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Simple Summary: Methane is a by-product of the microbial fermentation process from a group of
archaea known as methanogens. Ruminants harbor methanogens as a component of their normal
gastrointestinal microbiota. In this study, we assessed the fecal microbiome of organic dairy cows
across different time points receiving a mixed diet of pasture and TMR or TMR only. Our aim was to
compare the archaea and bacterial fecal microbial structure, diversity and their interactions across
diets. Cluster analysis based on the cows’ fecal microbial community identified four clusters. We
found little difference in the relative abundance of methanogens across clusters. However, there was
evidence of differences in diversity between pasture associated communities and those associated
with TMR only. The cluster associated with cows receiving high-quality pasture and TMR, had higher
diversity and a less robust co-occurrence network than those in TMR only or lower-quality pasture
communities. The overall good pasture and TMR quality, combined with the organic allowance for
feeding high levels of TMR, might have contributed to the lack of differences in the fecal archaeal
community. The development of novel strategies that are independent of pasture management could
have a greater impact in helping to reduce enteric CH4 emissions on organic dairies.

Abstract: Currently, little is known regarding fecal microbial populations and their associations with
methanogenic archaea in pasture-based dairy cattle. In this study, we assessed the fecal microbiome
of organic dairy cows across different time points receiving a mixed diet of pasture and total mixed
ration (TMR) or TMR only. We hypothesized that the fecal methanogenic community, as well as
co-occurrence patterns with bacteria, change across diets. To test these hypotheses, we analyzed
TMR and pasture samples, as well as the V3-V4 region of 16S rRNA of fecal samples collected over
the course of a one-year study period from 209 cows located on an organic dairy in Northwest
Washington. The inherent variability in pasture quality, quantity, availability, and animal preference
can lead to diverse dietary intakes. Therefore, we conducted a k-means clustering analysis to identify
samples from cows that were associated with either a pasture-based diet or a solely TMR diet. A
total of 4 clusters were identified. Clusters 1 and 3 were mainly associated with samples primarily
collected from cows with access to pasture of varying quality and TMR, cluster 2 was formed by
samples from cows receiving only TMR, and cluster 4 was a mix of samples from cows receiving
high-quality pasture and TMR or TMR only. Interestingly, we found little difference in the relative
abundance of methanogens between the community clusters. There was evidence of differences in
diversity between pasture associated bacterial communities and those associated with TMR. Cluster
4 had higher diversity and a less robust co-occurrence network based on Spearman correlations
than communities representing TMR only or lower-quality pasture samples. These findings indicate
that varied bacterial communities are correlated with the metabolic characteristics of different diets.
The overall good pasture and TMR quality in this study, combined with the organic allowance for
feeding high levels of TMR even during the grazing season, might have contributed to the lack of
differences in the fecal archaeal community from samples associated with a mixed pasture and TMR
diet, and a TMR only diet. Mitigation strategies to decrease methane emissions such as increasing
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concentrate to forage ratio, decreasing pasture maturity and adopting grazing systems targeting high
quality pasture have been shown to be efficient for pasture-based systems. However, the allowance
for organic dairy producers to provide up to an average of 70% of a ruminant’s dry matter demand
from dry matter fed (e.g., TMR), suggests that reducing enteric methane emissions may require the
development of novel dietary strategies independent of pasture management.

Keywords: archaea; 16S rRNA; organic dairy’ fecal microbiome; co-occurrence network analysis

1. Introduction

Methane (CH4) is a by-product of the microbial fermentation process from a group
of archaea known collectively as methanogens. Ruminants harbor these methanogens
as a component of their normal gastrointestinal microbiota. Methanogens metabolize
several compounds including carbon dioxide (CO2), formate, methyl compounds, and
acetate produced by other rumen microbes. The resulting metabolites combined with
hydrogen (H2) result in the production of CH4 [1] [2]. Enteric CH4 produced during
ruminal fermentation cannot be utilized by ruminants, being emitted into the atmosphere
and contributes to greenhouse gas (GHG) emissions. In fact, enteric fermentation is the
second largest contributor to CH4 emissions in the U.S. with the dairy sector accounting
for 26% of the enteric emissions [3]. Developing a better understanding of emissions
and designing dairy systems that mitigate CH4 is a challenge to the entire food animal
production system.

Organic systems are rapidly becoming a key component of U.S. food animal pro-
duction and are considered a model for sustainability [4]. Per the organic requirements
for dairy management, cows are required to have free access to pastures throughout the
grazing season and for no less than 120 days per year [5]. On average, at least 30% of a
cow’s dry matter intake (DMI) during the pasture season must come from certified organic
pasture. For that reason, the importance of pasture to organic dairy farming cannot be
overstated. Organic production systems present a positive image to a segment of the pub-
lic, [6] but relative CH4 emissions are reported to be higher on organic dairies as compared
to conventional dairy farms due to lower milk production and increases in the intake of
roughage [7,8]. Production of CH4 in pasture-based dairy systems is highly correlated
to grass composition and digestibility. Variable diet compositions for dairy cows can im-
pact CH4 emissions differently, due to the direct link to rumen fermentation patterns [9].
Despite the intrinsic complexity of host microbiomes across different sites, co-occurrent
microorganisms were identified within the rumen and fecal microbiomes, indicating a
strong association and inter-dependency between bacterial and archaeal communities of
the same microbiome [10].

Factors associated with temporal changes in the external environment such as day
length, air temperature, soil temperature, and water and nutrient availability can impact
forage growth rate and accumulation of sugar (carbohydrates) and fiber (cell wall con-
stituents) [11]. Therefore, pasture composition, quality, and availability are expected to
differ with the seasonal changes to the external environment [12–14]. This will alter the diet
of pasture-based organic dairy cows and is expected to impact the microbial community of
the gastrointestinal tract [15]. In fact, seasonal changes in the diversity of rumen and fecal
bacterial communities of grazing ruminants have been reported previously and linked to
variations in pasture nutritive composition [16].

Three methanogenic archaea phyla and seven orders have been identified in rumi-
nants [17]. The composition of the archaea community has a strong effect on CH4 emis-
sions [18], and studies have demonstrated correlations between low and high CH4 emitting
cows and their gastrointestinal tract microbiome composition [19–22]. Methanobrevibacter,
from the order Methanobacteriales, have been identified as the most predominant and best
represented CH4 producing methanogens in the rumen and feces of dairy cattle [23,24].
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Changes to the diet can alter the methanogenic community structure and contribute to
differences in CH4 gas production [24,25]. As an example, dry yeast additive has been
reported to decrease CH4 production in vitro with associated changes to the fecal archaea
including a decrease in Methanobrevibacter [24]. Currently, little is known regarding fecal
microbial populations and their associations with methanogenic archaea in pasture-based
dairy cattle. Therefore, we hypothesized that fecal methanogenic composition, as well as
co-occurrence patterns with bacteria, would vary dependent upon dietary compositions of
mixed pasture and total mixed ration (TMR). Moreover, we hypothesized that high- and
low-quality pasture would impact the fecal microbial composition of organic dairy cows
differently. To test these hypotheses, we analyzed fecal samples from 209 cows located on
a Northwest Washington state organic dairy farm collected over the course of a one-year
study period to capture changes to pasture composition and TMR intakes.

2. Materials and Methods
2.1. Study Design and Enrollment

This project was conducted on an organic dairy farm located in Northwest Washington
state. The herd has been USDA-Organic certified since 2006 and housed approximately
700 lactating Holstein cows. Pasture and fecal samples were collected at 7 different time
points between July 2020 and July 2021 to assess temporal changes in pasture quality and
composition and their association with fecal microbiome community composition. At each
sampling point, 30 primiparous healthy Holstein cows in the same housing group with
access to the same pasture paddocks during the grazing months were enrolled in the study.
Samples were collected from groups of cows representing different lactational stages (i.e.,
days in milk; DIM) to reflect different nutritional needs and feeding patterns that might
contribute to changes in the microbial community and CH4 emissions. Within each group,
cows had similar pregnancy status and milk production levels (±5 kg). Across the study,
cows were only sampled once (i.e., there was no repeat sampling).

