
sensors

Article

Real-Time Detection of Cook Assistant Overalls Based on
Embedded Reasoning

Qinghua Sheng , Haixiang Sheng , Peng Gao, Zhu Li and Haibing Yin *

����������
�������

Citation: Sheng, Q.; Sheng, H.; Gao,

P.; Li, Z.; Yin, H. Real-Time Detection

of Cook Assistant Overalls Based on

Embedded Reasoning. Sensors 2021,

21, 8069. https://doi.org/10.3390/

s21238069

Academic Editor: Stefania Perri

Received: 29 September 2021

Accepted: 28 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China;
sheng7@hdu.edu.cn (Q.S.); haixiangsheng@hdu.edu.cn (H.S.); gaopeng@hdu.edu.cn (P.G.);
lz1126@hdu.edu.cn (Z.L.)
* Correspondence: yhb@hdu.edu.cn

Abstract: Currently, the target detection based on convolutional neural network plays an important
role in image recognition, speech recognition and other fields. However, the current network model
features a complex structure, a huge number of parameters and resources. These conditions make it
difficult to apply in embedded devices with limited computational capabilities and extreme sensitivity
to power consumption. In this regard, the application scenarios of deep learning are limited. This
paper proposes a real-time detection scheme for cook assistant overalls based on the Hi3559A
embedded processor. With YOLOv3 as the benchmark network, this scheme fully mobilizes the
hardware acceleration resources through the network model optimization and the parallel processing
technology of the processor, and improves the network reasoning speed, so that the embedded device
can complete the task of real-time detection on the local device. The experimental results show that
through the purposeful cropping, segmentation and in-depth optimization of the neural network
according to the specific processor, the neural network can recognize the image accurately. In an
application environment where the power consumption is only 5.5 W, the recognition speed of the
neural network on the embedded end is increased to about 28 frames (the design requirement was to
achieve a recognition speed of 25 frames or more), so that the optimized network can be effectively
applied in the back kitchen overalls identification scene.

Keywords: edge computing; edge intelligence; Hi3559; overall recognition; embedded

1. Introduction

Food safety problems are prevalent around us. According to the World Health Orga-
nization, about 600 million people worldwide get sick and 420,000 people die of eating
contaminated food every year, causing a loss of 33 million healthy life years [1]. Since
2014, CFDA has carried out the movement of “transparent kitchen and stoves”, with an
aim to make public the food processing process through video display, partition of short
wall, open kitchen and other forms, and place the key parts and links of catering service
under the social supervision. We can collect kitchen data via cameras, but how to correctly
recognize and supervise these data has become a problem. The traditional way of labor su-
pervision requires a lot of time and labor costs, resulting in unsatisfactory effects. Therefore,
this paper hopes to use deep learning to automatically complete the detection process of
whether the staff entering the kitchen are wearing kitchen clothes, by computer equipment.

Video processing technology with deep learning as the core has been fully applied
in face recognition and vehicle recognition [2–4]. The current mainstream deep learning
solutions are deep learning reasoning through high-performance GPU and then deploy-
ment to the local end users using cloud servers. However, in the actual use case scenarios,
this scheme is faced with high costs, a high power consumption and a limited bandwidth.
We therefore try to perform reasoning calculations locally using embedded devices. This
scheme can effectively reduce the device cost and bandwidth requirements while control-
ling the power consumption of the device. At present, embedded devices cannot directly

Sensors 2021, 21, 8069. https://doi.org/10.3390/s21238069 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1915-1960
https://orcid.org/0000-0003-0122-4295
https://orcid.org/0000-0001-6373-5846
https://doi.org/10.3390/s21238069
https://doi.org/10.3390/s21238069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238069
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238069?type=check_update&version=1

Sensors 2021, 21, 8069 2 of 18

meet the requirements for deep learning due to their weak computational capabilities. This
paper aims to design a solution for cook assistant overalls recognition on an embedded
device based on YOLO V3 and provide a feasible technical scheme for the embedded
application of deep learning [5]. The current common acceleration schemes are roughly
divided into three following categories:

(1) A more lightweight network model is designed. The model can find a better balance
between precision and memory consumption. For example, the MobileNet model
is in a new lightweight model structure [6]. VGG-16 network performance can be
implemented with a 10-fold decrease in the calculated quantity.

(2) Software optimization techniques and mathematical methods are used to trim the
network, so as to reduce the network calculation and memory requirements. For
example, He Yang’s team reduced the calculation amount of ILSVRC-2012 by over
40% on ResNet-50 through progressive soft-filtering pruning, with 0.14% reduced
accuracy [7].

(3) An hardware accelerator customized for deep learning algorithm or FPGA is used
to perform the high-concurrent operations and complete the acceleration process.
For example, Kang’s team won the first prize of the LPIRC competition through
optimization algorithm using NVidia TX2 [8]; Ma’s team increased the reasoning
speed of tiny-yolo to 20 frames using FPGA [9,10].

This paper proposes the scheme of pipelining [11,12] and parallel processing on the
basis of integrating the above schemes, with an aim to improve the network reasoning
speed from the perspective of improving the system hardware resources utilization.

The main contribution and work contents proposed in this paper are:

(1) Deep learning is applied to the kitchen target detection to realize the detection of
whether the workers entering the kitchen are wearing kitchen overalls. In addition,
the whole system is finally deployed on low-power embedded products, which greatly
reduces the cost of equipment and power consumption required for traditional deep
learning target detection, so that deep learning can be applied to more use case
scenarios.

(2) This paper introduces the idea of software pipelining in deep learning to transform
the network reasoning process from single tasks implemented step by step to different
stages of multiple tasks, and thus greatly improve the utilization rate of hardware
resources and the recognition speed of the system.

