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Efficient base editing with expanded targeting
scope using an engineered Spy-mac Cas9 variant

Zhiquan Liu', Huanhuan Shan', Siyu Chen', Mao Chen', Yuning Song', Liangxue Lai

Dear Editor,

The clustered regularly interspaced short palindromic
repeat (CRISPR) system, including newly developed base
editing technology, has exhibited powerful genome
manipulation capability’. Base editors that can achieve
targeted C-to-T (CBE) or A-to-G (ABE) conversions
without generating DNA double-strand breaks (DSBs) or
requiring a donor template represent significant advances
in both disease modeling and gene therapy>®. However,
the conventional Streptococcus pyogenes Cas9 (Spy Cas9)
requires a protospacer adjacent motif (PAM) of NGG,
which limits the applicability of base editors that are
highly dependent on the PAMs suitably adjacent to target
bases. In addition, although some natural and engineered
Cas9 variants with different PAM specificities have been
utilized in base editors, such as representative Cpfl
(TTTV (V=A/G/C))* and SpCas9-NG (NG)®, their tar-
geting scope is still limited to genomic regions rich in G
or T bases. Recently, Spy-mac Cas9 was generated by
rationally exchanging the PAM-interacting (PI) region of
the conventional Spy Cas9 with that of the newly dis-
covered Streptococcus macacae Cas9 (Smac Cas9),
showing 5-NAA-3" PAM specificity and possessing effi-
cient gene editing in human cells®. In this study, we
demonstrated the effectiveness of the Spy-mac Cas9-
assisted cytidine and adenine base editors Spy-mac
BE4max and Spy-mac ABEmax, and found that
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5-TAAA-3' is the only high-efficiency PAM for Spy-mac
Cas9 observed in this study.

To obtain the best efficiency of base editing, the Spy-
mac Cas9 system was combined with the current optimal
version of the base editors BE4max and ABEmax’ to
generate Spy-mac BE4max and Spy-mac ABEmax,
respectively (Fig. 1a). To fully evaluate the PAM specifi-
city and editing efficiency, we first tested the Spy-mac
BE4max system in rabbit embryos at 16 target sites,
including all NAAN PAMs, as a proof of concept (Sup-
plementary Table S1). Base editing was conducted in
rabbit pronuclear-stage embryos by microinjecting of
Spy-mac BE4max-encoding mRNA and single-guide RNA
(sgRNA). Base editing frequencies were evaluated by
Sanger sequencing and T-A cloning. Notably, the average
C-to-T editing frequency at the Tyr-1 site with TAAA
PAM was high at 86.00 + 8.72%, while much lower effi-
ciencies ranging from 13.33+6.67% to 26.67 +11.74%
were observed at the other five sites with AAAT, GAAG,
CAAG, AAAC, and CAAC PAMs (Fig. 1b and Supple-
mentary Fig. S1). However, no obvious base editing events
were observed at most tested sites (10/16), consistent with
variations in the targeting efficiencies of Spy-mac Cas9 at
different targeting sites in human cells® (Fig. 1b and
Supplementary Fig. S1).

Encouraged by the results of the pilot study, we exam-
ined whether the Spy-mac Cas9 variant may primarily
target TAAA PAM in rabbit embryos. Therefore, another
three sites (Tyr-5, Mstn-3, and Dmd-2) with TAAA PAMs
were designed to verify our hypothesis (Supplementary
Table S1). Remarkably, all sites showed efficient C-to-T
conversions, with average editing frequencies ranging
from 28.00 + 13.93% at Dmd-2 to 100.00 + 0.00% at Tyr-
14 (Fig. 1c and Supplementary Fig. S2). Moreover, tar-
geted C-G to T-A conversions were successfully achieved
to induce stop codons at all four sites, as expected
(Fig. 1d, g). In particular, the homozygous p.W178Stop-
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Fig. 1 Spy-mac BE4max and Spy-mac ABEmax induce efficient C-to-T/A-to-G base editing in vivo. a Schematic representation of Spy-mac
BE4max and Spy-mac ABEmax architecture. PIA, deletion of Pl domain. b Average frequencies of C-to-T base editing at seven target sites that
included NAAA and TAAN PAMs by Spy-mac BE4max in rabbit blastocysts. Data are presented as mean + SEM. (n = ~6 blastocysts). ¢ Frequencies of
single C-to-T conversions at four target sites with TAAA PAMs by Spy-mac BE4max in rabbit blastocysts. Data are presented as mean + SEM. (n = ~6
blastocysts). d-g Representative sequencing chromatograms of edited rabbit blastocysts at four target sites using the Spy-mac BE4max system.
Targeted C:G to T-A conversions (red arrows). The relevant codon identities at the target site are presented under the DNA sequence. h Frequencies
of single A-to-G conversions at four target sites with TAAA PAM by Spy-mac ABEmax in rabbit blastocysts. Data are presented as mean + SEM. (n = ~6
blastocysts). i The target sequence at the Tyr-1 locus using the Spy-mac BE4max system. The PAM and sgRNA target sequences are shown in green
and black, respectively. Target mutation (red). j Representative sequencing chromatograms from a WT and mutant rabbit (T1). The red arrow indicates
the substituted nucleotide. The relevant codon identities at the target site are presented under the DNA sequence. k The predicted editing bar plot
based on Sanger sequencing chromatograms from T1 by EditR. I Photograph of WT and Tyr-1 mutant (T1) rabbits at 1 month. m H&E staining of skin

