDH) (Figure 5). HSP23 in B. odoriphaga was found to be up-regulated under low
temperatures, especially when the temperature was below ´10 ˝C. However, HSP23 expression did
not significantly differ among these treatments when expression was calculated with an arbitrary
reference gene (such as ACTb) (Figure 5).Int. J. Mol. Sci. 2016, 17, 1034 12 of 19 
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Figure 5. Relative expression of a target gene, HSP23, was affected by three temperature treatments 
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(ACTb) reference genes. The reference genes were selected depending on the expression stability of 
the 12 housekeeping genes among the three temperature treatments. Values are means ± SD of three 
biology replications; the “*” means remarkable differences, * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 5. Relative expression of a target gene, HSP23, was affected by three temperature treatments
and standardized with different numbers, and kinds of reference genes. The expression level was
separately normalized by: A (RPS15); B (RPS15 and RPL28); C (RPS15, RPL28 and GAPDH); or D
(ACTb) reference genes. The reference genes were selected depending on the expression stability of
the 12 housekeeping genes among the three temperature treatments. Values are means ˘ SD of three
biology replications; the “*” means remarkable differences, * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Discussion

Results obtained with qRT-PCR depend on several critical factors including RNA quantity, primer
efficiency, and an internal control, i.e., a reference gene. When mRNA expression level is determined
by qRT-PCR, the RNA must be intact, and primer efficiency must be determined [26]. Here, the OD
ratio (A260/A280) of all RNA samples were between 1.8 and 2.0, and the amplification efficiency of the
12 candidates ranged from 90% to 110% (all R2 > 0.990) (Table 1). Thus, the quality of the RNA and
amplification was sufficient for qRT-PCR.

Previous researches have reported that expression level of reference genes is not always
stable under all experimental conditions [27–29] and that mRNA expression levels varied among
several housekeeping genes [2,30]. These earlier findings were confirmed in the current study with
B. odoriphaga (Table 2). In the current study, none of the candidate genes exhibited the same level
of expression under all experiment conditions [31]. This indicates that reference genes need to be
optimized and chosen depending on experimental parameters. Our data showed that, among the
tested genes, mRNA expression of RPS15 was the most stable across development stages, temperatures,
pesticide treatment, and all samples of B. odoriphaga, which is consistent with previous studies
concerning development stage and temperature treatments for Nilaparvata lugens [9] and insecticide
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treatments for Helicoverpa armigera [32]. In B. odoriphaga, RSP5 was the most stable gene across
photoperiod treatments, while RPS13 was the most stable across populations.

Previous studies have reported high expression stability for genes in the ribosomal protein
(RP) genes family [27,33]. For example, among different organs, geographic populations, pesticide
treatments, and starvation treatments, expression stability in Nilaparvata lugens was highest for
RPS11 [9]; among different organs and developmental stages of Tetranychus cinnabarinus, expression
stability was highest for RPS18 [34]; in Phenacoccus solenopsis, expression stability among temperature
treatments was highest for RPL32 [35]; among different developmental stages of Schistocerca gregaria,
expression stability was highest for RPL49 [36]; among different organs and developmental stages
of Cimex lectularius, expression stability was highest for RPL18 [37]; in Spodoptera litura, expression
stability among different larval tissues, populations, and food treatments was highest for RPL10 [33];
in Plutella xylostella, expression stability among different developmental stages and photoperiods was
highest for RPS13 [38]; in response to virus infection in Tribolium castaneum, expression stability was
highest for RPS3 [39]; and in Helicoverpa armigera, expression stability among temperature treatments
was highest for RPL28 [40]. As a principal component of ribosomes, ribosomal protein (RP) is important
in intracellular protein biosynthesis, DNA repair, cell differentiation, etc. [31]. These results indicate
that ribosomal protein genes might be useful as reference genes in interest gene expression studies.
In the current study with B. odoriphaga, however, an exception was that RPS13 showed the least steady
expression across photoperiod treatments. Another exception was reported for Rhodnius prolixus:
RPL26 was the most variable gene in the salivary glands of starved and non-starved specimens [41].

Because actin is the main structural protein of the cellular skeleton and is important for cell
function [42], expression of the actin gene is substantial in most cell types [43]. The actin gene
is the most stable gene in Chilo suppressalis [44], Schistocerca gregaria [36], and Apis mellifera [45].
Our study showed that ACTb is an ideal reference gene in B. odoriphaga subjected to diet treatments.
In Helicoverpa armigera, however, ACTb exhibited the least stable expression in response to photoperiod
and temperature treatments [40]. These results further confirmed that validating the stability of
reference gene is very significant. The suitability of reference genes relative to both species and
experimental conditions.