(3) Speed matching between the anterior and posterior networks is achieved through
unbalanced segmentation of the model and multithreaded optimization [13]. After
the introduction of the circle buffer, it can ensure the error of a single task does not
affect other tasks.

(4) The goal of this scheme is to complete the intelligent processing of video data on
the “edge side”. The videos of multiple cameras on the local switch can be detected
through the embedded reasoning card to recognize whether the chefs correctly wear
the overalls. The upper computer can display the recognition results, and set the
recognition rate of the card, the threshold and the number of cameras.

The rest of this paper is arranged as follows: Section 2 introduces the implementation
process of the system and each part; Section 3 introduces the deep learning acceleration
methods based on the Hi3559A embedded processor; Section 4 displays the experimental
processes and results; Section 5 gives the conclusions.

2. System Scheme
2.1. Scheme Introduction

The system scheme is shown in Figure 1, in which the reasoning card is connected to
the local switch and the console software controls the reasoning card. The reasoning card
may decode/recognize/code the video streams and display the coded detection results on
the monitor. The results are uploaded to the front-end WEB system via JSON coding.

Sensors 2021, 21, 8069 3 of 18

Sensors 2021, 21, x FOR PEER REVIEW 3 of 19

2. System Scheme
2.1. Scheme Introduction

The system scheme is shown in Figure 1, in which the reasoning card is connected to
the local switch and the console software controls the reasoning card. The reasoning card
may decode/recognize/code the video streams and display the coded detection results on
the monitor. The results are uploaded to the front-end WEB system via JSON coding.

Console
software

HDMI

Monitor59A reasoning card

Video input
Video
stream

Switch

Se
tt

in
g

R
ec

og
ni

tio
n

re
su

lt

Recognition
result

.

Figure 1. System scheme.

2.2. Embedded Deployment Scheme
The block diagram for embedded software is shown in Figure 2. Through multi-core

deployment and collaboration, the overall computing power and resource throughput
rate are significantly improved. In Figure 2, an A53 kernel is responsible for the network
process, which can complete the data interaction and communication with the console; an
A73 kernel is responsible for the core scheduling and controlling the coordination be-
tween image coding/decoding and pipelining; a DSP kernel is responsible for the video
coding/output.

System power-on Video
stream

A53 A73_BL DSP

Network process
started

Network weight
loading

Video coding

Video output

 Whether the search
signal is received

Whether the connecting
signal is received

Whether the start
signal is received

Reply to the
native machine IP

Process sleep 10s

Video decoding
processing

Anterior network
reasoning

Posterior network
reasoning

Network output JSON Code Data filtering

Figure 2. Block diagram for embedded software.

Figure 1. System scheme.

2.2. Embedded Deployment Scheme

The block diagram for embedded software is shown in Figure 2. Through multi-core
deployment and collaboration, the overall computing power and resource throughput
rate are significantly improved. In Figure 2, an A53 kernel is responsible for the network
process, which can complete the data interaction and communication with the console;
an A73 kernel is responsible for the core scheduling and controlling the coordination
between image coding/decoding and pipelining; a DSP kernel is responsible for the video
coding/output.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 19

2. System Scheme
2.1. Scheme Introduction

The system scheme is shown in Figure 1, in which the reasoning card is connected to
the local switch and the console software controls the reasoning card. The reasoning card
may decode/recognize/code the video streams and display the coded detection results on
the monitor. The results are uploaded to the front-end WEB system via JSON coding.

Console
software

HDMI

Monitor59A reasoning card

Video input
Video
stream

Switch

Se
tt

in
g

R
ec

og
ni

tio
n

re
su

lt

Recognition
result

.

Figure 1. System scheme.

2.2. Embedded Deployment Scheme
The block diagram for embedded software is shown in Figure 2. Through multi-core

deployment and collaboration, the overall computing power and resource throughput
rate are significantly improved. In Figure 2, an A53 kernel is responsible for the network
process, which can complete the data interaction and communication with the console; an
A73 kernel is responsible for the core scheduling and controlling the coordination be-
tween image coding/decoding and pipelining; a DSP kernel is responsible for the video
coding/output.

System power-on Video
stream

A53 A73_BL DSP

Network process
started

Network weight
loading

Video coding

Video output

 Whether the search
signal is received

Whether the connecting
signal is received

Whether the start
signal is received

Reply to the
native machine IP

Process sleep 10s

Video decoding
processing

Anterior network
reasoning

Posterior network
reasoning

Network output JSON Code Data filtering

Figure 2. Block diagram for embedded software. Figure 2. Block diagram for embedded software.

2.3. Interface of Console Software

The interface of console software is shown in Figure 3: after the system start, the
console will search for the 59A reasoning card device in the local switch by means of
multicast and add the searched devices to the menu bar. Then, one can search for the input
camera and video sources, and finally set the parameters to start the device.

Sensors 2021, 21, 8069 4 of 18

Sensors 2021, 21, x FOR PEER REVIEW 4 of 19

2.3. Interface of Console Software
The interface of console software is shown in Figure 3: after the system start, the con-

sole will search for the 59A reasoning card device in the local switch by means of multicast
and add the searched devices to the menu bar. Then, one can search for the input camera
and video sources, and finally set the parameters to start the device.

Figure 3. Interface of console software.

3. Core Acceleration Method
3.1. Introduction of Pipelining Technology

Pipelining refers to a parallelization means of superposing multiple instructions in
an instruction cycle. The technology is generally applied in general computing processors.
Pipelining can reduce the waiting time of the CPU and achieve the continuous use of the
CPU resources, thus improving the overall utilization of the CPU. See Figure 4 for a dia-
gram of pipelining.