From approximately October through March (no pasture access), cows received a TMR
consisting of a mix of soybean meal, alfalfa hay, mineral, grass silage, corn silage and corn
grain. From April through September cows had access to TMR and a mixed grass and
legume pasture targeting a dry matter intake of 30% pasture and 70% TMR. The grazing
management used by this farm was strip grazing with irrigation as needed.

2.2. Data Collection

Pasture samples were collected one day prior to the collection of fecal samples to
assess the pasture components and quality influencing the fecal microbiome analysis. We
collected and analyzed 5 pasture samples per grazing paddock at each sampling time. The
field was approximately 17 ha divided into 15 separated paddocks. Cows had access to
a paddock from one up to three days depending on grass availability. Before collecting
the pasture samples, 5 random measurements were taken to estimate the final grazing
height. We estimated the final grazing height by following a “W” pattern in the paddock
in which the cows were grazing previously. At each of the 5 “W” points, a 0.5 × 0.5 m2

quadrate made of plexiglass was thrown over the shoulder of the principal investigator
to randomly place the quadrate within the paddock. A scale was used to estimate the
final grazing heights. Next, pasture was sampled from the paddock in which the cows
were grazing currently following the same “W” sampling pattern. Forage samples were
collected using hand scissors and cutting to a level based on previous estimates of the
final grazing height (6.3 cm on average). To estimate plant species diversity the percentage
cover of grass, legume, and forb species within the quadrate was visually estimated [26].
Samples were stored in zip lock bags in a cooler with ice packs until they were delivered
to the Ag Health Laboratories (Sunnyside, WA, USA), within 20 h after collection. Staff at
Ag Health Laboratories prepared and processed samples for near infrared spectroscopy
(NIRS) analysis.
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NIRS also was used to analyze a representative sample of the TMR offered to the cows
at each sampling time. TMR was mixed as per normal farm procedures, and we sampled
immediately after delivery to the cows. We filled a five-gallon bucket with handfuls of
TMR collected from the entire length of the feed bunk. The bucket contents were emptied
on a flat surface and we collected samples from the top, middle and bottom to fill up a
gallon zip lock bag. The bags were kept on a cooler with ice packs until they were delivered
to the Ag Health Laboratories. During the 2 sampling months that cows were not utilizing
pasture (October 2020 and March 2021), we only analyzed TMR samples. During July,
September and October of 2020 we estimated dry matter intake (DMI) using the producers’
farm records and for March, May, June, and July 2021 we used the program “Onemilc”
(Milc Group, San Luis Obispo, CA, USA) to gather the average DMI for these months.

Overall, we analyzed 25 pasture samples (July and September 2020 and May, June,
and July 2021) and seven TMR samples (July, September, October 2020, and March, May,
June, and July 2021). In addition, at each visit 30 fecal samples from 30 individual cows
were collected and analyzed, except for July 2021, when there were only 29 cows eligible to
be sampled for a total of 209 fecal samples collected and analyzed.

2.3. Amplification and Sequencing of Bacterial 16S rRNA Gene

Fecal samples were collected manually per rectum, placed in sterile sampling bags
(Thermo Fisher Scientific, Waltham, MA, USA), and placed in a cooler with dry ice. On
the same day, samples were transferred to Washington State University and stored in
a −20 ◦C freezer until further processing within the Field Disease Investigation Unit
laboratory. At the time of processing, fecal samples were thawed, mixed, and 1 g placed
into DNA/RNA shield fecal collection tubes (Zymo Research, Irvine, CA, USA). DNA
extraction and amplification of the V3–V4 region (primers 341F-806R) of the 16S rRNA gene
was performed by Zymo Research (Irvine, CA, USA). The final library was sequenced by
Zymo research using Illumina MiSeq. Unique amplicon sequences were inferred from raw
reads using the dada2 pipeline [27]. Taxonomy assignment was performed using Uclust
from Qiime v.1.9.1 [28].

2.4. Statistical Analysis

All statistical analyses were performed by the authors using R (R Project program for
Statistical Computing 4.02).

2.5. Assessing Pasture Quality

Differences in pasture composition dry matter (DM), crude protein, acid detergent
fiber (ADF), neutral detergent fiber (NDF), starch, crude fat, total digestible nutrients
(TDN) and net energy for lactation (NEL) between sampling times were assessed using the
aov function. If significant, pairwise comparisons were performed using the TukeyHSD
function from the package stats. Since only a single TMR sample was collected at each
sampling time, no statistical analyses were performed comparing TMR compositions
between sampling times.

2.6. Evaluating Microbiome Community Structure

Beta diversity was analyzed using the ordinate function in R’s phyloseq package [29]
to create a Principal Coordinates Analysis (PCoA) based on the number of sequence reads
normalized by the number of total reads per sample and the modified Gower distance
(altGower) [30]. A relative abundance heatmap was calculated based on the number of
sequence reads normalized by the number of total reads per sample using the amp_heatmap
function of the ampvis2 R package [31].

Cluster analysis was used to organize the individual microbiome data to create groups
with similar microbiome community structures. Because there were many rare amplicon
sequence variants (ASV) in the microbiome dataset we narrowed the dataset to reduce the
average proportion of zero observed ASV to less than 0.20. This resulted in a dataset with
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97 ASVs. The final dataset included four archaea ASVs for a total of 101 ASVs. Relative
abundance of ASV by sample or animal ID was the initial input data for clustering. The
clr transformation (centered log ratio) was performed using the R package compositions.
Prior to implementing clr, zero values were imputed with non-zero values using R package
zcompositions using a Bayesian multiplicative replacement. Principal component analysis
(PCA) was used to reduce data dimensions with the R package prcomp. Prior to clustering
we used the function fviz_nbclust from the R package factoextra as a guide in optimizing
the number of clusters. Community clusters were calculated using the R stat package
k-means as the cluster method using PCA results as input values and limiting the number
of components to reflect approximately 90% of the variance. The final cluster solution was
based on both silhouette plots and plots of the first 3 principal components stratified by
cluster membership.

2.7. Assessing the Ecological Diversity of Fecal Microbiome by Cluster

A set of diversity measures converted to effective number of species were calculated
to measure ecological diversity [32]. The mean of three commonly used measures, richness,
Shannon index, and Simpson index, corresponding, respectively to q = 0, 1, and 2 were
calculated for each of the clusters. The calculations were accomplished in R using the
package vegan.

2.8. Fecal Microbiome Community Structure and its Associations with Pasture Intake, TMR
Intake, and Pasture Quality

With cluster membership as the dependent variable, multinomial logistic regression
was fitted to evaluate fecal microbiome community structure conditional on exposure to
pasture and TMR or TMR only and community structure relative to pasture quality based
on ADF and NDF. ADF and NDF were categorized as high or low using the median value.
Analyses were done using the multinom function in R package nnet [33].

2.9. Co-Occurrence Network between Methanogens and Bacteria

A set of co-occurrence network analyses aiming to identify exclusive links between
fecal methanogens and bacteria were determined using Spearman correlation coefficients
at the species level. To test for differences in co-occurrence patterns in microbial taxa,
we generated a matrix consisting of Spearman correlation coefficients based on a relative
abundance table using the function rcorr from the Hmisc packge in R [34]. Mean relative
abundance of species across clusters was calculated based on the average number of
reads per species per cluster. The Spearman’s distance matrix represents the strength of
correlation among microbial pairs (methanogens and bacteria); species were selected based
on p-values (p < 0.05) and level of correlation (>60%). The function graph.adjacency from
the R package iGraph [35] was used to create a graph object from the adjacency matrix. The
nodes represented the different species, and the edge weight was based on the Spearman
correlation.

