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Cytokines are small signaling proteins that have central roles in inflammation and cell

survival. In the half-century since the discovery of the first cytokines, the interferons,

over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and

prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common

signaling receptor, gp130. In the last decade, there have been numerous advances in

our understanding of the structural mechanisms of IL-6 family signaling, particularly for

IL-6 itself. However, our understanding of the detailed structural mechanisms underlying

signaling by most IL-6 family members remains limited. With the emergence of new roles

for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular

disease, lung disease, and cancer, there is an emerging need to develop therapeutics

that can progress to clinical use. Here we outline our current knowledge of the structural

mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge

allows us to understand the mechanism of action of currently available inhibitors

targeting IL-6 family cytokine signaling, and most importantly how it allows for improved

opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on

the need to develop and understand inhibitors that disrupt IL-11 signaling.
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INTRODUCTION

Cytokine Signaling—A Brief History
In 1957, interferons were the first cytokines to be identified as secreted protein products induced
following virus infection (1). In the subsequent decades, similar proteins, including the colony
stimulating factors (CSFs) (2–4), Interleukin (IL)-2 (5, 6), and IL-3 (7, 8) were identified as secreted
molecules able to support the growth of various hematopoietic cell linages in vitro. In 1974, the
broad term “cytokine” was introduced (9) and in 1979 the term “interleukin” was introduced to
standardize the names of the proteins now known as IL-1 and IL-2 (10). Over the next decade,
radiolabelling studies revealed that cytokines bound distinct and unique receptors on the cell
surface (11). It was also revealed that some cytokines, such as granulocyte-macrophage CSF (GM-
CSF), IL-5 and IL-3 compete for a low-affinity receptor (12, 13), foreshadowing the identification
of the β common receptor.
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Following the discovery of the first cytokines, the mechanisms
of intracellular signal transduction by cytokines remained
elusive. The first transcriptional activator to be well-characterized
was interferon-stimulated gene factor 3 (ISGF3), a multi-
component protein complex consisting of what is now known
as signal transducer and activator of transcription (STAT)1
and STAT2 (14, 15). Subsequently, related STAT proteins were
identified as being activated via cytokine stimulation (16, 17). It
was also shown that these factors were tyrosine phosphorylated
(18, 19) on cytokine activation. The kinases responsible for this
phosphorylation, the Janus kinases (JAKs) were first identified
through a PCR screen of a murine hematopoietic cell line
(20, 21). Their significance was unclear until the early 1990s,
when they were shown to be activated as a result of cytokine
binding and to phosphorylate the transcription factors that were
already identified as key for interferon signal transduction (22).
Subsequently, different members of the JAK family were found
to be responsible for signal transduction by numerous cytokines
(23–25). In 1997, the negative feedback regulators of the pathway,
the suppressors of cytokine signaling (SOCS) proteins were
identified (26–28). The key components of cytokine signaling
using the JAK-STAT pathway were thus understood by the late
1990s, although many of the detailed molecular mechanisms are
still unknown and remain under intense investigation today.

IL-6 family cytokines belong to a large group that signal via the
JAK-STAT pathway, are characterized by a four α-helical bundle
structure, and share receptors with similar structures consisting
of several fibronectin type III (Fn3) and immunoglobulin-like
(Ig-like) domains (29–31). Other cytokines, such as the IL-
1/IL-18 family and the TNF-α family are structurally distinct
from the four-α helical bundle family (32), utilize different
signaling mechanisms, and are thus beyond the scope of this
review. Conversely, several protein hormones, such as leptin,
growth hormone (GH), prolactin and erythropoietin (EPO)
utilize similar signal transduction mechanisms, are structurally
related to the four-α helical bundle cytokines, and are thus best
categorized alongside them (30, 33). The discovery of GH and
EPO predate that of the interferons by several decades (34–
37), but they were not recognized as related until they were
cloned, sequenced, and significant sequence homology was noted
between the receptors, GHR and EPOR (38, 39).

The Structure of Cytokines and Their
Receptors
The four-α helical bundle cytokine family is the largest cytokine
family. Both class I cytokines (e.g., GH, IL-6, IL-11) and class II
cytokines (e.g., IFN-α, IL-10) utilize receptors that are broadly
similar in structure and initiate similar intracellular signaling
mechanisms (29). Cytokines from both classes are characterized
by a compact α-helical bundle formed by four anti-parallel α-
helices, arranged in an up-up-down-down topology (29, 31). This
arrangement of helices necessitates long loops joining the helices
(Figure 1A). Secondary structure in the loops is common, for
example, the loop joining the C and D helices in IL-6 (the CD
loop) contains a short α-helix (45), and in IL-4 (46) and GM-CSF
(41), the AB and CD loops form a small anti-parallel β-sheet on

the same face of the cytokine (Figure 1A). The topology of the
four-α helical bundle fold provides a large surface area for the
cytokine to bind its receptors.

Cytokine receptors are generally modular, single-pass
transmembrane proteins, with a large extracellular region
consisting of multiple all-β Ig-like domains and Fn3 domains
(33). Both domains possess a β-sandwich structure, with two
anti-parallel β sheets (Figure 1B). The exception are the IL-
2Rα/IL-15Rα receptors, which consist of two all-β sushi domains,
unrelated to the Ig and Fn3 domains comprising other cytokine
receptors (33, 47, 48). The cytokine binding domains of the
receptors consist of two Fn3 domains at approximately a 90◦

angle, forming the cytokine binding homology region (CHR)
(30). Cytokines bind at the junction of these two domains. Each
of the two domains of the CHR possess conserved features, the
N-terminal domain of the CHR has two conserved disulphide
bonds, and in class I cytokine receptors of the C-terminal
domain of the CHR has a highly conserved Trp-Ser-X-Trp-Ser
motif (WSXWS) motif (30). The WSXWS motif generally forms
a “ladder” consisting of cation-π interactions between the
tryptophan and arginine side chains. The precise structural role
of the WSXWS motif is still unclear. It may stabilize the receptor,
since mutations in the WSXWS motif result in a non-functional
receptor (49, 50), and a rare genetic disease results from a
mutation in theWSXWSmotif of GHR (51). In IL-21Rα, the first
Trp of the WSXWS motif is C-mannosylated and this modified
Trp forms stabilizing interactions with other glycans and amino
acid residues in the structure (52). The extensive glycosylation,
both Trp C-mannosylation, and N-linked glycosylation gives IL-
21Rα the structure of an “A-frame,” with a glycan chain forming
a bridge between the two domains in the receptor. Similar
Trp C-mannosylation has been detected in the p40 subunit of
IL-12 by mass spectrometry (53), but has not been observed in
crystal structures which include p40 (54–56), possibly reflecting
incomplete incorporation of the modification in recombinant
protein. Recent studies have suggested that, in addition to being
a stabilizing structural element, the WSXWS motif undergoes a
conformational change on cytokine binding, suggesting it has a
role in receptor activation (57).

Beyond the CHR, many cytokine receptors have additional
extracellular domains. These domains have varied roles, for
example in correctly orienting the receptor to allow the activation
of intracellular kinases (58), to facilitate cytokine binding (59),
or to modulate intracellular trafficking to the membrane (60).
While, most cytokine receptors are single-pass transmembrane
proteins, an exception is the ciliary neurotrophic factor (CNTF)
receptor, which is lipid anchored (61). The structures of cytokine
receptor transmembrane domains have been solved, generally
by nuclear magnetic resonance (NMR) spectroscopy (62–64).
Single-pass transmembrane cytokine receptors also possess an
intracellular domain that is assumed to be highly dynamic (65,
66). In the case of signal-transducing cytokine receptors, the
intracellular domain binds signal transducing molecules, such as
the JAKs, STATs, and the SOCS proteins.