The scheme of this paper draws lessons from the idea of pipeline technology in CPU,
By dividing the network and task, the whole process is divided into graph acquisition,
decoding, reasoning, post-processing, video coding output, etc., which greatly improves
the utilization rate of hardware resources and finally recognizes an image frame in a rea-
soning cycle.

Figure 4a shows that the cycle time of a single cycle of processing is 92 ms. After the
idea of pipeline is introduced in Figure 4b, the processing cycle is compressed to about 30
ms due to the reduction of the waiting time between the hardware.

Figure 3. Interface of console software.

3. Core Acceleration Method
3.1. Introduction of Pipelining Technology

Pipelining refers to a parallelization means of superposing multiple instructions in an
instruction cycle. The technology is generally applied in general computing processors.
Pipelining can reduce the waiting time of the CPU and achieve the continuous use of
the CPU resources, thus improving the overall utilization of the CPU. See Figure 4 for a
diagram of pipelining.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 19

K-th iteration (K+1)-th iteration (K+2)-th iteration

(a)

92 ms 92 ms 92 ms

(b)

other iteration

Figure 4. Schematic diagram of pipelining.

The advantages of introducing pipelining are:
(1) It greatly improves the utilization rate of hardware resources, and realizes the paral-

lel execution of multiple tasks of different stages at the same time;
(2) Although pipelining operates multiple network data at the same time, the network

only needs to load once, which greatly reduces the memory occupation compared
with traditional multi-operators. This is very important for embedded devices;

(3) Pipelining with a buffer zone can effectively reduce the processor’s idle time through
reasonable task distribution, without additional multi-process time consumption;

(4) Pipelining is more conducive to protecting the relationship between frames before
and after pictures. The order of data processed is synchronized, without additional
thread synchronization tools.

3.2. Network Cutting
Complex models generally have redundant parameters to ensure a balance between

performance and robustness. These redundant parameters can be cropped by tools. The
model parameters are reduced by cutting out less weighted link layers to achieve model
compression [14,15].In this cutting scheme, the number of network dimensions is a mul-
tiple of 16 through additional inducing factors, which can effectively read the efficiency
and computing performance using HiSilicon memory. Figure 5 shows the dimension
changes before and after pruning.

Figure 5. Schematic diagram of network pruning.

L1 regularization is used for thinning training in the training process. Neural net-
works have many parameters approaching 0 after L1 regularization training. These pa-
rameters can make small contributions to the final result. The spinning training and prun-
ing are combined in this paper. On the one hand, pruning is used to reduce the unim-
portant link layer, and on the other hand, the weights are induced in training to make the
network sparser.

After pruning

Multiple of 16

Figure 4. Schematic diagram of pipelining.

The scheme of this paper draws lessons from the idea of pipeline technology in CPU,
By dividing the network and task, the whole process is divided into graph acquisition,
decoding, reasoning, post-processing, video coding output, etc., which greatly improves
the utilization rate of hardware resources and finally recognizes an image frame in a
reasoning cycle.

Figure 4a shows that the cycle time of a single cycle of processing is 92 ms. After the
idea of pipeline is introduced in Figure 4b, the processing cycle is compressed to about
30 ms due to the reduction of the waiting time between the hardware.

The advantages of introducing pipelining are:

Sensors 2021, 21, 8069 5 of 18

(1) It greatly improves the utilization rate of hardware resources, and realizes the parallel
execution of multiple tasks of different stages at the same time;

(2) Although pipelining operates multiple network data at the same time, the network
only needs to load once, which greatly reduces the memory occupation compared
with traditional multi-operators. This is very important for embedded devices;

(3) Pipelining with a buffer zone can effectively reduce the processor’s idle time through
reasonable task distribution, without additional multi-process time consumption;

(4) Pipelining is more conducive to protecting the relationship between frames before
and after pictures. The order of data processed is synchronized, without additional
thread synchronization tools.

3.2. Network Cutting

Complex models generally have redundant parameters to ensure a balance between
performance and robustness. These redundant parameters can be cropped by tools. The
model parameters are reduced by cutting out less weighted link layers to achieve model
compression [14,15]. In this cutting scheme, the number of network dimensions is a
multiple of 16 through additional inducing factors, which can effectively read the efficiency
and computing performance using HiSilicon memory. Figure 5 shows the dimension
changes before and after pruning.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 19

K-th iteration (K+1)-th iteration (K+2)-th iteration

(a)

92 ms 92 ms 92 ms

(b)

other iteration

Figure 4. Schematic diagram of pipelining.

The advantages of introducing pipelining are:
(1) It greatly improves the utilization rate of hardware resources, and realizes the paral-

lel execution of multiple tasks of different stages at the same time;
(2) Although pipelining operates multiple network data at the same time, the network

only needs to load once, which greatly reduces the memory occupation compared
with traditional multi-operators. This is very important for embedded devices;

(3) Pipelining with a buffer zone can effectively reduce the processor’s idle time through
reasonable task distribution, without additional multi-process time consumption;

(4) Pipelining is more conducive to protecting the relationship between frames before
and after pictures. The order of data processed is synchronized, without additional
thread synchronization tools.

3.2. Network Cutting
Complex models generally have redundant parameters to ensure a balance between

performance and robustness. These redundant parameters can be cropped by tools. The
model parameters are reduced by cutting out less weighted link layers to achieve model
compression [14,15].In this cutting scheme, the number of network dimensions is a mul-
tiple of 16 through additional inducing factors, which can effectively read the efficiency
and computing performance using HiSilicon memory. Figure 5 shows the dimension
changes before and after pruning.