3. Results
3.1. Sample Population

All sampled cows were first lactation cows of different lactational stages (early lacta-
tion: 20–80 DIM; mid-lactation 81–150 DIM, and late-lactation >150 DIM; n = 10 per group).
The average DIM for early lactation cows was 47 (sd = 18 DIM), for mid lactation cows was
112 DIM (sd = 20 DIM), and for late lactation cows 206 DIM (sd = 45 DIM). Milk production
and quality across different sampling times and cow’s lactation stages are reported in
Table 1.
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Table 1. Average milk production across lactation stages and sampling times and milk quality results
across different sampling times.

Milk Production (kg/day) by
Lactation Stages Milk Fat (%) Milk Protein (%)

Sampling time Early Mid Late
July 2020 27.5 27.7 26.7 3.9 2.7
September 2020 21.5 27.3 25.6 4.1 3.0
October 2020 22.5 26.5 27.0 4.1 3.0
March 2021 27.6 29.2 24.7 4.0 3.2
May 2021 24.3 26.4 26.8 3.9 3.0
June 2021 25.6 27.9 25.5 4.1 3.1
July 2021 24.4 28.4 25.0 4.0 3.0

Results are based on producer records.

3.2. Feed Composition across Months

Farm management planted pastures to be a mix of orchard grass, fescue, and clover
with a minority of other plant species. The relative proportion of the plant species that the
cows were grazing at the time of sampling varied across the grazing months (Figure 1).
The two samples from 2020 were less balanced across the 3 primary pasture species relative
to the 2021 samples. Both 2020 samples had greater than 40% clover with the July sample
being composed primarily (>90%) of orchard grass and clover and the September being
composed primarily (>80%) of fescue and clover. The May and June 2021 samples were
balanced across the three species whereas the July 2021 sample tended to have a similar
profile to the July 2020 sample although not as extreme with 80% of the species in the
pasture being clover and orchard grass and nearly 20% being fescue.
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NIRS analysis of pasture samples are shown in Table 2. Focusing on measures of
digestibility, average ADF and NDF values were highest in July 2020, May 2021 and June
2021. Cows were not on pasture during October and March 2020 and those sample months
were not included in this table.

Table 2. Results of the NIRS analysis of pasture samples across different sampling times. The mean
values for each pasture parameter were calculated and compared across sampling times.

July 2020 Sep 2020 May 2021 June 2021 July 2021 Std. Error p-Value

DM (%) 25.89 a 19.17 bc 17.08 c 26.18 a 23.86 ab 2.04 0.0002

Crude Protein 15.52 b 22.22 c 20.03 ac 17.04 ab 17.97 ab 1.29 0.0002

ADF 1 31.06 ab 26.31 a 29.05 ab 30.28 ab 26.38 a 1.45 0.0067

NDF 2 45.95 a 39.49 a 46.5 a 46.6 a 40.18 a 3.09 0.0540

Starch 3.41 a 3.22 a 2.08 b 2.53 ab 3.26 a 0.37 0.0056

Crude Fat 3.31 c 4.26 ab 4.40 ab 4.07 b 4.50 a 0.13 <0.0001

TDN (%) 3 62.87 c 65.41 bc 67.30 ab 66.66 b 70.55 a 1.25 <0.0001

NEL (Mcal/kg) 4 1.29 c 1.45 b 1.49 ab 1.49 ab 1.60 a 0.01 <0.0001
1 Acid detergent fiber. 2 Neutral detergent fiber. 3 Total digestible nitrogen. 4 Net energy of lactation. Crude
protein, NDF, ADF, and starch are in DM%. Different letters (a, b, c) within a row denote significant differences by
Tukey’s test (p < 0.05).

Dry matter intake and NIRS analysis of TMR across sampling months is shown in
Table 3. The TMR was not consistent across the sampling times and based on indicators of
digestibility samples from March and June 2021 had the highest values for ADF and NDF
whereas the sample from July 2021 had the lowest. These values are all consistent with a
good quality forage.

Table 3. Dry matter intake and NIRS analysis of TMR across sampling times. The TMR was composed
of a mix of soybean meal, alfalfa hay, mineral, grass silage, corn silage and corn grain.

July 2020 Sep 2020 Oct 2020 March 2021 May 2021 June 2021 July 2021

DMI * 16.3 16.3 19 19.1 15.1 15.3 19

Dry matter (%) 47.87 48.01 42.69 47.98 54.04 56.15 57.79

Crude protein 16.28 16.36 17.13 15.33 14.18 14.64 14.98

NDF 32.74 32.41 32.82 37.16 32.72 35.19 27.15

ADF 22.19 23.49 21.77 25.29 25.25 26.92 20.06

Starch 20.18 20.17 22.94 18.84 24.32 21.33 29.94

Ash 9.82 8.92 8.85 8.71 8.93 9.14 8.42

TDN (%) 70.03 68.96 70.87 67.51 69.29 68.23 72.58

NEL (Mcal/kg) 1.54 1.49 1.56 1.45 1.58 1.56 1.65

DMI = Average dry matter intake per cow/day (kg). Crude protein, NDF, ADF, starch and ash are in DM%.
* Based on producer records.

3.3. Fecal Microbiota Structure across Different Sampling Points

A total of 1715 unique microbial species, from a total of 203 different genera, were identified
in the 209 fecal samples. A principal coordinate analysis (PCoA) based on Gower distances
was performed to explore differences in the fecal microbiota composition at different sampling
times and across different lactation stage groups (Figure 2). The results of the beta diversity
analysis suggest a clustering of the microbial communities based on sampling date rather than
lactation stage groups. Samples from 2020 pasture-exposed cows (July and September) grouped
together, whereas the 2021 pasture-exposed samples also tended to group together.
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each principal coordinate axis is denoted in the corresponding axis label. The different colors
represent the different sampling points. Early lactation DIM = 20–80, mid-lactation DIM = 81–150,
and late-lactation DIM > 150.

3.4. Cluster Analysis

Cluster analysis was used to describe microbiome community structure for the 97
most common ASVs and 4 detected archaea ASVs using all the collected samples. Input for
clustering was based on principal coordinates values that reflected 82% of the cumulative
variation of the complete set. The parsimonious cluster solution identified 4 clusters with
an average silhouette width of 0.92 across all samples (Figure S1). The results of the
analysis were plotted with 209 samples and the first 3 principal coordinates conditional on
cluster membership (Figure 3). The number of animals present in each cluster according
to their sampling time is shown in Table 4. Although all clusters contained samples from
multiple sampling times, cluster 2 was dominated by samples collected in October 2020
(no pasture access) with only a single sample from March 2021 (no pasture access). The
pasture-associated samples collected in 2020 were only found in cluster 3 whereas the
pasture-associated samples collected in 2021 were mostly distributed in clusters 1 and 4.
Although samples from a sampling period were distributed across various clusters, there
was a tendency for samples at a sampling time to belong to a dominant cluster.
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Table 4. Number of fecal samples collected at each sampling period stratified by cluster membership.

Sampling Time

Clusters July 2020 Sept 2020 Oct 2020 March 2021 May 2021 June 2021 July 2021

1 0 0 0 0 19 7 24
2 0 0 29 1 0 0 0
3 30 30 1 1 0 1 0
4 0 0 0 28 11 22 5
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Categorizing samples based on access to pasture or a solely TMR diet relative to
microbiome community cluster membership demonstrated sharp divisions. Samples in
clusters 1 and 3 were primarily associated samples collected from cows with pasture access
whereas samples in cluster 2 were solely associated with samples from cows without access
to pasture. Cluster 4 contained samples collected from cows with and without access to
pasture although it tended to be associated with samples from cows with access to pasture
(Table 5).