Understanding the molecular details of cytokine engagement
requires detailed structural knowledge of the complexes formed
by cytokines and receptors. The first cytokine/receptor complex

Frontiers in Immunology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 1424

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Metcalfe et al. IL-6 Family and Targeted Therapies

FIGURE 1 | The structure of cytokines and receptors. (A) (i) A schematic of the four-α helical bundle topology of hematopoietic cytokines, (ii) cartoon representations

of the structures of several representative cytokines; human growth hormone [PDB ID: 1HGU (40)], GM-CSF [PDB ID: 1CSG (41)], and erythropoietin [PDB ID: 1BUY

(42)]. (B) The structure of the growth hormone receptor [PDB ID: 2AEW (43)]. The two Fn3 domains that make up the CHR are indicated, and a typical topology (30)

for the two Fn3 domains in the CHR is shown in (ii). The conserved disulfide bonds in the N-terminal domain, the linker sequence, and the conserved WSXWS motif

are indicated. (C) The structure of the growth hormone/growth hormone receptor complex [PDB ID: 3HHR (44)].
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structure solved was the GH:GHR complex in 1992 (Figure 1C),
which revealed GH bound to a dimer of GHR (44). The
most surprising feature of the structure was the observation
that two chemically distinct binding sites on GH bind similar
epitopes on GHR. Following the GH:GHR structure, more
complex structures followed, such as the tetrameric viral IL-
6 (67) complex, the hexameric IL-6 (68) complex, and the
dodecameric GM-CSF (69) complex, providing a more thorough
understanding of cytokine/receptor engagement from several
cytokine families. To date, no high-resolution structures have
been solved that include the transmembrane or intracellular
regions of cytokine receptors, although low-resolution negative-
stain electron microscopy studies have captured the overall
organization of these complexes (65, 70, 71).

The use of shared signal transducing receptors by cytokines
is common. For example, three cytokines utilize the common
β chain (βc), IL-3, IL-5, and GM-CSF (72), six cytokines utilize
the common γ chain (γc), IL-2, IL-7, IL-9, IL-13, IL-15, and
IL-21 (73), and more than ten cytokines utilize glycoprotein
(gp)130, including IL-6, IL-11, leukemia inhibitory factor (LIF),
CNTF and oncostatin M (OSM) (74, 75). As structures have
now been solved of several representative cytokines from these
families, the mechanisms of shared receptor use have begun
to be understood. For example, the γc receptor has a large
binding surface in the CHR, allowing it to bind structurally
diverse cytokines (48, 73), in contrast, gp130 has a structurally
rigid, chemically diverse binding surface at the CHR, with
different gp130-binding cytokines interacting with different but
overlapping regions of the surface (76). In shared receptor
systems, cytokine-specific receptors with restricted expression,
such as IL-6Rα or IL-15Rα, serve to limit the activity of
cytokines to specific target cells despite their utilization of similar
intracellular signaling pathways.

Intracellular Signal Transduction by
Cytokines—The JAK-STAT Pathway
The JAK-STAT pathway is the most well-studied pathway
activated in response to cytokines (Figure 2A). The major
components of the pathway are cytokine, cytokine receptor,
kinase (i.e., JAK), signal transducer (i.e., STAT), and negative
feedback regulators (i.e., SOCS). JAKs are associated with the
cytoplasmic domains of signal-transducing cytokine receptors
and consist of four domains, a kinase domain, pseudokinase
domain, 4.1 ezrin radixin moesin (FERM) domain, and Src
homology 2 (SH2) phosphotyrosine-binding domain. The
pseudokinase domain regulates the kinase domain (77), with
the term “Janus kinase” referring to the presence of two
kinase domains, real and pseudo, named for the two-faced
Roman god (21). The FERM/SH2 domains form a single
structural unit (78, 79), and are responsible for interacting
with the cytokine receptor, through defined motifs on the
receptor, termed Box 1 and Box 2 (80). Cytokine binding
results in the activation and phosphorylation of the kinases,
which then phosphorylate the cytokine receptor at STAT binding
sites, serving to recruit STATs. Bound STATs are themselves
phosphorylated, resulting in the activation of the STAT dimer,

its translocation to the nucleus, and the expression of cytokine
responsive genes. Importantly, different kinases are associated
with different cytokine receptors—for example, the IFNα/β
receptor primarily uses tyrosine kinase 2 (TYK2) (22) and βc
primarily uses JAK2 (81). Furthermore, different receptor-kinase
complexes result in activation of different STAT proteins—
for example, STAT1/2 for IFNα/βR (22), STAT5 for βc (81),
leading to different gene expression programs in response
to signaling.

The SOCS proteins, which are expressed as a consequence
of cytokine activation, negatively regulate the pathway (27).
The SOCS proteins recruit the E3 ligase, Cullin5, resulting in
the degradation of the receptor complex in the proteasome
(82, 83). Two SOCS proteins, SOCS1 (84) and SOCS3 (85),
also directly inhibit the kinase activity of the JAKs. The
protein inhibitor of activated STAT (PIAS) proteins inhibit
the activity of STAT through mechanisms that include directly
blocking STAT interaction with nuclear DNA (86, 87). Several
phosphatases act as negative regulators of signaling, such as
the SH2-domain containing phosphatases, SHP1 and SHP2
(88, 89) and protein-tyrosine phosphatase (PTP) 1B (90). The
lymphocyte adaptor protein, Lnk, serves as an additional negative
regulator of signaling by several cytokines that signal using
JAK2 (91).

The exact mechanisms by which cytokine engagement
triggers signal transduction remain unclear and are the
subject of active investigation. In the classical model of
cytokine signaling, dimerization of signal transducing
receptors simply brings the associated JAKs close enough
in proximity to phosphorylate each other in trans (44, 92)
(Figure 2B). However, several cytokine receptors, including
GHR (43, 93), EPOR (94), and gp130 (95, 96) have been
shown to exist as preformed dimers at the cell membrane
(Figure 2C). Investigations of GHR suggest that cytokine
binding results in a rearrangement of the transmembrane
α-helices of the receptor, a conformational change that lifts
pseudokinase domain mediated inhibition of the JAKs (43, 93).
Determining the universality of such a mechanism will require
the study of additional cytokine receptors, particularly those
that signal through more complex hetero-dimeric or larger
signaling complexes.

In addition to the JAK-STAT pathway, cytokines
can utilize alternative signaling pathways, including the
mitogen-activated protein kinase (MAPK) pathway, and
the phosphoinositide 3-kinase (PI3K) pathway (81). The
multi-adaptor protein SH2 domain containing tyrosine
phosphatase (SHP2) interacts with several cytokine
receptors and provides the link between the receptors
and the MAPK pathway (97). Signaling through these
pathways is generally less well understood than the
JAK-STAT pathway.