Figure 5. Schematic diagram of network pruning.

L1 regularization is used for thinning training in the training process. Neural net-
works have many parameters approaching 0 after L1 regularization training. These pa-
rameters can make small contributions to the final result. The spinning training and prun-
ing are combined in this paper. On the one hand, pruning is used to reduce the unim-
portant link layer, and on the other hand, the weights are induced in training to make the
network sparser.

After pruning

Multiple of 16

Figure 5. Schematic diagram of network pruning.

L1 regularization is used for thinning training in the training process. Neural networks
have many parameters approaching 0 after L1 regularization training. These parameters
can make small contributions to the final result. The spinning training and pruning are com-
bined in this paper. On the one hand, pruning is used to reduce the unimportant link layer,
and on the other hand, the weights are induced in training to make the network sparser.

After testing, the accuracy of the network recognition was significantly reduced when
the pruning ratio is greater than 50%. Through multiple experimental comparisons, the
pruning ratio of 40% was selected, reducing the calculation significantly to 58.59% of the
original and the accuracy by only 0.19%. It can improve the reasoning speed of the network
effectively while ensuring accuracy.

3.3. Model Segmentation and Quantization

A Hi3559Av100 with two neural network inference engines (NNIEs) is used as the
main control chip. This scheme tries two deployment modes, parallel deployment and
serial deployment. Parallel deployment means that a complete network is run separately
in each NNIE and the input images are assigned to the two networks alternately. Serial
deployment is the splitting of a network into two halves, with each NNIE running only
a portion of the entire network. In theory, both schemes can achieve twice the speed of
a single NNIE. However, through comparative experiments, we proved that the parallel
deployment scheme was limited by the memory bandwidth and could not unlock the
full computing power. So we adopted a serial deployment scheme as the preliminary
deployment scheme.

Sensors 2021, 21, 8069 6 of 18

The model quantification refers to the technical coding means that are used to re-
duce the memory space occupied by the parameters in the model, thus achieving model
compression. Because HiSilicon needs to quantize the network structure (8 bits) in the
process of network model transformation, it will consume a large number of computations
in the process of quantification. Therefore, to balance the anterior network and posterior
network, the reasoning time of the anterior network needs to add the calculation time of the
quantification process. After comparing various segmentation schemes, we finally divided
the whole network model into two unbalanced sub-networks, which ran independently
in different network acceleration engines. The quantification Formula (1) can be obtained
from the data fitting, as shown below:{

i = round(ln(256 ∗ x
|data|max

) ∗ 128
ln(256)), x ≥ 0

i = −round(ln(−256 ∗ x
|data|max

) ∗ 128
ln(256)), x < 0

}
(1)

The x in the formula represents the input floating-point number, i represents the
quantized value after conversion, and the data represent the set of input data. In order to
ensure that the input of the ln function is a positive value, we consider whether x is greater
than 0 or not.

According to the dimension of the input image, the calculation amount of the quantifi-
cation process is about 7 GFLOPS. Therefore, an unbalanced segmentation is required to
balance the anterior network and posterior network. The segmentation results are shown
in Figure 6 (the anterior network shown in red circle).

Sensors 2021, 21, x FOR PEER REVIEW 7 of 19

Convolutional
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual

32 3×3 416×416
64 3×3/2
32 1×1

208×208

208×208
64 3×3

128 3×3/2 104×104
64 1×1
128 3×3

104×104
256 3×3/2 52×52
128 1×1
256 3×3

52×52
512 3×3/2 26×26
256 1×1
512 3×3

26×26

Convolutional
Convolutional
Convolutional
Residual

1024 3×3/2 13×13
512 1×1
1024 3×3

13×13

Type
Convolution
information

Size of charactraistic
diagram

1×

2×

8×

8×

4×

Convolutional Set

Convolutional
1×1

Upsampling

Concatenate

Convolutional Set

Convolutional
1×1

Upsampling

Concatenate

Convolutional Set

Convolutional
3×3

Conv2d
1×1

Convolutional
3×3

Conv2d
1×1

Convolutional
3×3

Conv2d
1×1

C
onvolutional Set

Convolutional
1×1

Convolutional
3×3

Convolutional
1×1

Convolutional
1×1

Convolutional
3×3

Anterior
network

Figure 6. Network structure and network split results.

Following the segmentation in Figure 6, the network calculation and data size are
shown in Table 1.

Table 1. Statistics of network calculations.

Number of

Network Layers
Number of
Parameters

Calculated Quan-
tity (GFLOPS)

Reasoning
Time

Anterior net-
work 78 3,201,760 12.29 32~36

Posterior net-
work 141 58,746,624 20.64 34~40

3.4. Fixed-Point Data Flow
In most CPUs, calculating with floating-point numbers is much slower than with in-

tegers. Taking the Hi3559 series of chips as an example, the inner NNIE core calculates
the fixed-point data much faster than the floating-point numbers. Therefore, the data need
to complete the transformation from floating-point number to fixed-point number before
entering the computer core [16].

In the forward reasoning process of the network, only the forward multiplication and
addition calculation is required because the weights are fixed, so the error after the fixed-
point conversion does not increase exponentially. The results of statistics and testing on
the server show that the network weights and activation values of YOLOv3 are generally
distributed between ±20. There is no significant accuracy difference on the COCO dataset
after 12-bit fixed data, except the confidence is a few percentage points lower relative to

Figure 6. Network structure and network split results.

Following the segmentation in Figure 6, the network calculation and data size are
shown in Table 1.