Table 5. Microbiome community membership relative to being fed solely a TMR or having access
to pasture.

Microbiome Community
(Clusters) Access to Pasture (n) No Access to Pasture—TMR

Only (n)

1 50 0

2 0 30

3 61 2

4 38 28

3.5. The Relationship between Pasture ADF/NDF and Microbiome Community Structure

Pasture ADF and NDF were categorized into relatively high and low values using
either the median value. For ADF, the median value was 29% of DM and for NDF the
median value was 46% of DM. A frequency table of pasture ADF and cluster membership is
shown in Table 6. Pasture NDF was perfectly correlated with pasture ADF. ADF categories
were relatively evenly distributed across clusters 1 and 3. Cluster 4 mainly had pasture
samples with high ADF.

Table 6. Frequency table of pasture ADF and NDF conditional on microbiome community clusters.
ADF and NDF were categorized as high or low based on median values.

Microbiome
Community
(Clusters)

High Pasture
ADF (>29%)

Low Pasture
ADF (≤29%)

High Pasture
NDF (>45%)

Low Pasture
NDF (≤45%)

1 26 24 26 24

3 31 30 26 24

4 33 5 33 3

Only samples of cows with access to pasture were taken into consideration in this
analysis. Therefore, cluster 2 (solely TMR diet) was not taken into consideration.

The results of a multinomial logistic regression model with microbiome community
clusters as the dependent variable (cluster 1 as reference) and ADF category as the indepen-
dent variable are shown in Table 7. As noted above, cluster 4 was negatively associated
with low ADF pastures compared to clusters 1 and 3.

Table 7. Multinomial logistic regression evaluating the association between microbiome community
and low pasture ADF.

Microbiome Community
(Clusters) n Intercept Odds Ratio 95% Lower Limit

Confidence Interval
95% Upper Limit

Confidence Interval

1 50 Reference

3 61 0.17 0.05 −0.70 0.80

4 38 0.24 −1.80 −2.90 −0.71
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3.6. Community Diversity

Effective number of ASVs focused on diversity measures accounting for richness,
evenness of taxa (based on Shannon index), and dominant taxa (based on Simpson index)
present within the 4 clusters are shown in Figure 4. Differences in the effective number of
observed species were observed across clusters ranging from 160–350 with cluster 4 having
the greatest richness across all clusters while cluster 2 had the lowest number of observed
species. The effective number of ASV reflecting evenness also differed between clusters
and ranged from 80–141. Similar to species richness, cluster 4 had the greatest value based
on the Shannon index, and the lowest value was observed in samples from cluster 2. The
effective number of species reflecting dominance (Simpson index) ranged from 43–64 with
clusters 3 and 4 having the greatest number, and clusters 1 and 2 having the fewest, 49 and
43, respectively. The general trend was clusters with samples from cows with access to
pasture demonstrating increased diversity and the samples from cows with access to only
TMR showing the lowest diversity.
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Figure 4. Effective number of species based on richness (q0), evenness (q1 = Shannon) and dominance
(q2 = Simpson) across different clusters. The effective number of species are shown in parentheses.

A heatmap with the percentage of the empirical means of the relative abundance of
bacteria (Figure 5A) and methanogens (Figure 5B) was calculated for cows across different
clusters. Species previously classified as NAs were replaced with the next highest classifica-
tion (e.g., if an ASV was unclassified at the genus level but was classified at the family level
as “Ruminococcaceae”, it was given a family-level classification of “f_ Ruminococcaceae”).
Overall, the relative abundance of methanogens was much lower as compared with the
abundance of bacteria in the fecal microbiome of dairy cows. The Archaea community
represented approximately 2% of the fecal microbial community when taking into consid-
eration the two kingdoms. A total of six organisms belonging to the archaea kingdom were
identified in our dataset: Methanobrevibacter oralis-smithii, Methanobrevibacter ruminantium,
Methanobrevibacter smithii, Methanocorpusculum bavaricum-sinense, Methanobrevibacter oralis,
and an unidentified organism of the genera Methanosphaera. As shown in Figure 5, no major
differences were observed in the relative abundance of methanogens across clusters.
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Figure 5. Relative abundance heatmap across clusters. Mean relative abundance for the most
predominant bacterial species across clusters is indicated by the values in the tiles (A). Mean relative
abundance of all archaea organisms at the species level across clusters is indicated by the values in
the tiles (B). The color gradient indicates different levels in relative abundance.

3.7. Co-Occurrence Network Analysis

To investigate whether there are differences in archaea-bacterial interactions in the gut
microbial ecosystems across different diet compositions, the co-occurrence networks were
analyzed exclusively for interactions between the two domains excluding bacterial-bacterial
interactions. We created a co-occurrence network for each cluster (Figure 6). A total of 101
ASVs were compared based on Spearman correlation coefficients and were selected based
on p-values (p < 0.05) at a 60% level of correlation. The edge weight was obtained based on
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the Spearman correlation, and we considered a negative co-occurrence relationship based
on edge weight at values lower than r = −0.6 (red) and a positive correlation at values
higher than r = 0.6 (blue). The co-occurrence network analysis results can be found at
Table S1.
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Based on Spearman correlations, samples associated exclusively with cluster 1 (Figure 6)
had stronger negative correlations between archaea and bacteria compared with other
clusters. Interestingly, we did not observe negative correlations at this specific cut-off for
other clusters. Unidentified members of the family Ruminococcaceae, Lachnospiraceae, and
Rikenellaceae as well as two unidentified ASVs of the genus Bacteroides and an unidentified
species of the genus Alistipes were the specific bacteria negatively associated with the
methanogens. Moreover, Methanobrevibacter oralis appeared to be the ASV with strongest
and greatest number of co-occurrence interactions with the bacterial community regard-
less of the diet. Clusters associated with TMR only samples and a mix of pasture and
TMR only samples (clusters 2 and 4, respectively) showed Clostridium celatum as an ASV
strongly associated Methanobrevibacter oralis (rho = 0.6 and 0.73 for clusters 2 and 4, re-
spectively). Moreover, Methanobrevibacter oralis was also positively and strongly correlated
with Methanobrevibacter smithii in these clusters. Cluster 3, which was mainly composed
of samples from cows with access to pasture, presented the strongest positive correlation
values between bacteria and archaea. In this cluster, Methanobrevibacter oralis was strongly
correlated (rho > 0.9) with unidentified species of the genus Acetitomaculum, Coprobacillus,
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Marvinbryantia, Prevotella copri, Lachnospiraceae cellulosolvens, and an unidentified species of
the family Ruminococcaceae.

4. Discussion

The primary objective of this study was to evaluate the effect of mixed pasture and
TMR dietary compositions of varying quantity and quality on the fecal methanogenic and
bacterial composition from organic dairy cows located in NW Washington. Cows were
sampled at 5 time points when they had access to both pasture and TMR targeting 30%
DMI from pasture and 70% DMI from TMR. Cows were also sampled at 2 time points
when they only had access to TMR. Bacterial and archaea communities were organized
into 4 distinct clusters communities. Interestingly, there was little difference in relative
abundance of methanogens between the community clusters; however, there was evidence
of differences in diversity and structure between pasture associated communities and those
associated with TMR. Community evaluations demonstrated that cluster 4 (associated with
a high-quality pasture) had higher diversity and a less robust co-occurrence network than
networks from TMR only or low-quality pasture communities.