THE IL-6 FAMILY OF CYTOKINES

The IL-6 family of cytokines is one of the largest cytokine families
(Figure 3). These cytokines are unified by the near-universal use
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FIGURE 2 | Cytokine signal transduction. (A) General schematic of the JAK-STAT pathway. Cytokine binding results in the activation of intracellular kinases (JAKs)

that phosphorylate and activate STATs, which subsequently translocate to the nucleus, resulting in altered gene expression, and negative feedback on the pathway

through the SOCS proteins. (B,C) Models for complex activation. Cytokines are thought to either, (B) dimerise receptors on the cell surface, resulting in kinase

autophosphorylation and activation or (C) bind to pre-dimerised receptors on the cell surface, resulting in receptor activation through conformational alterations of the

receptor dimer.

of the shared signal transducing receptor, gp130. The exception
is IL-31, which uses the related receptor IL-31Rα, also known
as gp130-like receptor (GPL) (102, 103). The distinct biological
activity of IL-6 family cytokines is controlled by the restricted
expression of the cytokine-specific receptors, such as IL-6Rα and
IL-11Rα by a limited subset of cell types (104). Several cytokines
can bind IL-6Rα in addition to IL-6, including CNTF (105), the
IL-27 subunit IL-27p28 (also known as IL-30) (106), a IL-27p28
fusion with cytokine-like factor (107), and human herpes virus
8 IL-6 (vIL-6) (108), a viral analog of IL-6 with ∼25% sequence

identity to mammalian IL-6 (109). Receptor promiscuity is thus
a common feature of the IL-6 family.

The Structure of IL-6 and Its Receptors
IL-6 was initially identified under several names in the 1980s
(110, 111) as a protein involved in B-cell differentiation (112), a
plasmacytoma growth factor (113), and a protein involved in the
induction of acute phase proteins in the liver (114). Subsequent
cloning of these proteins showed that they were all identical, thus
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FIGURE 3 | The IL-6 family of cytokines. (A) A schematic representation of selected IL-6 and IL-12 family cytokine-receptor complexes, illustrating the diversity in the

stoichiometry of signaling complexes employed. Indicative JAK family members utilized by each signal transducing receptor are shown. (B) The structures of several

IL-6 and IL-12 family cytokines: IL-6 [PDB ID: 1ALU (45)]; IL-11, [PDB ID: 4MHL (98)]; LIF [PDB ID: 1LKI (99)]; OSM [PDB ID: 1EVS (100)]; IL-12 [PDB ID: 1F45 (54)].

(C) The structures of extracellular domains of IL-6 family cytokine receptors: IL-6Rα [PDB ID: 1N26 (101)], the common signal transducing receptor, gp130 [PDB ID:

3L5H (58)] and the receptor for LIF and several other IL-6 family cytokines, LIFR [PDB ID: 3E0G (65)].
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FIGURE 4 | The structure of the IL-6 signaling complex. (A) (i) Two views of the structure of the hexameric IL-6/ IL-6Rα/gp130 complex [PDB ID: 1P9M (68)]. The

three binding sites on the cytokine (site-I, binding IL-6Rα, site-II, binding gp130, site-III binding gp130), are indicated in the figure. The stepwise assembly of the

complex is shown in (ii), with the interactions mediated by each of the binding sites indicated. (B) The binding of three IL-6 family cytokines to the CHR of gp130, IL-6,

vIL-6 [PDB ID: 1I1R (67)] and LIF [PDB ID: 1PVH (76)]. The three cytokines do not induce significant rearrangements in the CHR of gp130 but adopt a different pose

on the CHR and bind different regions in the surface of gp130. (C) The binding of IL-6 and vIL-6 to gp130 D1, the interaction that forms the hexameric complex. The

two cytokines engage gp130 D1 in an analogous way. The key tryptophan “hot-spot” residue in site-III is indicated.

they were given a common name, IL-6. IL-6 is the most well-
characterized member of this family structurally, with crystal
structures of IL-6 solved in 1997 (45, 115), the structure of IL-
6Rα solved in 2002 (101), and the structure of the IL-6 signaling
complex solved in 2003 (68) (Figures 3B,C, 4A). IL-6 is a typical
four-α helical bundle cytokine, with the expected up-up-down-
down arrangement of α-helices, with an additional, short α-helix
in the CD loop (Figure 3B). The extracellular region of IL-6Rα

consists of three domains (101), an N-terminal Ig-like domain,
and two Fn3 domains, which form the IL-6 binding CHR
(Figure 3C). The N-terminal Ig domain adopts a distorted Ig-
like fold, and is dispensable for cytokine binding and biological

activity (60, 68), although there is some evidence that it is
required for correct trafficking of the receptor (60). IL-6 binds the
surface formed by the two Fn3 domains, D2 and D3, comprising
the CHR (68). C-terminal of the structured extracellular domains
(D1-D3), there is a long linker region (52 residues), predicted to
be disordered, that appears to function as a spacer in the signaling
complex between the structured extracellular domains and the
membrane (116–118).

Gp130 is the common signal transducing molecule for nearly
all IL-6 family cytokines, and some cytokines in the closely
related IL-12 family. It was first identified in 1989 (119) as the
component of the IL-6 signaling complex involved in signal

Frontiers in Immunology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 1424

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Metcalfe et al. IL-6 Family and Targeted Therapies

transduction, and subsequently cloned in 1990 (120). Following
this, gp130 was recognized as being a common component of
the IL-11 (121), OSM (122), LIF and CNTF (123) signaling
complexes. Structures of the CHR domains of gp130 became
available in 1998 (124), and the full extracellular region of gp130
in 2010 (58) (Figure 3C). The extracellular domains of gp130
are those of a typical “tall” cytokine receptor, consisting of six
domains, an N-terminal Ig-like domain, and five Fn3 domains
(58). The first three, membrane-distal domains (D1-D3) are
involved in cytokine recognition and complex formation, and
are sufficient to bind cytokines and form a complex in solution
(68, 76). The membrane-distal domains are also directly involved
in gp130 activation, with oncogenic mutations that result in
cytokine-independent activation of gp130 clustering in D2 (125).
These mutations are thought to act by disrupting the D2/D3
interdomain linker, allowing the receptor to adopt an active
conformation in the absence of ligand (126).

The three membrane proximal domains of gp130 (D4-D6) are
not directly involved in binding the cytokine, but are required
for signal transduction, as deletion of any of the domains results
in an inactive receptor (127). Electron microscopy shows that
the membrane-proximal domains are involved in the correct
orientation of the intracellular kinases for signal transduction
(65, 70, 71, 128). In addition to the extracellular domains,
gp130 contains a large intracellular domain, which is involved in
binding molecules required for signal transduction. Structurally,
little is known about the intracellular domain of gp130, although
NMR studies have shown that the isolated intracellular domain is
disordered (65). JAK1, whichmediates intracellular signaling, has
been shown to bind gp130 at the Box 1 motif in the intracellular
domain of gp130 (80). STAT3 (17, 129) and STAT1 (130) bind at
C-terminal phosphotyrosine residues in the intracellular domain
of gp130 (131). Specifically STAT3 utilizes Tyr767, Tyr814,
Tyr905, and Tyr915, while STAT1 utilizes Tyr905 and Tyr915
(132). SHP2 is also recruited by gp130 at the intracellular domain
(133), interacting with Tyr759 providing the link between gp130
and the MAPK pathway (134). The same Tyr759 allows for
SOCS3 regulation of cytokine signaling (27, 85).