Sensors 2021, 21, 8069 7 of 18

Table 1. Statistics of network calculations.

Number of
Network Layers

Number of
Parameters

Calculated Quantity
(GFLOPS)

Reasoning
Time

Anterior
network 78 3,201,760 12.29 32~36

Posterior
network 141 58,746,624 20.64 34~40

3.4. Fixed-Point Data Flow

In most CPUs, calculating with floating-point numbers is much slower than with
integers. Taking the Hi3559 series of chips as an example, the inner NNIE core calculates
the fixed-point data much faster than the floating-point numbers. Therefore, the data need
to complete the transformation from floating-point number to fixed-point number before
entering the computer core [16].

In the forward reasoning process of the network, only the forward multiplication
and addition calculation is required because the weights are fixed, so the error after the
fixed-point conversion does not increase exponentially. The results of statistics and testing
on the server show that the network weights and activation values of YOLOv3 are generally
distributed between ±20. There is no significant accuracy difference on the COCO dataset
after 12-bit fixed data, except the confidence is a few percentage points lower relative
to the original data [17]. Therefore, it is somewhat feasible to use fixed-point data for
network reasoning.

The coding information of the network output results at certain dimensions is shown
in Figure 7. Supposing two tensors are adopted in the network, x and y are offsets of the
boundary center box relative to the upper left corner of the grid; w and h are the width
and height of the bounding box, respectively. C is used to determine the credibility of
the target, and P(C) to determine the probabilities that the target belongs to a certain
class. Formulas (2)–(5) represent the transformation between the relative and the absolute
coordinates.

bx = sigmoid(tx) + cx (2)

by = sigmoid(ty) + cy (3)

bw = pwetw (4)

bh = pheth (5)

where cx and cy represent the position of the upper left corner of the grid cell relative to the
entire picture, tx and ty represent the offsets of the center position of the recognition target
relative to the upper left corner of the current grid cell. In order to prevent the calculated
center coordinates from exceeding the range of the current grid cell, we need to normalize
tx and ty using the sigmoid function; bx and by are the absolute coordinates of the target
center position. pw and ph represent the height and width of the anchor box, respectively;
tx and ty represent the width and height, respectively, directly predicted by the bounding
box; bw and bh indicate the actual width and height of the forecast, respectively.

The network output result is a fixed-point number, and the process of network screen-
ing and NMS in the traditional post-processing process requires a floating-point number
result. In this design, the process of converting the network output result into a floating-
point number is cancelled. By reconstructing the filtering algorithm, fixed-point numbers
can be used to complete data filtering and accuracy calculations, which greatly reduces the
complexity of the calculations.

Sensors 2021, 21, 8069 8 of 18

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19

the original data [17]. Therefore, it is somewhat feasible to use fixed-point data for net-
work reasoning.

The coding information of the network output results at certain dimensions is shown
in Figure 7. Supposing two tensors are adopted in the network, x and y are offsets of the
boundary center box relative to the upper left corner of the grid; w and h are the width
and height of the bounding box, respectively. C is used to determine the credibility of the
target, and P(C) to determine the probabilities that the target belongs to a certain class.
Formulas (2)–(5) represent the transformation between the relative and the absolute coor-
dinates.

YOLO

7×7×11

x,y,w,h C x,y,w,h C P(c)

Figure 7. Schematic diagram of YOLO network output structure.

()x x xb sigmoid t c= + (2)

()y y yb sigmoid t c= + (3)

wt
w wb p e= (4)

ht
h hb p e= (5)

where xc and yc represent the position of the upper left corner of the grid cell relative
to the entire picture, xt and yt represent the offsets of the center position of the recogni-
tion target relative to the upper left corner of the current grid cell. In order to prevent the
calculated center coordinates from exceeding the range of the current grid cell, we need
to normalize xt and yt using the sigmoid function; xb and yb are the absolute coor-
dinates of the target center position. wp and hp represent the height and width of the
anchor box, respectively; xt and yt represent the width and height, respectively, directly
predicted by the bounding box; wb and hb indicate the actual width and height of the
forecast, respectively.

The network output result is a fixed-point number, and the process of network
screening and NMS in the traditional post-processing process requires a floating-point
number result. In this design, the process of converting the network output result into a
floating-point number is cancelled. By reconstructing the filtering algorithm, fixed-point
numbers can be used to complete data filtering and accuracy calculations, which greatly
reduces the complexity of the calculations.

Figure 7. Schematic diagram of YOLO network output structure.

The pseudo-code of Algorithm 1 shows the process of filtering network results after
reloading.

Algorithm 1 Data filtering and calculation

1: tensor parseYolov3Feature(Tensor features, conf_threshold)
2: conf_threshold = anti_sigmoid(conf_threshold) << 12
3: for feature in features do
4: confidence = feature.data[c]
5: if (feature.confidence >= conf_threshold) then
6: (tx, ty, tw, th, tc) = feature.data[(x, y, w, h, c)] * 1.0f/4096
7: (x, y, w, h) = computers_box(tx, ty, tw, th)
8: Class_confidences[i] = feature.data[conf] * 1.0/4096
9: Softmax(class_confidences)
10: box = (class, confindences, x, y, w, h)
11: Boxes.push_back(box)
12: return Boxes

3.5. Multithreaded Optimization

After the overall task is segmented into tasks independent of each other, the above
combined tasks are deployed multithreaded on the embedded master control. The thread
access safety is guaranteed through the mutual exclusion and synchronization mechanism
of the threads. The data flow diagram for the tasks in this design is as shown in Figure 8.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 19

The pseudo-code of Algorithm 1 shows the process of filtering network results after
reloading.