Previous studies reported the use of NIRS as a method to estimate the chemical
composition and nutritional quality of pastures and solid feeds being validated by wet
chemistry results [36,37]. As expected, the botanical compositions, nutritional quality,
and pasture digestibility levels were different across time points when analyzed by the
NIRS method (Tables 2 and 3). Fluctuations in quality throughout the grazing season
can be related to changes in diversity of the grass-legume forage mix (Figure 1), forage
maturity, climate, and overall pasture management across the year. A limitation of our
project was the frequency of samples taken to describe changes in diet and microbiome
across months. We were only able to procure individual snapshot assessments of pasture,
TMR, and feces at infrequent time points throughout a year. However, these observations
still allowed us to describe how changes in diet composition, as well as other intrinsic
unknown factors associated with sampling time, can impact the fecal methanogenic and
bacterial composition of pasture-based organic dairy cows. Although we collected fecal
samples from cows during different lactational stages (DIM), we did not observe a clear
separation between samples in the PCoA plot grouped by lactation stage, suggesting that
the effect of diet and/or sampling time has a greater effect on fecal bacterial communities
(Figure 2).

Per organic requirements, the farm aimed to feed a diet composed of 70% TMR
and 30% pasture during periods of pasture availability. However, there was no specific
mechanism in place to control the actual amount of pasture and TMR intake. Therefore,
we could only estimate how much TMR was fed to the cows and the cow’s DMI across
sampling months. Given the variability of pasture quality, quantity, availability, and
animal preference, the estimated 70:30 ratio was likely different in practice and variable
per individual animal. Therefore, we conducted a clustering analysis to identify samples
that were associated with either a primarily pasture-based diet or a solely TMR diet. A
total of 4 clusters were identified across all samples (Figure 3) and clusters were mostly
formed by cows sampled at different sampling times (Table 4). The lack of clustering by
sampling time might be explained by the different amounts of TMR and pasture consumed
by each individual animal regardless of having access to pasture. A study evaluating the
behavioral preferences of Holstein dairy cows indicated that cows had a partial preference
to be indoors rather than on pasture, likely influenced by TMR consumption [38]. Other
studies have suggested that dairy cows generally prefer to be on pasture; however, cows’
preference towards pasture or indoor housing depends on several factors such as the hour
of the day, season, environmental conditions, and pasture distance [39–41]. Because we
were unable to quantify the amount of TMR and pasture that was consumed by each
individual, the cluster analysis allowed us to better characterize the associations between
the fecal microbiome and diet.
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According to the results of the clustering analysis, cluster 2 was highly correlated
with a TMR diet whereas clusters 1 and 3 were associated with a more pasture-based diet
(Tables 4 and 5). Cluster 4 was characterized by a mix of samples from cows with access to
pasture and TMR and a TMR only diet. Cluster 1 was composed of samples from May, June,
and July of 2021 and cluster 3 was composed mostly by samples from July and September
of 2020. In addition, according to the results of the multinomial logistic regression model,
animals from cluster 4 that were exposed to pasture were associated with both high ADF
and NDF (Tables 6 and 7). Although the digestibility values were all consistent with a
good quality forage, clusters were grouped into different pasture qualities to investigate
how changes in pasture composition are associated with changes in the microbiome. It is
possible that microbiome samples clustered together in cluster 4 (38 samples from cows
with exposure to pasture and 28 samples from cows receiving TMR only) due to the high
digestibility of diets offered.

Diversity analysis using different indexes aimed to explore the richness and evenness
of the microbial communities across different clusters. A more diverse feed composition,
such as the combination of pasture and TMR, is expected to give rise to a more diverse rumi-
nal and fecal microbial community. Thus, samples from cluster 4, a mixture of exposures to
pasture and TMR, had the greatest richness as well as effective number of species associated
with evenness (Figure 4). This can be explained by the fact that cluster 4 contained multiple
samples from diverse sampling points. On the other hand, samples from cluster 2, which
only contained samples collected in October 2020 when cows were only receiving TMR, had
the lowest richness as well as lowest effective number of species associated with evenness
and dominance across clusters. The TMR fed to the cows was primarily composed of corn
and grass silage. Preserved silage is characterized by low taxonomic diversity [42], as an
intensive selection process occurs during the fermentation process and bacterial diversity
dramatically declines as compared to the initial forage [43]. Moreover, changes over time
in the silage bacterial profile, microbial diversity, and chemical traits [44,45] can influence
a cow’s fecal microbiome. It also has been reported that feeding a highly grain-based
diet reduces ruminal microbial richness and diversity compared to forage-based diets [46].
We observed the highest diversity based on Shannon and Simpson indexes from samples
from cluster 3 and 4, suggesting a more uniform microbial distribution within these clus-
ters. Dietary diversity has been suggested to influence ruminal microbial composition
that consequently affects the animal’s wellbeing, health, dietary choices and dry matter
intake [47].

The predominant bacterial species across all clusters included organisms from the
genera Clostridium, Rombustia, Turicibacter, Bacteroides, Bifidobacterium, and unidentified
species of the family Ruminococcaceae (Figure 5A). Members of these families have been
previously reported to be part of the core rumen and fecal microbiome of cattle [2,48,49].
Methanogens accounted for approximately 2% of the overall relative abundance across all
samples (Figure 5B). This observation is comparable to the abundance of archaea organisms
observed in ruminal samples [50]. Differences in the relative abundance of methanogens
across clusters associated with different diets were expected given that changes to the
diet can alter the methanogenic community structure and contribute to differences in
CH4 production [24,25]. However, we did not observe major differences in the relative
abundance of methanogens across clusters. The relationship between CH4 production and
the archaea community is so strict that a reduced archaeal abundance would be expected to
lower CH4 emissions [51]. However, some studies have reported a poor correlation between
the abundance of methanogens and CH4 emissions from dairy cows [20,21], suggesting
that the methanogen community composition might have an outsized contribution to
CH4 emissions. Overall, 6 species of methanogens were identified in our study. The
species Methanobrevibacter smithii-oralis and Methanobrevibacter ruminantium were the most
abundant methanogens in our dataset followed by an unclassified organism of the genus
Methanosphaera. Our observations correlate with previous findings that Methanobrevibacter
and Methanosphaera organisms dominate the ruminal methanogenic archaea community of
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cattle regardless of farming practices, geographical area or feed efficiency [2,25,52]. Even
though we classified clusters based on their association with specific dietary composition
and digestibility results, the pasture composition as well as the TMR values were all
consistent with a good quality forage. Therefore, it possible that under good management
practices, the diversity and abundance of fecal methanogens and potential enteric CH4
emissions from cows in organic systems do not differ from conventional dairy systems that
also rely on a diet mainly composed of TMR.

The co-occurrence network analysis revealed different correlations between methanogens
and bacteria across clusters associated with different diets (Figure 6). Based on Spearman
correlations (p < 0.05; 60% level of correlation), samples associated with cluster 1 had
stronger negative correlations between archaea and bacteria compared with other clusters.
In addition, we did not observe other negative correlations at this specific cut-off in other
clusters. The reasons for observing negative correlations at this specific cutoff only in
cluster 1 remains unexplained; however, one limitation of our analysis is that the link
between bacterial and archaea may not be straightforward, and might represent a complex
relationship of interactions of diverse microorganisms such as fungi or protozoa that were
not explored in the study. Although cluster 4 presented the highest diversity results, its
network analysis showed fewer interactions between bacteria and archaea. This might be
explained by the fact that samples from this cluster were associated with a highly digestible
diet. Forage quality has been associated with changes in CH4 emissions, with lower levels
of CH4 observed from cattle fed high quality as opposed to low quality forage [53,54].
Interestingly, only a few specific correlations were maintained across all the co-occurrence
networks, suggesting that interactions can be specific to community structure and potential
products present in the environment. However, Methanobrevibacter oralis, which has been
previously identified as a colonizer of the human oral cavity [55], appeared to be the
ASV with strongest and greatest number of co-occurrence interactions with the bacterial
community regardless of the diet. The identification of keystone species that are maintained
across different diets and farm management practices can contribute to development of
new strategies to mitigate methane emissions.