In addition to be affected by species and conditions [40], the ranking of reference gene stability
is also affected by the tools used to perform the ranking. In the current study with B. odoriphaga,
for example, the most stable genes across temperature treatments were RPS15, RPL28, and GAPDH
by using NormFinder and ∆Ct method but were RPL28, RPS15, and UBCE due to BestKeeper. This
difference in ranking probably results from differences in the statistical algorithms: while BestKeeper
individually analyzes the stability among candidate reference genes, NormFinder and the ∆Ct method
mainly think of the pair-wise variation between two candidate genes, and then confirm the stability of
one of them [44,46]. Therefore, we used RefFinder software to comprehensively estimate the stability
ranking of the 12 candidates. In addition, the optimal number of reference genes was confirmed by
GeNorm, which calculates the pair-wise variation (Vn/Vn + 1) between the continuous standardization
factors or NF (NFn and NFn + 1) [14] (Figure 3). If the first V value (V2/3) is <0.15, this indicates that two
reference genes are enough for reliable normalization [14]. Nevertheless, the most appropriate number
of reference genes also appears arbitrary without proper statistical verification under appropriate
experimental condition. Some analyses, for example, failed to achieve Vn/n + 1 <0.15, but could get
relatively stable expression genes across final ranking estimated by GeNorm [47]. The most suitable
number of reference genes conforms to the steadiest NF feasible with a unique sample set and a unique
panel of candidates [48].

Random selection of reference genes reduces the accuracy of detecting interest genes expression
because such a standardization strategy will be either under-estimate or over-estimate the expression
differences among specimens. Such as the expression level of HSP23 among different temperature
samples did not significantly differ using ACTb as internal control, but did significantly differ using
other reference gene (such as RPS15) (Figure 5). Normalization with two or more stable reference genes
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may be demanded, and researchers have recommended that multiple normalization genes were used
to get more credible results [49–51]. Vandesompele et al. [14] recommended that reliable normalization
needs at least three reference genes, and the pair-wise variation analysis in GeNorm hinted the need to
include more than two genes in the current study. According to the ranking of expression stability
among the 12 candidates evaluated by RefFinder in this work, we selected RPS15, RPL28, and GAPDH
to assess the target gene HSP23 in B. odoriphaga under different temperatures; the results showed
that HSP23 expression was up-regulated by low temperature, which was consistent with an earlier
study that used RPS20 as reference gene [52]. In the current study, however, an arbitrarily selected
reference gene (such as ACTb) failed to detect a significant effect of temperature on the expression
profile of HSP23. Therefore, optimization of reference genes is critical for exact normalization of
mRNA, especially for the subtle difference. To improve the accuracy of results, it is necessary to use
the panel of selected housekeeping genes for any sample set.

4. Materials and Methods

4.1. Insects

B. odoriphaga was collected from a Chinese chive field on the Yang Town farm, ShunYi area
(40˝11 N, 116˝61 E), Beijing, China. Individuals were reared for three generations with rhizomes
of Chinese chive in an incubator (MLR-352H-PC) at 25 ˘ 1 ˝C, 70% ˘ 5% relative humidity, and
12:12 (L:D). The specimens were promptly put into liquid nitrogen for further RNA isolation, and then
screened following 12 candidate genes and amplification efficiencies.

4.2. Factors that Could Affect the Expression of Housekeeping Genes

The effects of the following factors on candidate reference genes mRNA were measured:
developmental stage, temperature, population, pesticide exposure, diet, and photoperiod. After
“exposure” to each factor (as described in the following sections), the specimens were placed in
liquid nitrogen and then saved in ´80 ˝C fridge for further study. Each factor was assessed in three
independent experiments.

4.2.1. Developmental Stages

Each of the six developmental stages of B. odoriphaga was placed in an Eppendorf tube (1.5-mL)
as follows: adults (10 per tube), eggs (200 per tube), 1st-instar larvae (20 per tube), 2nd-instar larvae
(20 per tube), 3rd-instar larvae (6 per tube), 4th-instar larvae (4 per tube), and pupae (4 per tube).
The tubes were frozen and stored.

4.2.2. Temperatures

Groups of 20 4th-instar larvae were placed in a plastic Petri dish and exposed to 25, 4, ´5,
or ´10 ˝C. After 4 h, they were exposed to 25 ˝C for another 24 h. Four living insects per group were
then put in the tube (1.5-mL), frozen, and stored.

4.2.3. Pesticides

Groups of 40 4th-instar larvae were sprayed in culture dishes (φ = 60 mm) with the LC90 value of
allyl isothiocyanate, lime nitrogen, or thiamethoxam. An additional group of 40 larvae was sprayed
with distilled water. After 24 h at 25 ˝C, four living larvae per group were saved in a 1.5-mL plastic
tube, frozen, and stored.

4.2.4. Photoperiods

Groups of 20 4th-instar larvae in plastic Petri dishes were exposed to the following photoperiods
(L:D): 24:0, 12:12, or 0:24. After 96 h, 12 individuals per group were stored with a 1.5-mL tube, frozen,
and stored.
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4.2.5. Diets

Groups of four 4th-instar larvae were maintained in an incubator at 25 ˘ 1 ˝C, 70% ˘ 5% relative
humidity, and 12:12 (L:D) and were provided with one of the following: ginger slices, garlic bulbs,
Chinese chive rhizomes, onion bulbs, or artificial diet [53]. After three generations, four larvae were
placed into a 1.5-mL Eppendorf tube, frozen, and stored.