Algorithm 1 Data filtering and calculation
1: tensor parseYolov3Feature(Tensor features, conf_threshold)
2: conf_threshold = anti_sigmoid(conf_threshold) << 12
3: for feature in features do
4: confidence = feature.data[c]
5: if (feature.confidence >= conf_threshold) then
6: (tx, ty, tw, th, tc) = feature.data[(x, y, w, h, c)] * 1.0f/4096
7: (x, y, w, h) = computers_box(tx, ty, tw, th)
8: Class_confidences[i] = feature.data[conf] * 1.0/4096
9: Softmax(class_confidences)
10: box = (class, confindences, x, y, w, h)
11: Boxes.push_back(box)
12: return Boxes

3.5. Multithreaded Optimization
After the overall task is segmented into tasks independent of each other, the above

combined tasks are deployed multithreaded on the embedded master control. The thread
access safety is guaranteed through the mutual exclusion and synchronization mechanism
of the threads. The data flow diagram for the tasks in this design is as shown in Figure 8.

Image
acquisition and
preprocessing

Anterior
network

reasoning

Image
MAP Posterior

network
reasoning

Tensor Data filtering
calculation

Tensor Data filtering
caculation

Result
matrix

Figure 8. Schematic diagram of the task data flow.

3.5.1. Shared Memory in the Critical Zone
There is a single-directional data interaction between the individual tasks. Currently,

the multithreaded synchronization and mutual exclusion mechanism includes signal vol-
ume, read/write lock, conditional variable, mutual exclusion lock, spin lock, etc. As shown
in Figure 8, the data volume of the system is huge and the overall instantaneity of the
system should be guaranteed by the stable data processing time. So we chose a shared
memory method for data exchange.

Shared memory refers to common access to multiple threads by mapping a piece of
memory that can be accessed jointly by multiple processes, which is a resource in the crit-
ical region [18,19]. As shown in Figure 9, the shared memory may communicate a large
amount of data without the additional replication of data. Shared memory is done directly
in the memory space, atomicity between threads cannot be guaranteed. Therefore, the
shared memory itself does not provide a solution for process synchronization, and needs
to solve the problem of inter-thread synchronization with other synchronization tools.

Figure 8. Schematic diagram of the task data flow.

3.5.1. Shared Memory in the Critical Zone

There is a single-directional data interaction between the individual tasks. Currently,
the multithreaded synchronization and mutual exclusion mechanism includes signal vol-
ume, read/write lock, conditional variable, mutual exclusion lock, spin lock, etc. As shown
in Figure 8, the data volume of the system is huge and the overall instantaneity of the

Sensors 2021, 21, 8069 9 of 18

system should be guaranteed by the stable data processing time. So we chose a shared
memory method for data exchange.

Shared memory refers to common access to multiple threads by mapping a piece
of memory that can be accessed jointly by multiple processes, which is a resource in the
critical region [18,19]. As shown in Figure 9, the shared memory may communicate a large
amount of data without the additional replication of data. Shared memory is done directly
in the memory space, atomicity between threads cannot be guaranteed. Therefore, the
shared memory itself does not provide a solution for process synchronization, and needs
to solve the problem of inter-thread synchronization with other synchronization tools.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 19

Client

Client address space

Shared
memory area Server

Server address space

Output
documents

Input
documents

Process
Kernel

Figure 9. Shared memory between the processes.

3.5.2. Introduction of a Circle Buffer
The network processing time of each pipelining task is affected by the working envi-

ronment, the number of targets in the picture, and the quality of the input image. Some
unexpected factors will lead to a slow execution speed and block the pipelining, thus af-
fecting the overall speed of the system, and even leading to the reading of dirty data or
access to invalid memory. In all the links, the image acquisition is the most vulnerable to
the network environment, the reading speed of the storage media and other factors. There-
fore, it is necessary to add an appropriate buffer zone to the original scheme to ensure the
overall stability of the system.

The entire reasoning process requires a large amount of data and frequent requests
to release memory. The linear buffer may produce an amount of memory fragmentation.
In order to avoid system collapse due to excessive memory fragmentation, this scheme
establishes a circular buffer pool mechanism that can effectively avoid the frequent crea-
tion, allocation and release of memory in the linear buffer. As shown in Figure 10, the
circle buffer usually sets read/write indicators after the application for memory. The write
pointer points to the next available location in the current memory segment. When the
current location address exceeds the requested memory area, the write pointer will return
to the start position of the application area. The read pointer reads the valid data in
memory along the route of the write pointer. This design is a one-way communication
without the introduction of multiple pointers, so mutual exclusion lock is not required to
ensure the memory safety.

Using the circle queue buffer, the system’s memory increased by 12% and the speed
increased to about 28 frames. Moreover, it was more stable during a long period of work.
After six hours of testing, no access to invalid memory occurred.

Figure 9. Shared memory between the processes.

3.5.2. Introduction of a Circle Buffer

The network processing time of each pipelining task is affected by the working
environment, the number of targets in the picture, and the quality of the input image.
Some unexpected factors will lead to a slow execution speed and block the pipelining, thus
affecting the overall speed of the system, and even leading to the reading of dirty data or
access to invalid memory. In all the links, the image acquisition is the most vulnerable
to the network environment, the reading speed of the storage media and other factors.
Therefore, it is necessary to add an appropriate buffer zone to the original scheme to ensure
the overall stability of the system.