The Structure of the IL-6 Signaling
Complex
Prior to the determination of the structure of IL-6 in
complex with the cytokine binding domains of its receptors
(Figure 4Ai) (68), there was extensive evidence from analytical
ultracentrifugation and electrophoresis that the complex was
hexameric, comprising two copies each of IL-6, IL-6Rα, and
gp130 (135–137). Concurrently, mutagenic studies identified
three binding sites on IL-6 (136), which were later confirmed in
the structure of the complex (68). Site-I is responsible for binding
IL-6Rα, site-II is responsible for binding the first molecule
of gp130, and site-III is responsible for binding the second
molecule of gp130, resulting in the formation of the hexameric
complex (Figures 4Ai, ii). Site-I and site-II are positioned on
the cytokine in a broadly analogous manner to GH and form a
similar trimeric complex, with IL-6 binding the CHRs of IL-6Rα

and gp130 (33) (Figure 4Ai). The distinct cytokine:Ig domain

interaction between the cytokine and D1 of gp130 is unique to
IL-6 family cytokines (138). This interaction is formed by site-III
on the cytokine. The complex is formed by ten interdependent
interfaces between IL-6 and the two receptors, and between the
receptors, with the earlier binding events creating composite
binding surfaces to enable subsequent receptor recruitment.
The structure of the IL-6 signaling complex has aided drug
design studies (139, 140), showing its value in the design of
novel therapeutics.

The site-II/CHR region of gp130 is involved in the binding
of all gp130-binding cytokines. Alongside the structure of the
IL-6 signaling complex, structures were solved of vIL-6 in
complex with gp130 (67) and LIF in complex with gp130 (76).
All three cytokines engage the CHR of gp130 via the site-II
region of the cytokine (Figure 4B). The structures showed that
vIL-6, IL-6, and LIF engage different but overlapping binding
regions in the CHR of gp130, with the three cytokines adopting
different poses. A key residue in site-II of gp130, Phe169, forms
important interactions with IL-6, vIL-6, and LIF. Surprisingly,
the cytokine binding surface of gp130 is relatively rigid, and
does not significantly change conformation in response to the
binding of different cytokines (76). The CHR of gp130 presents a
large, chemically diverse binding surface and the different regions
engaged by IL-6, vIL-6, and LIF result in each cytokine/gp130
interaction displaying different thermodynamic properties (76).
The size and “thermodynamic plasticity” (76) of the CHR of
gp130 is thought to result in its promiscuous binding to multiple
cytokines (33, 76).

IL-6 and vIL-6 interact with the Ig-like domain D1 of
gp130 through site-III on the cytokine. The interactions between
IL-6/gp130 D1 and vIL-6/gp130 D1 are broadly analogous
(Figure 4C). In both complexes, a conserved tryptophan is the
key hydrophobic “hot spot” residue (Trp157 in human IL-
6, Trp144 in vIL-6), providing ∼25% of the buried surface
area at site-III. Likewise, the N-terminus of gp130 forms a
short mainchain-mainchain interaction with the AB loop of the
cytokine (67, 68). The site-III interface on gp130 D1 is otherwise
relatively chemically and structurally featureless (33), providing
a low-affinity binding surface that is reliant on prior interactions
with other receptors for stable complex assembly. An interaction
similar to the gp130-D1 interaction is formed by LIF with the Ig-
D3 and Fn3-D4 of LIFR, although this interaction buries more
surface area and forms more polar interactions (59).

No structural data are available for the gp130 binding epitopes
of any IL-6 family cytokines other than vIL-6, IL-6, and LIF.
Mutagenesis of gp130 shows that IL-11 and IL-6 both require D1
of gp130 for signaling, and bind a similar epitope in the CHR
(141). Monoclonal antibodies against gp130 have been developed
that antagonize signaling through specific cytokines, including
IL-11 and IL-6-specific neutralizing antibodies, suggesting that
each cytokine engages gp130 using a structurally different
mechanism (142); however, the structural basis of this specificity
is currently unknown.

No high-resolution structures are available of the complete
extracellular regions of any IL-6 family cytokine complex. All
complexes described above comprise heavily truncated forms
of the receptors to facilitate crystallization. Electron microscopy
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FIGURE 5 | Signal transduction by IL-6. IL-6 can activate intracellular pathways in three ways: “Classic” signaling, in which IL-6 binds to membrane-bound IL-6Rα,

and subsequently binds to membrane-bound gp130 on the same cell; “trans-signaling”, in which IL-6 binds to soluble IL-6Rα, subsequently binding

membrane-bound gp130; and “trans-presentation,” in which IL-6 binds membrane-bound IL-6Rα on a “transmitting cell” and subsequently engages gp130 on a

neighboring (“receiving”) cell, activating intracellular signaling pathways in the receiving cell.

(both cryogenic and negative stain) has been used to study several
complexes, including the IL-6 complex (70, 71), the LIF complex
(65), and the IL-11 complex (128). The resolution in these studies
is insufficient to resolve structural detail of the complex, although
they reveal a common “doughnut-shaped” architecture, with
the “legs” of the tall cytokine receptors, LIFR and gp130, bent
to create a complex with a hole in the middle. The details of
any contacts between the membrane proximal domains of the
receptors in these complexes remain to be elucidated and will
require the determination of high-resolution structures of the
complete extracellular regions of the complexes.

Alternative Mechanisms of IL-6 Family
Signaling
In addition to “classic” IL-6 signaling through membrane-bound
IL-6Rα and gp130, IL-6 can also bind a soluble form of IL-
6Rα (sIL-6Rα). The IL-6/sIL-6Rα complex can then engage
membrane-bound gp130, allowing the stimulation of cells that
do not express IL-6Rα, a process known as trans-signaling
(119, 143) (Figure 5). IL-6 trans-signaling is implicated in IL-
6 mediated inflammation (143). sIL-6Rα is generated through
alternative splicing (144) and through cleavage of the intact
receptor by the membrane-bound metalloproteases, ADAM10
and ADAM17, resulting in shedding of the extracellular
receptor domains (143). The physiological antagonist of trans-
signaling is soluble gp130 (sgp130), which can bind to the

sIL-6Rα/IL-6 complex extracellularly, thereby neutralizing its
cellular activity (145).

IL-11 trans-signaling has recently been identified (146). The
membrane metalloprotease ADAM10 can cleave IL-11Rα to
produce sIL-11Rα, which can engage IL-11 and gp130 in an
analogous manner to IL-6/sIL-6Rα (146). To date, no clear
biological role has been ascribed to IL-11 trans-signaling. In
diseases shown to be driven by classic IL-11 signaling, for
example gastrointestinal cancers, it has been shown that there is
no role for IL-11 trans-signaling (147). Likewise, the loss of classic
IL-11 signaling is associated with defects in embryo implantation;
however, the inhibition of IL-11 trans-signaling in mice does not
result in infertility (148). Fusion proteins of IL-6 with IL-6Rα and
IL-11 with IL-11Rα (“hyper-IL-6 and hyper-IL-11”) are used to
mimic trans-signaling experimentally (149, 150).

Recent studies have proposed a third IL-6 signaling
mechanism, trans-presentation, whereby IL-6 binds IL-6Rα

on a “transmitting cell,” which then presents the IL-6/IL-6Rα

complex to gp130-expressing cells (Figure 5) (151, 152). This
was shown to be critical for the differentiation of TH17 T helper
cells, where IL-6/IL-6Rα is presented in trans by dendritic cells
(151). Trans-presentation has also been shown to be possible
for IL-11Rα, however a defined biological role for this has
not been identified (152). Trans-presentation of IL-6 family
cytokines has not yet been characterized structurally; such a
signaling mode would require large rearrangements of the IL-6
signaling complex components. Other cytokines such as IL-2
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(153) and IL-15 (154) can utilize similar trans-presentation
mechanisms, where dendritic cells present the cytokine in trans
to antigen-specific T-cells (48, 155).