It is a challenge to accurately compare the magnitude of the environmental impact
of dairy systems under different feeding and management systems. GHG emissions arise
from different biological and management processes in farm systems, which contributes to
the difficulty in comparing the carbon footprint of pasture-based and confined dairies [56].
Different processes such as manure management, soil management, fertilization, and en-
teric fermentation are major contributors to the overall GHG emissions, with the latter
being the largest source of GHG in dairy systems and the focus of our study [57]. Taken
together, our results did not show major changes in the composition or relative abundance
of methanogens across diets associated with a mixed pasture and TMR or TMR only diet.
We also did not observe major differences in the relative abundance of methanogens across
different pasture compositions based on digestibility results. However, we observed differ-
ent co-occurrence patterns in the network analysis across different diets, suggesting that
a varied bacterial community is correlated with the metabolic characteristics of different
diets, resulting in different metabolites becoming accessible for methanogenic and bacterial
activity and impacting the microbial interactions. The overall good pasture and TMR
quality, combined with the organic allowance for feeding high levels of TMR even during
the grazing season, might have contributed to the lack of differences in the fecal archaeal
community of samples associated with a mixed pasture and TMR diet and a TMR solely
diet. Given the complexity of assessing the environmental impacts of different systems,
it is necessary to take into consideration other aspects of the production system. Carbon
sequestration, external inputs, animal productivity, land area use, and social substantiality
are important factors when comparing the overall impacts of organic and conventional
systems. Moreover, mitigation strategies to decrease CH4 emissions such as increasing
the concentrate to forage ratio, decreasing pasture maturity and adopting grazing systems
targeting high quality pasture can be efficient for pasture-based systems. However, the
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allowance for organic dairy producers to provide up to an average of 70% of a rumi-
nant’s dry matter demand from dry matter fed (e.g., TMR), suggests that reducing enteric
methane emissions may require the development of novel dietary strategies independent
of pasture management.

5. Conclusions

Variable diet compositions for dairy cows can impact CH4 emissions differently due
to the direct link to rumen fermentation patterns and the available nutrients for microbial
degradation. Therefore, extensive efforts have been made to manipulate the gut microbiome
via dietary interventions or by utilizing CH4 inhibitors to reduce the environmental impacts
of livestock. In this study, we did not observe major differences in the relative abundance or
diversity of methanogens across clusters associated with a diet aiming to follow the organic
requirements (30% pasture on a DMI basis) or a TMR only diet. This finding suggests that
it possible that under good management practices, the diversity and abundance of fecal
methanogens and potential enteric CH4 emissions of cows from organic systems do not
differ from conventional dairy systems that also rely on a diet mainly composed of TMR. On
the other hand, the co-occurrence network analysis revealed different correlations between
methanogens and bacteria across clusters associated with different diets. Interestingly,
Methanobrevibacter oralis appeared to be the ASV with the strongest and greatest number
of positive co-occurrence interactions with the bacterial community regardless of the
diet. The identification of keystone species that are maintained across different diets
and farm management practices can contribute to the development of new strategies to
mitigate CH4 emissions. Accurate associations between microbiome analyses and CH4
emission measurements are needed in order to utilize these outcomes and find effective
microbial manipulation strategies or dietary interventions to help organic producers reduce
enteric CH4 emissions. Mitigation strategies to decrease CH4 emissions such as increasing
concentrate to forage ratio, decreasing pasture maturity and adopting grazing systems
targeting high quality pasture can be efficient for pasture-based systems. However, since
changing the concentrate to forage ratio is a limited strategy for organic producers, and the
pasture portion required to be fed by the organic requirements is relatively small compared
with the TMR portion, the development of novel strategies that are independent of pasture
management could have a greater impact in helping to reduce enteric CH4 emissions
through dietary manipulation on organic dairies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani12202771/s1, Figure S1: Silhouette plot result of cluster solution. Table S1: Co-occurrence
network analysis results based on Spearman correlation coefficients of bacterial species correlated
with methanogens.

Author Contributions: Conceptualization, G.S., W.S. and C.M.; methodology, G.S., W.S., C.M.;
software, G.S. and W.S.; validation, G.S. and W.S.; formal analysis, G.S. and W.S.; investigation, G.S.,
W.S., C.M.; resources, G.S.; data curation, G.S. and C.M.; writing—original draft preparation, G.S.;
writing—review and editing, G.S., W.S., C.M.; visualization, G.S. and W.S.; supervision, C.M. and
W.S.; project administration, C.M. and G.S.; funding acquisition, G.S. and C.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This project was supported by the Washington State University College of Veterinary
Medicine Graduate Student and Intramural Grant.

Institutional Review Board Statement: The research protocol was reviewed and approved by the
Institutional Animal Care and Use Committee of Washington State University (ASAF # 6801).

Data Availability Statement: The data presented in this study are openly available in the NCBI
database under BioProject accession number PRJNA881400.

Acknowledgments: The authors thank the participating farm and associated personnel for their
invaluable assistance with this project.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ani12202771/s1
https://www.mdpi.com/article/10.3390/ani12202771/s1


Animals 2022, 12, 2771 18 of 20

References
1. Blaut, M. Metabolism of methanogens. Antonie Van Leeuwenhoek 1994, 66, 187–208. [CrossRef] [PubMed]
2. Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Jansen, P.H.; Global Rumen Census Collaborators. Rumen microbial

community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep.
2015, 5, 14567. [CrossRef] [PubMed]

3. Hockstad, L.; Hanel, L. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2016-Agriculture; United States Environmental
Protection Agency (USEPA): Washington, DC, USA, 2016.

4. Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [CrossRef]
5. USDA. Organic Livestock Standards; Agricultural Marketing Service: Washington, DC, USA, 2013.
6. Galgano, F.; Tolve, R.; Colangelo, M.A.; Scarpa, T.; Caruso, M.C. Conventional and organic foods: A comparison focused on

animal products. Cogent Food Agric. 2016, 2, 1142818. [CrossRef]
7. De Boer, I.J.M. Environmental impact assessment of conventional and organic milk production. Livest. Prod. Sci. 2003, 80, 69–77.

[CrossRef]
8. Brito, A.F.; Silva, L.H.P. Symposium review: Comparisons of feed and milk nitrogen efficiency and carbon emissions in organic

versus conventional dairy production systems. J. Dairy Sci. 2020, 103, 5726–5739. [CrossRef]
9. Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018,

60, 15. [CrossRef]
10. Andrade, B.G.N.; Bressani, F.A.; Cuadrat, R.R.C.; Tizioto, P.C.; de Oliveira, P.S.N.; Mourão, G.B.; Coutinho, L.L.; Reecy, J.M.;

Koltes, J.E.; Walsh, P.; et al. The structure of microbial populations in Nelore GIT reveals inter-dependency of methanogens in
feces and rumen. J. Anim. Sci. Biotechnol. 2020, 11, 6. [CrossRef] [PubMed]

11. Fransen, S.; Pirelli, G.C.M.; Brewer, L.; Robbins, S. The Western Oregon and Washington Pasture Calendar: A Pacific Northwest
Extension Publication PNW; USDA Natural Resources Conservation Service: Spokane, WA, USA, 2017.