The entire reasoning process requires a large amount of data and frequent requests
to release memory. The linear buffer may produce an amount of memory fragmentation.
In order to avoid system collapse due to excessive memory fragmentation, this scheme
establishes a circular buffer pool mechanism that can effectively avoid the frequent creation,
allocation and release of memory in the linear buffer. As shown in Figure 10, the circle
buffer usually sets read/write indicators after the application for memory. The write
pointer points to the next available location in the current memory segment. When the
current location address exceeds the requested memory area, the write pointer will return
to the start position of the application area. The read pointer reads the valid data in memory
along the route of the write pointer. This design is a one-way communication without the
introduction of multiple pointers, so mutual exclusion lock is not required to ensure the
memory safety.

Using the circle queue buffer, the system’s memory increased by 12% and the speed
increased to about 28 frames. Moreover, it was more stable during a long period of work.
After six hours of testing, no access to invalid memory occurred.

Sensors 2021, 21, 8069 10 of 18Sensors 2021, 21, x FOR PEER REVIEW 11 of 19

Head of queue Rear of queue

Circle queue

Figure 10. Schematic diagram of the circle queue.

4. Experiments
Hi3559Av100 is selected as the embedded main control chip. The data set was a cus-

tom dataset for cook assistant overalls. An Intel i7-6850K CPU @ 3.60GHz experimental
platform was used in the training process with an NVIDIA GTX1080ti*3; the operating
system was Ubuntu 18.04.

4.1. Experimental Environment Preparation
Numerous parameter computations are required for deep learning network training.

This part needs to be placed on a server with certain operational capabilities. The com-
puter configuration used for this training is shown in Table 2.

Table 2. Network training environment.

Name Version No.
CPU Model Intel core i7-6850k
GPU model GTX1080Ti ×3

Memory capacity 64 GB
System version Ubuntu 18.04.5 LTS

CUDA 9.1.85
cud 7.6.5
cafe 1.0.0

The network training process relied on the darknet framework [20]. The cafe frame-
work [21] was required for the model transformation. After installing the above environ-
ment correctly, the upper sampling layer needed to be added manually in cafe to ensure
the correct model conversion.

4.2. Dataset Used for the Experiment
The dataset used herein is a self-built kitchen overall dataset. A total of 33,254 moni-

toring pictures were collected in 37 different scenes, which were called the cook dataset.
There were eight categories in the dataset, i.e., 0—gray, 1—black, 2—white, 3—blue, 4—
red, 5—yellow, 6—pink and 7—others. Subsequently, the dataset was expanded using tilt,
mirroring, Gaussian blur and histogram equalization. As a result, there were 43,255 pic-
tures in the final dataset, as shown in Figure 11.

Figure 10. Schematic diagram of the circle queue.

4. Experiments

Hi3559Av100 is selected as the embedded main control chip. The data set was a
custom dataset for cook assistant overalls. An Intel i7-6850K CPU @ 3.60GHz experimental
platform was used in the training process with an NVIDIA GTX1080ti*3; the operating
system was Ubuntu 18.04.

4.1. Experimental Environment Preparation

Numerous parameter computations are required for deep learning network training.
This part needs to be placed on a server with certain operational capabilities. The computer
configuration used for this training is shown in Table 2.

Table 2. Network training environment.

Name Version No.

CPU Model Intel core i7-6850k
GPU model GTX1080Ti ×3

Memory capacity 64 GB
System version Ubuntu 18.04.5 LTS

CUDA 9.1.85
cud 7.6.5
cafe 1.0.0

The network training process relied on the darknet framework [20]. The cafe frame-
work [21] was required for the model transformation. After installing the above environ-
ment correctly, the upper sampling layer needed to be added manually in cafe to ensure
the correct model conversion.

4.2. Dataset Used for the Experiment

The dataset used herein is a self-built kitchen overall dataset. A total of 33,254 moni-
toring pictures were collected in 37 different scenes, which were called the cook dataset.
There were eight categories in the dataset, i.e., 0—gray, 1—black, 2—white, 3—blue, 4—red,
5—yellow, 6—pink and 7—others. Subsequently, the dataset was expanded using tilt, mir-
roring, Gaussian blur and histogram equalization. As a result, there were 43,255 pictures in
the final dataset, as shown in Figure 11.

Sensors 2021, 21, 8069 11 of 18Sensors 2021, 21, x FOR PEER REVIEW 12 of 19

Figure 11. Display of some images from the dataset.

4.3. Network Result Validation
To verify the overall identification algorithm, we first needed to train the weights of

the YOLO network. In this paper, the ratio of the training, validation and test sets was set
to 8:1.5:0.5 and the number of images were 34,604, 6488 and 2163, respectively.

The hyper-parameter settings for the YOLO network are shown in Table 3.

Table 3. Hyper-parameter settings.

Hyper-Parameter Value
batch 96

subdivisions 16
decay 0.0005

max_batches 62,000
learning_rate 0.001

policy Steps
steps 45,000, 50,000, 55,000

The loss curve from the training process is shown in Figure 12.

Figure 12. Loss curve in the training process.

The loss curve reflects the difference between the recognition result of the model and
the actual object category. With the continuous increase of the number of training samples,
we can see that the difference is continuously reduced to a stable value, which illustrates
that the recognition rate in the training process continues to increase and approaches the
theoretical best recognition result.

Figure 11. Display of some images from the dataset.

4.3. Network Result Validation

To verify the overall identification algorithm, we first needed to train the weights of
the YOLO network. In this paper, the ratio of the training, validation and test sets was set
to 8:1.5:0.5 and the number of images were 34,604, 6488 and 2163, respectively.

The hyper-parameter settings for the YOLO network are shown in Table 3.

Table 3. Hyper-parameter settings.