Related Cytokine Families
The IL-12 Family of Cytokines
The IL-12 family of cytokines is closely related structurally to
the IL-6 family of cytokines, indeed, it has been suggested that
a clear distinction between the two families is almost impossible
to define (156). In contrast to the majority of the IL-6 family, all
IL-12 family cytokines consist of two subunits, a smaller four-
α helical subunit, and a larger all-β protein cytokine receptor
subunit, which is analogous to the α-receptors for IL-6 and IL-
11. For example, IL-12 consists of two subunits, p35, analogous
to a four-α helical bundle cytokine, and p40, which resembles a
class I cytokine receptor (Figure 3B) (54).

IL-27 and IL-35 are two IL-12 family cytokines that utilize
gp130 as a signal transducing molecule and, thus, are also
grouped as members of the IL-6 family (Figure 3A) (157, 158).
IL-27 consists of a complex of IL-27p28 and Epstein–Barr virus-
induced gene 3 (EBI3) that signals through a heterodimer of
WSX1 and gp130 (Figure 3A) (157). In addition to this complex,
IL-27p28 may utilize IL-6Rα as the cytokine-receptor subunit to
signal through a gp130 dimer (106). IL-27p28 was also shown to
antagonize IL-6 and IL-27 signaling through gp130, but not OSM
signaling, suggesting that IL-27p28 may compete with cytokines
that bind D1 of gp130 (159). IL-35 can signal using a heterodimer
of IL-12Rβ2 and gp130, or homodimers of either IL-12Rβ2 or
gp130; however, the molecular mechanisms underpinning this
promiscuity are currently unclear (158). Broadly, these findings
suggest an evolutionary relationship between the IL-6 and IL-12
families of cytokines and underscore the promiscuity of cytokine
receptors in the IL-6/IL-12 superfamily.

Domeless
A distant homolog of gp130 has been identified in Drosophila
melanogaster, the receptor domeless (dome) (160), which is
the likely evolutionary ancestor to all IL-6 family cytokine
receptors (161). Dome shares a similar domain structure to
gp130 and LIFR, and has a putative CHR, albeit with low
sequence identity to the CHR of gp130. A putative ligand
for Dome, Unpaired-3 (Upd3) (162) has also been identified,
alongside JAK kinases (Hopscotch) and STAT transcription
factors (Marelle) (163). The Dome-Hopscotch pathway has been
shown to have several roles in Drosophila physiology, including
in responding to bacterial infection (164), in oogenesis (164),
in hemocyte proliferation (165), and in tissue development
(166, 167), showing that cytokine pleiotropy is a common
feature in metazoans. Neither dome or Upd3 have been studied
structurally, although recombinant Upd3 has been produced,
and has been shown by circular dichroism spectroscopy to have
a predominately α-helical secondary structure (168). Zebrafish
possess a mammalian-like cohort of cytokines, with relatives
of all extant mammalian cytokine families present, suggesting
that an increase in diversity of cytokines and receptors occurred
with the evolution of the adaptive immune system in vertebrates
(169, 170).

BIOLOGICAL ROLES OF IL-11

IL-11 was first identified in 1990, following the discovery of a
protein factor that stimulated a murine plasmacytoma cell line
previously thought to be IL-6 dependent (171). The following
year, IL-11 was also identified as a factor secreted from a bone
marrow derived cell line culture, which inhibited adipogenesis
in preadipocytes (172, 173), thus the pleiotropic nature of IL-
11 signaling was appreciated early. While there was a flurry
of activity surrounding IL-11 in the 1990s, there has been less
research activity since. However, in the last decade there has
been a renewed interest in IL-11 following its emerging role in
numerous diseases.

Structure of IL-11 and Its Receptors
In contrast to IL-6, LIF and other IL-6 family cytokines, little
was previously known about the structure of IL-11 or IL-
11Rα. We reported the first crystal structure of IL-11 in 2014
(98) and have recently reported a higher-resolution structure
of the cytokine (Figure 6A) (174). Our structures show that
IL-11 is ∼5 Å longer than IL-6, suggesting differences in
binding mode and geometry within the signaling complex.
Likewise, the IL-11Rα binding site (site-I) and the first
gp130 binding site (site-II) of IL-11, previously identified
through mutagenesis (175, 176), are different in chemical
character to IL-6, with site-I more hydrophobic (Figure 6B).
Our recent structure of IL-11Rα (Figure 6C) (174) revealed
that the cytokine binding site of the receptor is more
hydrophobic in character than IL-6Rα, consistent with the
corresponding site of IL-11 and suggesting distinct mechanisms
of cytokine engagement.

No high-resolution structural data for the IL-11 signaling
complex are currently available in the literature, although
sequence analysis (121, 177) and our structural data (174)
show that IL-11Rα and IL-6Rα are structurally similar. The
IL-11 signaling complex, like the IL-6 signaling complex, is
thought to be hexameric, as shown by immunoprecipitation
and electrophoresis (178). Contemporaneous mutagenic studies
(175, 176, 179) also identified site-I, II, and III on IL-11
(Figure 6B), suggesting that IL-6 and IL-11 form an active
signaling complex using a broadly similar mechanism. A low-
resolution (∼30 Å) cryoEM density map of the IL-11 signaling
complex extracellular domains (128) (Figure 6D) shows that
the overall arrangement of the complex is broadly similar
to the IL-6 signaling complex (Figure 6Dii), although the
details of complex formation were not clear at this resolution.
We have recently solved structures of the IL-11 signaling
complex that provide high resolution detail of the assembled
complex (unpublished).

IL-11 in Hematopoiesis
Early studies of IL-11 revealed that it was a potent hematopoietic
factor, acting synergistically in culture with other cytokines,
such as IL-3 (180, 181) and IL-4 (182). In particular, IL-11
was found to have a role in megakaryocytopoiesis, causing the
maturation of megakaryocytes, large cells which form platelets
(181). In mice, IL-11 alone is a potent hematopoietic stimulator
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FIGURE 6 | The structure of IL-11. (A) Two views of the structure of IL-11 [PDB ID: 6O4O (174)]. (B) Receptor-binding sites on IL-11, which have been identified

through mutagenic studies on human and mouse IL-11. (C) Two views of the structure of the extracellular domains of IL-11Rα [PDB ID: 6O4P (174)]. (D) A

low-resolution EM map of the extracellular IL-11 signaling complex [EMD-1223 (128)] (i), additionally shown overlaid with a model of the extracellular IL-6 signaling

complex, (ii) [generated from PDB IDs: 3L5H (58), 1P9M (68)].

following radiation therapy and chemotherapy, and markedly
increases platelet counts (183). Recombinant IL-11 is approved
by the FDA to treat thrombocytopenia following radiation
treatment in humans (184), and is commonly prescribed to
breast cancer patients. In addition to its well-characterized role
in megakaryocytopoiesis, IL-11 has other roles in hematopoiesis
(185), for example, in lymphopoiesis (186), in erythropoiesis
(187), and in myelopoiesis (188).