12. Marshall, S.A.; Campbell, C.P.; Buchanan-Smith, J.G. Seasonal changes in quality and botanical composition of a rotationally
grazed grass-legume pasture in southern Ontario. Can. J. Anim. Sci. 1998, 78, 205–210. [CrossRef]

13. Machado, C.F.; Morris, S.T.; Hodgson, J.; Fathalla, M. Seasonal changes of herbage quality within a New Zealand beef cattle
finishing pasture. N. Z. J. Agric. Res. 2005, 48, 265–270. [CrossRef]

14. Moller, S.N.; Parker, W.J.; Edwards, N.J. Within-year variation in pasture quality has implications for dairy cow nutrition. Proc. N.
Z. Grassl. Assoc. 1996, 57, 173–177. [CrossRef]

15. De Menezes, A.B.; Lewis, E.; O’Donovan, M.; O’Neill, B.F.; Clipson, N.; Doyle, E.M. Microbiome analysis of dairy cows fed
pasture or total mixed ration diets. FEMS Microbiol. Ecol. 2011, 78, 256–265. [CrossRef] [PubMed]

16. Noel, S.J.; Attwood, G.T.; Rakonjac, J.; Moon, C.D.; Waghorn, G.C.; Janssen, P.H. Seasonal changes in the digesta-adherent rumen
bacterial communities of dairy cattle grazing pasture. PLoS ONE 2017, 12, e0173819. [CrossRef] [PubMed]

17. Paul, K.; Nonoh, J.O.; Mikulski, L.; Brune, A. "Methanoplasmatales", Thermoplasmatales-related archaea in termite guts and
other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 2012, 78, 8245–8253. [CrossRef] [PubMed]

18. Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant
livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [CrossRef] [PubMed]

19. Wallace, R.J.; Rooke, J.A.; McKain, N.; Duthie, C.-A.; Hyslop, J.J.; Ross, D.W.; Waterhouse, A.; Watson, M.; Roehe, R. The rumen
microbial metagenome associated with high methane production in cattle. BMC Genom. 2015, 16, 839. [CrossRef] [PubMed]

20. Danielsson, R.; Schnürer, A.; Arthurson, V.; Bertilsson, J. Methanogenic Population and CH4 Production in Swedish Dairy Cows
Fed Different Levels of Forage. Appl. Environ. Microbiol. 2012, 78, 6172. [CrossRef] [PubMed]

21. Zhou, M.; Chung, Y.H.; Beauchemin, K.A.; Holtshausen, L.; Oba, M.; McAllister, T.A.; Guan, L.L. Relationship between rumen
methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J. Appl. Microbiol.
2011, 111, 1148–1158. [CrossRef] [PubMed]

22. Ramayo-Caldas, Y.; Zingaretti, L.; Popova, M.; Estellé, J.; Bernard, A.; Pons, N.; Bellot, P.; Mach, N.; Rau, A.; Roume, H.; et al.
Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J. Anim. Breed. Genet. 2020, 137,
49–59. [CrossRef] [PubMed]

23. Whitford, M.F.; Teather, R.M.; Forster, R.J. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol. 2001,
1, 5. [CrossRef]

24. Jin, D.; Kang, K.; Wang, H.; Wang, Z.; Xue, B.; Wang, L.; Xu, F.; Peng, Q. Effects of dietary supplementation of active dried yeast
on fecal methanogenic archaea diversity in dairy cows. Anaerobe 2017, 44, 78–86. [CrossRef] [PubMed]

25. Zhou, M.; Hernandez-Sanabria, E.; Guan, L.L. Assessment of the Microbial Ecology of Ruminal Methanogens in Cattle with
Different Feed Efficiencies. Appl. Environ. Microbiol. 2009, 75, 6524. [CrossRef] [PubMed]

26. Guretzky, J.A.; Moore, K.J.; Brummer, E.C.; Burras, C.L. Species Diversity and Functional Composition of Pastures that Vary in
Landscape Position and Grazing Management. Crop. Sci. 2005, 45, 282–289. [CrossRef]

27. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

28. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.;
Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336.
[CrossRef]

http://doi.org/10.1007/BF00871639
http://www.ncbi.nlm.nih.gov/pubmed/7747931
http://doi.org/10.1038/srep14567
http://www.ncbi.nlm.nih.gov/pubmed/26449758
http://doi.org/10.1016/S0308-521X(00)00060-3
http://doi.org/10.1080/23311932.2016.1142818
http://doi.org/10.1016/S0301-6226(02)00322-6
http://doi.org/10.3168/jds.2019-17232
http://doi.org/10.1186/s40781-018-0175-7
http://doi.org/10.1186/s40104-019-0422-x
http://www.ncbi.nlm.nih.gov/pubmed/32123563
http://doi.org/10.4141/A97-002
http://doi.org/10.1080/00288233.2005.9513655
http://doi.org/10.33584/jnzg.1995.57.2151
http://doi.org/10.1111/j.1574-6941.2011.01151.x
http://www.ncbi.nlm.nih.gov/pubmed/21671962
http://doi.org/10.1371/journal.pone.0173819
http://www.ncbi.nlm.nih.gov/pubmed/28296930
http://doi.org/10.1128/AEM.02193-12
http://www.ncbi.nlm.nih.gov/pubmed/23001661
http://doi.org/10.1186/s40104-017-0141-0
http://www.ncbi.nlm.nih.gov/pubmed/28123698
http://doi.org/10.1186/s12864-015-2032-0
http://www.ncbi.nlm.nih.gov/pubmed/26494241
http://doi.org/10.1128/AEM.00675-12
http://www.ncbi.nlm.nih.gov/pubmed/22752163
http://doi.org/10.1111/j.1365-2672.2011.05126.x
http://www.ncbi.nlm.nih.gov/pubmed/21848695
http://doi.org/10.1111/jbg.12427
http://www.ncbi.nlm.nih.gov/pubmed/31418488
http://doi.org/10.1186/1471-2180-1-5
http://doi.org/10.1016/j.anaerobe.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28188879
http://doi.org/10.1128/AEM.02815-08
http://www.ncbi.nlm.nih.gov/pubmed/19717632
http://doi.org/10.2135/cropsci2005.0282a
http://doi.org/10.1038/nmeth.3869
http://doi.org/10.1038/nmeth.f.303


Animals 2022, 12, 2771 19 of 20

29. McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census
Data. PLoS ONE 2013, 8, e61217. [CrossRef]

30. Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693.
[CrossRef]

31. Andersen, K.; Kirkegaard, R.; Karst, S.; Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data.
bioRxiv 2018. [CrossRef]

32. Jost, L. Entropy and Diversity. Oikos 2006, 113, 363–375. [CrossRef]
33. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS, 4th ed.; Springer: New York, NY, USA, 2002.
34. Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous, R Package Version 4.6-0; R Foundation: Vienna, Austria, 2021.
35. Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2006, 1695, 1–9.
36. Jones, G.M.; Wade, N.S.; Baker, J.P.; Ranck, E.M. Use of Near Infrared Reflectance Spectroscopy in Forage Testing. J. Dairy Sci.