4.2.6. Populations

Larvae collected from three locations in China (Dezhou, Shandong; Baoding, Hebei; and Shunyi,
Beijing) were reared on rhizomes of Chinese chive in an incubator at 25 ˘ 1 ˝C, 70 ˘ 5% relative
humidity, and 12:12 (L:D). In the third generation, 12 4th-instar larvae from each population were
placed in 1.5-mL micro centrifuge tubes (four larvae per tube), frozen, and stored.

4.3. Candidate Reference Genes

We assessed 12 “housekeeping” genes are known as reference genes selected from other insects.
They were EF1a, UBCE, RSP5, GAPDH, RPS18, RPL18, ACTb, SDHA, RPL28, RPS13, RPS15, and
TUB [33,34,36,40]. The sequences were obtained from our B. odoriphaga transcriptome data. The
secondary structure of DNA template was predicted by the mfold web server [54], with the sets as
follows: melting temperature for 60 ˝C; Na+ concentration for 50 mM; Mg2+ concentration for 3 mM;
and linear DNA sequence. Other parameters were used as default. The primers used here were
designed and checked by NCBI (National center for Biotechnology Information) Primer-BLAST, under
the following conditions: primer GC content between 40% and 60%; primer melting temperature for
60 ˝C; and PCR products size of between 80 and 200 base pairs (Table 1).

4.4. Total RNA Abstraction and cDNA Synthesis

Total RNA was abstracted by the Trizol method. Each sample was homogenized with 1 mL
of Trizol in a glass homogenizer following the manufacturer’s protocol (TIANGEN, Beijing, China).
The quality and quantity of RNA were assessed with a Thermo Scientific NanoDrop 2000c UV-Vis
spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The quality of the nucleic
acid sample was considered good if the OD ratio (A260/A280) was between 1.81 and 2.05. The cDNA
was synthesized using the TransScript® (TAKARA, Japan) All-in-One First-Strand cDNA Synthesis
SuperMix in a 20 µL volume, with 4 µL 5ˆ TransScript® Buffer, 1 µg total RNA, and 1 µL gDNA
Remover. Following the manufacturer’s instruction, the 20-µL mixture was reacted in a Bio-rad PCR
machine for 15 min at 42 ˝C before both the TransScript® RT and gDNA remover were inactivated for
5 s at 85 ˝C. The cDNA was stored at ´20 ˝C.

4.5. qRT-PCR

Each reaction was operated in a 20-µL solution including 0.4 µL cDNA, 10 µL 5ˆ TransStart®

SuperMix, 0.4 µL forward primer, 0.4 µL reverse primer, and 0.4 µL 50ˆ Passive Reference Dye.
The amplification conditions for the qRT-PCR were set as follows: 94 ˝C for 30 s, followed by 40 cycles
of 94 ˝C for 5 s, 60 ˝C for 15 s, and 72 ˝C for 34 s. Then, the 10-fold dilution series of cDNA was used
for a standard curve. The melting curve analysis from 80 to 90 ˝C was used for assuring specificity of
the amplified product [55]. The corresponding qRT-PCR efficiencies (E) were counted by means of the
equation: E = (10[´1/slope] ´ 1) ˆ 100 [30,55].

4.6. Constancy of Gene Expression

The constancy of candidate genes was estimated by the ∆Ct method [46] and with the following
software: BestKeeper [56], GeNorm [14], and NormFinder [4]. The lower the value estimated by
these algorithms, the greater the stability of expression. RefFinder [57], a useful web-based tool, was
applied to estimate and screen the most suitable reference genes by combining the results of the four
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algorithms. Based on rankings from each algorithm, RefFinder assigned a suitable weight to each gene
and counted the geometric mean of the overall ultimate ranking.

4.7. Evaluation of a Target Gene Expression

To select the suitable reference genes from 12 candidates, we estimated latent up- or
down-regulation of the HSP23 gene in B. odoriphaga under different temperature treatments. Gene
expression ratios were calculated by using the formula (2´∆∆Ct) [58].

∆Ct “ Ct ptarget geneq´Ct preference geneq

∆∆Ct “ ∆Ct psampleq´∆Ct pcontrolq

4.8. Statistical Analysis

Results are showed as means ˘ SD. The means were calculated with Tukey’s test at p < 0.05 by
the software SPSS 19.0 for Windows (SPSS Inc., Chicago, IL, USA).

5. Conclusions

In summary, we first systematically evaluated 12 candidate reference genes in B. odoriphaga
under various conditions. Four algorithms (NormFinder, BestKeeper, GeNorm, and the comparative
∆Ct method) were used for evaluating the suitable reference genes. RefFinder, which was applied
to combine the results of the different algorithms, then indicated that the most suitable reference
genes were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH
across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across
photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15,
ACTb, and RPS18 across all samples. The use of the best reference genes vs. an arbitrarily selected
reference gene resulted in substantial differences in the estimation of expression of a target gene.
The results of this study will be valuable for research concerning gene function in B. odoriphaga.
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