IL-11 in Bone Development
IL-11 signaling has been shown to promote osteoblast
differentiation, and thus bone formation, with IL-11Rα knockout
mice showing abnormal craniofacial features (189–191). In
humans, mutations in the genes for IL-11 and IL-11Rα are

associated with a reduction in height (192, 193), suggesting
that IL-11 signaling has a role in regulating growth. Likewise, a
genetic variant in the gene for IL-11, resulting in a substitution
mutation (R112H), is associated with osteoarthritis and a
reduction in height (192, 194). Biochemical characterization
of the mutant cytokine has shown that it does not alter the
biological activity of IL-11, but compromises the stability of the
protein (195).

Over the past decade, a number of studies have identified
mutations in the gene for IL-11Rα, which result in a
genetic disease associated with craniosynostosis (196–198).
Craniosynostosis is a condition in which bone plates in the
skull fuse too early, resulting in facial abnormalities and an
abnormally shaped skull. The disease is rare, and has been found
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in families with diverse geographic origins (196). Generally, the
disease occurs as a result of point substitution mutations in
the extracellular domains of IL-11Rα (196, 199), and many of
these mutations are situated in regions distant from the putative
cytokine or receptor binding sites. Several of the mutations have
been shown to impair correct processing and surface expression
of the receptor (199). Molecular dynamics simulations using our
IL-11Rα structure indicate that some mutations destabilize the
receptor and may have indirect effects on the cytokine binding
region (174).

IL-11 in The Lung
IL-11 is highly expressed as a consequence of viral induced
asthma (200), and overexpression of IL-11 in the airways of
mice results in remodeling of the airways, inflammation and
asthma-like symptoms (201). Subsequent studies have shown
that IL-11 signaling is critical for a TH2-mediated inflammatory
response in the lung (202), and that inhibition of IL-11 signaling
in the lung alleviates inflammation, implying that IL-11 signaling
is a therapeutic target in asthma (203). Similarly, IL-11 has
been shown to drive lung inflammation in a murine model of
Mycobacterium tuberculosis infection (204).

IL-11 in Reproduction
Female knock-out mice lacking the gene for IL-11Rα are
infertile, and cannot undergo the uterine transformations
required for embryo survival (205). Likewise, IL-11 and IL-
11Rα have been localized to reproductive tissues during early
pregnancy in primates, suggesting a role in placentation and
decidualization (206). Related to this, inhibition of IL-11
signaling impairs decidualization and prevents pregnancy in
mice, suggesting that therapeutic inhibition of IL-11 may be a
potent contraceptive (207). Defects in the production of IL-11
have also been associated with anembryonic pregnancy, a cause of
miscarriage (208). IL-11 signaling inhibits and regulates invasion
of extravillous trophoblasts, cells which are key in placentation
for the formation of blood vessels (209–211). Thus, elevated IL-
11 is associated with preeclampsia, a disease where placentation
is impaired, resulting in hypertension (211). Together, these
studies suggest that IL-11 has key roles in driving the tissue
transformations that occur as a result of pregnancy.

IL-11 in Fibrosis
IL-11 has been implicated in fibrosis of the heart (212),
liver (213), and lung (214, 215). Fibrosis is the generation
of excess connective tissue, and is a hallmark of several
diseases, including late-stage cardiovascular disease, and liver
diseases such as non-alcoholic liver disease. In the heart,
IL-11 has recently been identified as a key fibrotic factor,
acting downstream of the main fibrotic factor TGFβ1, driving
fibrotic protein synthesis in an autocrine manner (212). IL-
11 has a similar role in driving inflammation and fibrosis
of the liver (213). Interestingly, in both cases, the effect has
been shown to be driven by non-canonical signaling via the
MAPK/ERK pathway, rather than via the JAK-STAT pathway.
Surprisingly, canonical IL-11 signaling via STAT3 has previously
been ascribed a cardioprotective role, inhibiting cardiovascular

fibrosis and preventing cardiovascular remodeling following
myocardial infarction (216). These contradictory observations
may be a consequence of the source of IL-11 used in either
study, as it was shown that human IL-11, previously used to
show that IL-11 is cardioprotective, does not activate mouse
cardiac fibroblasts, while murine IL-11 strongly activates murine
cardiac fibroblasts (212). Alternatively, it may suggest different
roles for IL-11 in response to different cardiovascular stresses.
More broadly, this may reflect an inadequate understanding of
the species-specific effects of IL-11, or differences in signaling in
humans as compared to mice.

IL-11 in Cancer
IL-11 signaling drives several cancer hallmarks (217, 218)
including cell survival, metastasis, and invasion (219–221). IL-11
levels are significantly higher in a murine model of gastric cancer
(222), and IL-11 is the major factor that drives STAT3 activation
and corresponding inflammation in murine gastric and colon
cancer models, as well as human cell line xenograph models of
these cancers (221). A role for IL-11 signaling in breast cancer has
been less well-described, but elevated levels of IL-11 and IL-11Rα

are associated with poor patient outcomes (223, 224) and both
IL-11 and IL-6 are associated with breast cancer metastasis into
bone (225). IL-11 is also associated with endometrial cancer, and
is associated with increasing tumor grade (226). Elevated levels
of IL-11 are found in several other types of cancer, including
pancreatic cancer (227), skin cancer (228), and bone cancer (229),
although a precise role for IL-11 signaling in many of these
cancers remains to be defined.

THERAPEUTIC TARGETING OF IL-6
FAMILY CYTOKINE SIGNALING

Given the role of cytokine signaling in numerous pathological
conditions there is broad interest in the development of
therapeutic agents that block their activity. Generally, inhibition
can occur at several points in the cytokine signaling pathway—
either by preventing the protein-protein interactions on the cell
surface, or by targeting components of the signal transduction
machinery within the cell. Conversely, recombinant cytokines
can also be used to therapeutically boost cytokine signaling. Here
we provide an overview of several approaches to therapeutically
modulate cytokine signaling that are in development, as well as
those currently used in the clinic. We focus our discussion on
how advances in these areas may inform the design of IL-11
signaling inhibitors suitable for clinical use.

Small Molecules
Inhibitors of Intracellular Signal Transducing Proteins
JAK inhibitors are widely used, orally bioavailable, small
molecules for the treatment of blood cancers and inflammatory
diseases (230) (Figure 7). Six JAK inhibitors are used clinically,
with several in development. For example, the JAK1/2 selective
inhibitor ruxolitinib (231) is used to treat a group of rare
blood cancers associated with an activating mutation in JAK2.
Similarly, tofacitinib (non-selective) and baricitinib (selective
for JAK1/2) are JAK inhibitors used to treat the inflammatory
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FIGURE 7 | Pharmacological approaches to target IL-6 and IL-11 signaling. Current inhibitors of IL-6 and IL-11 signaling include protein antagonists such as cytokine

mutants and antibodies, small molecule protein-protein interaction (PPI) inhibitors targeting gp130, recombinant IL-11, small molecule inhibitors of proteins in the

intracellular JAK-STAT pathway, and decoy oligodeoxynucleotides (ODNs) targeting the STAT3 mRNA.

disease rheumatoid arthritis (232, 233). JAK inhibitors are now
undergoing clinical trials for a broader array of inflammatory
diseases (234). Challenges with developing JAK inhibitors are
largely a consequence of the inherently non-specific nature of
the drugs. Moreover, JAK inhibition may be associated with
severe side effects, including opportunistic viral infections, likely
a consequence of inhibition of interferon-mediated protective
antiviral signaling (235). Similarly, due to the central roles of
cytokine driven JAK activation in hematopoiesis, JAK inhibitors
have been noted to cause mild anemia and neutropenia (236,
237). Despite this, JAK inhibitors are widely used, and efforts
to develop novel JAK inhibitors, particularly inhibitors that are
selective for a specific kinase, are ongoing.