1987, 70, 1086–1091. [CrossRef]
37. Parrini, S.; Acciaioli, A.; Franci, O.; Pugliese, C.; Bozzi, R. Near Infrared Spectroscopy technology for prediction of chemical

composition of natural fresh pastures. J. Appl. Anim. Res. 2019, 47, 514–520. [CrossRef]
38. Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. Preference of dairy cows: Indoor cubicle housing with access to a total mixed

ration vs. access to pasture. Appl. Anim. Behav. Sci. 2011, 130, 1–9. [CrossRef]
39. Legrand, A.L.; von Keyserlingk, M.A.; Weary, D.M. Preference and usage of pasture versus free-stall housing by lactating dairy

cattle. J. Dairy Sci. 2009, 92, 3651–3658. [CrossRef] [PubMed]
40. Falk, A.C.; Weary, D.M.; Winckler, C.; von Keyserlingk, M.A.G. Preference for pasture versus freestall housing by dairy cattle

when stall availability indoors is reduced. J. Dairy Sci. 2012, 95, 6409–6415. [CrossRef] [PubMed]
41. Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. Effects of providing total mixed rations indoors and on pasture on the behavior

of lactating dairy cattle and their preference to be indoors or on pasture. J. Dairy Sci. 2011, 94, 3875–3884. [CrossRef]
42. Kraut-Cohen, J.; Tripathi, V.; Chen, Y.; Gatica, J.; Volchinski, V.; Sela, S.; Weinberg, Z.; Cytryn, E. Temporal and spatial assessment

of microbial communities in commercial silages from bunker silos. Appl. Microbiol. Biotechnol. 2016, 100, 6827–6835. [CrossRef]
43. Ni, K.; Minh, T.T.; Tu, T.T.M.; Tsuruta, T.; Pang, H.; Nishino, N. Comparative microbiota assessment of wilted Italian ryegrass,

whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Appl.
Microbiol. Biotechnol. 2017, 101, 1385–1394. [CrossRef]

44. Eikmeyer, F.G.; Köfinger, P.; Poschenel, A.; Jünemann, S.; Zakrzewski, M.; Heinl, S.; Mayrhuber, E.; Grabherr, R.; Puhler, A.;
Schwab, H.; et al. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial
community involved in grass ensiling. J. Biotechnol. 2013, 167, 334–343. [CrossRef]

45. Duniere, L.; Xu, S.; Long, J.; Elekwachi, C.; Wang, Y.; Turkington, K.; Forster, R.; McAllister, T.A. Bacterial and fungal core
microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol. 2017, 17, 50. [CrossRef]

46. Khafipour, E.; Li, S.; Tun, H.M.; Derakhshani, H.; Moossavi, S.; Plaizier, J.C. Effects of grain feeding on microbiota in the digestive
tract of cattle. Anim. Front. 2016, 6, 13–19. [CrossRef]

47. Beck, M.R.; Gregorini, P. How Dietary Diversity Enhances Hedonic and Eudaimonic Well-Being in Grazing Ruminants. Front. Vet.
Sci. 2020, 7, 191. [CrossRef] [PubMed]

48. Hagey, J.V.; Bhatnagar, S.; Heguy, J.M.; Karle, B.M.; Price, P.L.; Meyer, D.; Maga, E.A. Fecal Microbial Communities in a Large
Representative Cohort of California Dairy Cows. Front. Microbiol. 2019, 10, 1093. [CrossRef]

49. Khalil, A.; Batool, A.; Arif, S. Healthy Cattle Microbiome and Dysbiosis in Diseased Phenotypes. Ruminants 2022, 2, 134–156.
[CrossRef]

50. Janssen, P.H.; Kirs, M. Structure of the Archaeal Community of the Rumen. Appl. Environ. Microbiol. 2008, 74, 3619–3625.
[CrossRef]

51. Meale, S.J.; Popova, M.; Saro, C.; Martin, C.; Bernard, A.; Lagree, M.; Yanez-Ruiz, D.R.; Boudra, H.; Duval, S.; Morgavi, D.P. Early
life dietary intervention in dairy calves results in a long-term reduction in methane emissions. Sci. Rep. 2021, 11, 3003. [CrossRef]

52. Zhou, M.; Hernandez-Sanabria, E.; Guan, L.L. Characterization of Variation in Rumen Methanogenic Communities under
Different Dietary and Host Feed Efficiency Conditions, as Determined by PCR-Denaturing Gradient Gel Electrophoresis Analysis.
Appl. Environ. Microbiol. 2010, 76, 3776–3786. [CrossRef]

53. Hammond, K.J.; Humphries, D.J.; Crompton, L.A.; Kirton, P.; Reynolds, C.K. Effects of forage source and extruded linseed
supplementation on methane emissions from growing dairy cattle of differing body weights. J. Dairy Sci. 2015, 98, 8066–8077.
[CrossRef]

54. van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Klop, G.; Alferink, S.J.J.; Hendriks, W.H.; Dijkstra, J. Enteric methane
production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed
grass silage- or corn silage-based diets. J. Dairy Sci. 2015, 98, 1915–1927. [CrossRef]

55. Horz, H.P.; Conrads, G. Methanogenic Archaea and oral infections-ways to unravel the black box. J. Oral Microbiol. 2011, 3, 5940.
[CrossRef]

http://doi.org/10.1371/journal.pone.0061217
http://doi.org/10.1111/j.1461-0248.2006.00926.x
http://doi.org/10.1101/299537
http://doi.org/10.1111/j.2006.0030-1299.14714.x
http://doi.org/10.3168/jds.S0022-0302(87)80115-7
http://doi.org/10.1080/09712119.2019.1675669
http://doi.org/10.1016/j.applanim.2010.11.018
http://doi.org/10.3168/jds.2008-1733
http://www.ncbi.nlm.nih.gov/pubmed/19620646
http://doi.org/10.3168/jds.2011-5208
http://www.ncbi.nlm.nih.gov/pubmed/22959941
http://doi.org/10.3168/jds.2011-4172
http://doi.org/10.1007/s00253-016-7512-x
http://doi.org/10.1007/s00253-016-7900-2
http://doi.org/10.1016/j.jbiotec.2013.07.021
http://doi.org/10.1186/s12866-017-0947-0
http://doi.org/10.2527/af.2016-0018
http://doi.org/10.3389/fvets.2020.00191
http://www.ncbi.nlm.nih.gov/pubmed/32373637
http://doi.org/10.3389/fmicb.2019.01093
http://doi.org/10.3390/ruminants2010009
http://doi.org/10.1128/AEM.02812-07
http://doi.org/10.1038/s41598-021-82084-9
http://doi.org/10.1128/AEM.00010-10
http://doi.org/10.3168/jds.2015-9669
http://doi.org/10.3168/jds.2014-8552
http://doi.org/10.3402/jom.v3i0.5940


Animals 2022, 12, 2771 20 of 20

56. O’Brien, D.; Capper, J.L.; Garnsworthy, P.C.; Grainger, C.; Shalloo, L. A case study of the carbon footprint of milk from
high-performing confinement and grass-based dairy farms. J. Dairy Sci. 2014, 97, 1835–1851. [CrossRef] [PubMed]

57. Thoma, G.; Popp, J.; Nutter, D.; Shonnard, D.; Ulrich, R.; Matlock, M.; Kim, D.S.; Neiderman, Z.; Kemper, N.; East, C.; et al.
Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment
circa 2008. Int. Dairy J. 2013, 31, S3–S14. [CrossRef]

http://doi.org/10.3168/jds.2013-7174
http://www.ncbi.nlm.nih.gov/pubmed/24440256
http://doi.org/10.1016/j.idairyj.2012.08.013

	Introduction 
	Materials and Methods 
	Study Design and Enrollment 
	Data Collection 
	Amplification and Sequencing of Bacterial 16S rRNA Gene 
	Statistical Analysis 
	Assessing Pasture Quality 
	Evaluating Microbiome Community Structure 
	Assessing the Ecological Diversity of Fecal Microbiome by Cluster 
	Fecal Microbiome Community Structure and its Associations with Pasture Intake, TMR Intake, and Pasture Quality 
	Co-Occurrence Network between Methanogens and Bacteria 

	Results 
	Sample Population 
	Feed Composition across Months 
	Fecal Microbiota Structure across Different Sampling Points 
	Cluster Analysis 
	The Relationship between Pasture ADF/NDF and Microbiome Community Structure 
	Community Diversity 
	Co-Occurrence Network Analysis 

	Discussion 
	Conclusions 
	References