from WT and T1 rabbits. The green arrows highlight the melanin in the basal layer of the epidermis of WT rabbits. Scale bars: 50 um

or p.W1l1Stop-targeted mutations were determined at
Tyr-1 or Tyr-14 (Fig. 1d, e). In addition, only a few
unwanted by-products, including indels and non-C-to-T
conversions, were observed in mutant embryos at Tyr-1
(1/10, #3) and Dmd-2 (1/10, #1) using Spy-mac BE4max
(Supplementary Figs. S1, 2), which was consistent with the
high product purity of the BE4max architecture in human
cells”. Despite the high efficiency of Spy-mac BE4max-
mediated C-to-T conversion, additional base editing tool
such as recently reported ABE system was also tested here
with TAAA PAMs at the four sites. Notably, site-specific
AT to G-C conversions were observed at all tested sites,
with average editing frequencies ranging from 10.00 +
7.75% at Dmd-2 to 68.00 +9.70% at Tyr-14 (Fig. 1h and
Supplementary Figs. S3, 4). Taken together, these results
demonstrated that both Spy-mac BE4max and Spy-mac
ABEmax could induce efficient C-to-T/A-to-G base
editing in rabbit embryos with TAAA PAMs.
Oculocutaneous albinism type 1 (OCA1) in humans
results from mutations in the Tyr gene, which encodes
tyrosinase, the key enzyme in pigment biosynthesis in
mammals®. Patients with OCA1 have been reported to
have impaired tyrosinase activity and a consequential
absence of pigmentation’. Here, two target G-to-A con-
versions were designed in exon 1 of the rabbit Tyr gene to
yield a premature stop codon (p.W178stop) (Fig. 1i). After
the microinjection of Spy-mac BE4max-encoding mRNA
and sgRNA'?, the rabbit embryos were transplanted into
the surrogate mother, and subsequently five pups were
obtained (Supplementary Table S2). Strikingly, T-A
cloning showed that four of these pups (80%) were
homozygous with nonsense mutations (p.W178stop) at
the target site (Fig. 1j, k and Supplementary Fig. S5). In
addition, no indels or non-C-to-T mutations were
detected in the Founder (FO) rabbits, which demonstrated
the high product purity of Spy-mac BE4max (Supple-
mentary Fig. S5). As expected, the mutants exhibited a
complete albino phenotype, consistent with their mutant
genotype  (Fig.  11).  Furthermore, histological

haematoxylin-eosin (H&E) staining revealed the absence
of melanin in the hair follicles of the T1 mutant, but not
in their wild-type (WT) littermates (Fig. 1m). In addition,
no obvious off-target mutations were detected at potential
off-target sites in mutant rabbits by using Sanger
sequencing and T7E1 cleavage assays'"'? (Supplementary
Fig. S6). Overall, these results demonstrated that Spy-mac
BE4max successfully mediated the Tyr-1 p.W178stop
mutation in FO rabbit with high efficiency, which precisely
recapitulates the pathological features of human OCA1.
In summary, we first demonstrated that the Spy-mac
Cas9-assisted cytidine and adenine base editors Spy-mac
BE4max and Spy-mac ABEmax can induce efficient C-to-
T/A-to-G conversions in vivo. In addition, the observed
PAM scope of Spy-mac Cas9 is not 5-NAA-3’ as pre-
viously reported in human cells but in reality only 5'-
TAAA-3’ manifests as high-efficiency PAM in this study.
Moreover, Spy-mac BE4max can induce targeted base
editing in FO rabbits with high efficiency to precisely
mimic human pathology condition. Thus, Spy-mac Cas9-
assisted base editors with expanded targeting scopes are
promising tools for establishing animal models and
developing precise gene therapy in the future.
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