Inhibitors of STAT activity are in various stages of
development (238). Phase I and II trials have been conducted
on several drug candidates targeting STAT3, although the results
are pending (239, 240). These inhibitors are generally peptides
or small molecules designed to prevent STAT dimerization
(241, 242), or decoy oligodeoxynucleotides (ODNs) designed to
target expression of the STAT gene directly (243). Recently, a
small-molecule proteolysis targeting chimera (PROTAC), SD-36

(244), which selectively targets STAT3 over other STAT family
members, has been described. Direct inhibition of activated
STATs is at a less advanced stage compared to kinase inhibitors,
or drugs targeting the cytokine/receptor interaction directly, with
current inhibitors having low potency and poor pharmacokinetic
properties (245). For example, curcumin, an extract of the
turmeric plant, Curcuma longa, has been used in traditional
medicine for centuries for its anti-inflammatory properties (246).
Mass spectrometric and computational docking studies have
shown that curcumin directly interacts with STAT3 to inhibit
phospho-STAT3 dimerization (247). Several in vitro studies
demonstrate that curcumin is an inhibitor of STAT3 signaling
(247, 248). However, the use of curcumin as a drug candidate or
treatment is controversial (246, 249). Generally, direct targeting
of STATs may not have clear benefits over existing therapeutic
strategies, such as JAK inhibitors, which may hinder clinical
uptake of STAT inhibitors.

Inhibitors of Signaling Through gp130
Several small molecules have been described that are believed
to bind to gp130 and inhibit the protein-protein interactions
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(PPIs) that result in complex formation (Figure 7). Despite the
challenges of targeting PPIs, as they present large flat binding
surfaces (250), small molecule modulation of PPIs is potentially
invaluable therapeutically. Small molecule inhibitors could be
more specific for the inhibition of signaling through individual
cytokines compared to JAK inhibitors, which modulate the
signaling of numerous cytokines. Moreover, PPI-inhibitors
would likely be cheaper, orally bioavailable, and have a shorter
half-life compared to biologic therapies, which is beneficial in the
event of serious adverse events (251).

Madindoline A (MadA), a natural product isolated from
Streptomyces nitrosporeus culture, is a small molecule shown to
specifically inhibit the activity of IL-6 and IL-11 in vitro (252).
MadA has subsequently been shown to inhibit the action of
IL-6/IL-11, but not LIF, in bone resorption and macrophage
differentiation (253). Additional studies have shown that MadA
binds specifically to gp130, with a low affinity (254). Chemical
synthesis of MadA is difficult (255) and it is produced in low
yields by bacterial fermentation, limiting its potential as a drug
candidate for large scale production.

The small molecule gp130 inhibitor SC144 was
identified serendipitously from efforts to design a human
immunodeficiency virus (HIV) integrase inhibitor, which would
be a potential anti-HIV drug (256, 257). Several candidate
HIV integrase inhibitors were highly cytotoxic (258). A library
was built from these cytotoxic molecules (256) and further
screening and lead optimization resulted in the synthesis of
SC144 (257), which was effective against a variety of cancer
models (259). Subsequently, it was shown that SC144 binds
gp130 and inhibits the activity of IL-6 and LIF, likely through
binding the CHR of gp130, resulting in suppression of cancer
growth in human ovarian cancer xenographs (260). Following
this initial description of its activity, SC144 has been used by
various groups as an experimental tool to block IL-6 signaling
through gp130 [see for example (261–263)].

Another small molecule inhibitor that has been shown to
bind to gp130, LMT-28, was identified by screening a library of
∼1,000 compounds (264). Computational docking suggested that
LMT-28 binds to D1 of gp130, and the putative binding region
in D1 of gp130 was supported using site-directed mutagenesis
(265). Likewise, SPR showed that LMT-28 specifically bound
gp130, with a dissociation constant (KD) of 7.4µM, and LMT-
28 was able to out-compete IL-6/IL-6Rα for gp130 binding (264).
LMT-28 has been shown to specifically inhibit IL-6/IL-11 driven
cell proliferation, and block IL-6-driven inflammation in vivo
(264). In contrast, LMT-28 does not inhibit OSM/LIF activity,
consistent with a binding site in D1 of gp130 (264).

Bazedoxifene is an FDA-approved selective estrogen receptor
modulator used clinically in combination with other drugs to
treat osteoporosis in elderly women (266). It was recently shown
that bazedoxifene inhibited gp130 signaling, following an in silico
screen on the IL-6/gp130 site-III interface (139). Bazedoxifene
has been shown to suppress STAT3 activation through IL-6,
inhibit tumor growth in a murine model of rhabdomyosarcoma,
a soft-tissue sarcoma (267), and inhibit the proliferation of
IL-6 dependent cell lines (268). Bazedoxifene has also been
shown to block STAT3 activation by IL-11 in human cancer

cell lines, and reduce the tumor burden in murine models of
gastric cancer (140). Bazedoxifene was also shown to inhibit IL-
6 signaling in triple negative breast cancer cell lines (269), and
in murine models of the inflammatory cardiovascular disease
abdominal aortic aneurysm (270). Recently, more efficacious
analogs of bazedoxifene have been synthesized (271). Given
that bazedoxifene is already used clinically, and thus has an
established safety profile, it represents a potential small molecule
inhibitor of both IL-11 and IL-6 signaling that could be
used therapeutically.

Biologics
Recombinant Cytokines
Generally, with some exceptions, recombinant cytokines have
not seen wide use therapeutically. Although rare, long-term
treatment with recombinant cytokines can result in the
generation of endogenous antibodies against the cytokine (272).
More generally, the pleiotropic nature of many cytokines may
result in unpredictable and intolerable inflammation-associated
side-effects, which could limit the use of recombinant cytokines
in the clinic (273, 274).

Recombinant human IL-11 (oprelvekin) was FDA-approved
in 1998 (184, 275, 276) for the treatment of thrombocytopenia
(low platelet levels) in myelosuppressive chemotherapy, as
a substitute for platelet transfusions. Oprelvekin has also
undergone a clinical trial for use thrombocytopenia in
myelodysplastic syndrome, in which the bone marrow fails
to properly mature blood cells (277). Oprelvekin is, however, not
widely used, both for reasons of cost (278) and due to toxicity
associated with mild anemia, periostitis, edema and in some cases
neuropathy (279, 280). This toxicity can be managed by limiting
the dose of oprelvekin (281). IL-11 also has anti-inflammatory
properties, and oprelvekin has also undergone small clinical trials
in inflammatory bowel disease (282) and rheumatoid arthritis
(283). Both trials were inconclusive, and no further trials for
either of these indications have been published.

Monoclonal Antibodies
Numerous monoclonal antibodies (mAbs) are used clinically to
target IL-6 signaling (284), for example, the anti-IL-6Rα mAbs
tocilizumab (285) and sarilumab (286), and the anti-IL-6 mAb
siltuximab (287) are used to treat several diseases including
rheumatoid arthritis and kidney cancer (Figure 7). Antibodies
targeting IL-6 signaling are generally well-tolerated but have
been noted to result in adverse events. For example, long-term
clinical trials have noted that tocilizumab treatment can result
in opportunistic infection, neutropenia and gastrointestinal
disorders (288, 289), likewise infection, fatigue and neutropenia
have been noted as potential adverse effects of siltuximab
(290). The anti-IL-6 mAb olokizumab is currently undergoing a
phase III clinical trial for rheumatoid arthritis (ClinicalTrials.gov
identifier NCT02760368). Structures show that the olokizumab
Fab blocks site-III of IL-6, preventing formation of the IL-
6 hexameric complex (291). Structures have also been solved
of two anti-IL-6 Fabs, which bind site-I, mimicking the IL-
6/IL-6Rα interaction (292). No structures are available of the
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FDA-approved anti-IL-6 signaling antibodies in complex with
their antigen.

Viral infections, including influenza (293), and severe acute
respiratory syndrome (SARS) (294, 295), caused by SARS-
coronavirus (CoV), can induce cytokine release syndrome
(often referred to as “cytokine storm”), a severe immune
reaction frequently associated with elevated serum IL-6 (296,
297). Severe coronavirus disease 2019 (COVID-19), caused
by SARS-CoV-2 (298), is associated with elevated serum
IL-6 and cytokine release syndrome (299–301). Thus, IL-6
signaling inhibition may be a strategy for managing severe
and critical COVID-19 (302). Accordingly, tocilizumab is
currently undergoing several expedited clinical trials in severe
and critical COVID-19 patients (for example, ChiCTR ID:
ChiCTR2000029765, ChiCTR2000030894; ClinicalTrials.gov ID:
NCT04315480, NCT04317092, NCT04372186, NCT04320615)
(303). Tocilizumab appears to reduce mortality in severe and
critical COVID-19 patients (300, 304–307), however in some
cases poor outcomes have been noted (308).

Antibodies against IL-11 (214, 309) and IL-11Rα (213, 310,
311) that inhibit IL-11 signaling have been described and
patented, although none are clinically available. The mechanisms
of action of these antibodies have not been described in
the literature.

Antibodies against gp130 have been described (142) that
specifically antagonize signaling through a specific cytokine or
cytokines, although they are not used in the clinic. The structural
basis of this specificity is currently unknown, although epitope
mapping studies have been conducted on the antibodies (142,
312), which show that the IL-11-specific mAb, B-P4, binds the
membrane proximal region (D4-D6) of gp130 and not at the
CHR. The OSM/LIF-specific mAb (B-K5), CNTF-specific mAb
(B-P8) and broadly neutralizing mAb (B-R3) bind at the CHR
of gp130, presumably sterically interfering with cytokine binding
(142, 312).

Soluble gp130
Many of the harmful, pro-inflammatory effects of IL-6 signaling
are believed to be caused by trans IL-6 signaling (143). Soluble
gp130 (sgp130) is an antagonist of trans IL-6 signaling (145).
Sgp130 fused to an IgG Fc fragment (sgp130Fc, olamkicept)
is currently under development as an IL-6 trans-signaling
specific inhibitor (313). The effect of sgp130Fc treatment has
been studied in animal models of a number of inflammatory
diseases including several cancers (314, 315), arthritis (316,
317), inflammatory bowel disease (318, 319), and pancreatitis-
associated lung inflammation (320). The side effects of existing
treatments targeting IL-6 signaling in humans are believed
to result from a blockade of classic signaling, resulting in
an increased susceptibility to infections, due to the key
role of IL-6 signaling in responding to infection (313, 321).
In animal models, blockade of IL-6 trans-signaling does
not alter the IL-6 dependent response to infection (321).
Sgp130Fc is currently undergoing phase II clinical trials for
colitis (313) (ClinicalTrials.gov ID: NCT03235752; DRKS-ID:
DRKS00010101). An anti-trans-signaling nanobody has also
been developed (322) which specifically recognizes an epitope

formed between IL-6 and IL-6Rα, although the structural
mechanism behind inhibition has not been described. IL-
11 trans-signaling has not been ascribed the same biological
significance as IL-6 trans-signaling, regardless, sgp130Fc is used
as a tool to study IL-11 trans-signaling (146), and may be a
useful therapy in the case that IL-11 trans-signaling is found to be
pathologically important.

Cytokine Mutants and Designer Proteins
In the past decades, systematic mutagenesis or phage display
was used to generate antagonistic variants of IL-6, IL-11, and
LIF by altering affinity to IL-6Rα, IL-11Rα, LIFR, or gp130 (203,
323, 324). These antagonists generally function by selectively
increasing affinity to one cytokine receptor, and decreasing
affinity to a second cytokine receptor, allowing the non-signaling
competent mutant to compete with endogenous cytokine for
its receptor. For example, a LIF mutein (324) was developed
using phage display to increase the affinity for LIFR, while
incorporating mutations that reduced the affinity for gp130. This
enables the LIF mutein to compete with endogenous LIF for
LIFR binding, while the LIF mutein has reduced capacity to form
signaling complex with gp130, resulting in inhibition of signaling
by LIF. A similar approach was used to design an IL-11 mutein
(203). The mutein incorporates two sets of mutations, a mutation
in site-III to reduce binding to gp130, and mutations in the AB
loop intended to increase affinity to IL-11Rα allowing the IL-
11 mutein to compete with endogenous IL-11 for IL-11Rα, and
reduce signaling through IL-11.

Recently, a novel CNTF signaling agonist, IC7, was designed
(325) by substituting site-III on IL-6 with site-III on CNTF
(which binds LIFR), resulting in a cytokine that signals through
a gp130/LIFR heterodimer, while being dependent on IL-6Rα,
a signaling mode which is not used by any known IL-6 family
cytokine (325). Recombinant CNTF has undergone clinical trials
previously to treat type-2 diabetes (326), however the trials
were halted due the potential immunogenicity of recombinant
CNTF. IC7 provides a therapeutic benefit in animal models
of diet-induced obesity, and was not observed to have any
severe inflammatory or immunogenic side-effects, suggesting
that IC7 holds promise as a novel cytokine treatment for
diabetes (325).

An additional approach to develop cytokine signaling
modulators is the use of computationally de novo designed
proteins. A notable recent example of the use of protein design
is in the development of IL-2 signaling modulators (327). De
novo designed proteins, which have low sequence identity to
endogenous cytokines, can reduce the risk of immunogenicity
when using recombinant cytokines or cytokine mutants as drugs.
The use of de novo protein design may allow the development of
IL-11 agonists or antagonists with low immunogenicity that are
more potent than existing therapies.

CONCLUDING STATEMENTS

As new roles for cytokines in disease are discovered, the
development of therapeutics to inhibit their action invariably
follows. Our rapidly increasing understanding of the importance
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of IL-11 signaling in disease underscores its potential as a
therapeutic target. However, the development and appropriate
characterization of inhibitors of IL-11 signaling has not matured
at the same pace. Detailed biophysical and structural information
obtained in parallel with pre-clinical testing can greatly facilitate
design, specificity, and potency of new cytokine inhibitors,
ensuring that the best therapeutics are entered into clinical
trials. Thus, improved structural and molecular understanding
of the IL-11 signaling complex and current generation inhibitors
will be of great benefit for therapeutic development programs
targeting IL-11.
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