Hyper-Parameter Value

batch 96
subdivisions 16

decay 0.0005
max_batches 62,000
learning_rate 0.001

policy Steps
steps 45,000, 50,000, 55,000

The loss curve from the training process is shown in Figure 12.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19

Figure 11. Display of some images from the dataset.

4.3. Network Result Validation
To verify the overall identification algorithm, we first needed to train the weights of

the YOLO network. In this paper, the ratio of the training, validation and test sets was set
to 8:1.5:0.5 and the number of images were 34,604, 6488 and 2163, respectively.

The hyper-parameter settings for the YOLO network are shown in Table 3.

Table 3. Hyper-parameter settings.

Hyper-Parameter Value
batch 96

subdivisions 16
decay 0.0005

max_batches 62,000
learning_rate 0.001

policy Steps
steps 45,000, 50,000, 55,000

The loss curve from the training process is shown in Figure 12.

Figure 12. Loss curve in the training process.

The loss curve reflects the difference between the recognition result of the model and
the actual object category. With the continuous increase of the number of training samples,
we can see that the difference is continuously reduced to a stable value, which illustrates
that the recognition rate in the training process continues to increase and approaches the
theoretical best recognition result.

Figure 12. Loss curve in the training process.

The loss curve reflects the difference between the recognition result of the model and
the actual object category. With the continuous increase of the number of training samples,
we can see that the difference is continuously reduced to a stable value, which illustrates
that the recognition rate in the training process continues to increase and approaches the
theoretical best recognition result.

The performance of the network was verified by checking the relative curve between
the registration rate and the recall rate. The statistical results are shown in Figure 13.

Sensors 2021, 21, 8069 12 of 18

Besides the category “Other”, the accuracy of the gray category is up to 99%, that of the
pink is as the lowest at 75%, the mean average precision (mAP) is about 90.25%. The
performance meets metric requirements.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19

The performance of the network was verified by checking the relative curve between
the registration rate and the recall rate. The statistical results are shown in Figure 13. Be-
sides the category “Other”, the accuracy of the gray category is up to 99%, that of the pink
is as the lowest at 75%, the mean average precision (mAP) is about 90.25%. The perfor-
mance meets metric requirements.

Figure 13. Training set evaluation results.

4.4. Reasoning Speed and Stability Test
The system’s working status and stability are tested by simulation in the laboratory.

The schematic diagram for the equipment connections is shown in Figure 14. The system’s
operating status is shown in Figure 15. The output interface of onboard HDMI is con-
nected to the real-time monitoring device on the monitor. The overall recognition console
software is operated on the computer display to communicate with the embedded device
via internet access.

Monitor

HDMI output

Serial port
output

Network
interface

Power
Figure 14. Connection diagram of testing platform.

Figure 13. Training set evaluation results.

4.4. Reasoning Speed and Stability Test

The system’s working status and stability are tested by simulation in the laboratory.
The schematic diagram for the equipment connections is shown in Figure 14. The system’s
operating status is shown in Figure 15. The output interface of onboard HDMI is connected
to the real-time monitoring device on the monitor. The overall recognition console software
is operated on the computer display to communicate with the embedded device via
internet access.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19

The performance of the network was verified by checking the relative curve between
the registration rate and the recall rate. The statistical results are shown in Figure 13. Be-
sides the category “Other”, the accuracy of the gray category is up to 99%, that of the pink
is as the lowest at 75%, the mean average precision (mAP) is about 90.25%. The perfor-
mance meets metric requirements.

Figure 13. Training set evaluation results.

4.4. Reasoning Speed and Stability Test
The system’s working status and stability are tested by simulation in the laboratory.

The schematic diagram for the equipment connections is shown in Figure 14. The system’s
operating status is shown in Figure 15. The output interface of onboard HDMI is con-
nected to the real-time monitoring device on the monitor. The overall recognition console
software is operated on the computer display to communicate with the embedded device
via internet access.

Monitor

HDMI output

Serial port
output

Network
interface

Power
Figure 14. Connection diagram of testing platform. Figure 14. Connection diagram of testing platform.

Sensors 2021, 21, 8069 13 of 18Sensors 2021, 21, x FOR PEER REVIEW 14 of 19

Figure 15. System operating status.

Finally, in order to test the stability of the solution in this article under long-term
operation, this article recorded the system frame rate, temperature and power consump-
tion data within three hours of system operation. The recorded data are shown in Figure
16. The test data show that the frame rate is basically stable at about 28 frames, without
significant frame drop during the test time. The chip surface temperature is basically sta-
ble after the initial rise. From the above results, the scheme can be used for a long time in
actual production and real life, and meet the real-time requirements of this paper.

0

5

10

15

20

25

30

35

40

45

50

时间

帧率

温度(℃)

功耗(W)

Frame rate

Temperature(℃)

Time

Power
consumption(W)

Figure 16. System stability test results.

4.5. Results Comparison and Analysis
In this section, to compare the hardware acceleration scheme of this article and the

software acceleration scheme of TensorRT based on the NVIDIA platform, the two plat-
forms simultaneously tested the mAP and FPS of YOLOv3-416 based on the COCO da-
taset. The comparison results with the existing network in terms of structure accuracy and
instantaneity are shown in Figure 17.

Figure 15. System operating status.

Finally, in order to test the stability of the solution in this article under long-term
operation, this article recorded the system frame rate, temperature and power consumption
data within three hours of system operation. The recorded data are shown in Figure 16. The
test data show that the frame rate is basically stable at about 28 frames, without significant
frame drop during the test time. The chip surface temperature is basically stable after
the initial rise. From the above results, the scheme can be used for a long time in actual
production and real life, and meet the real-time requirements of this paper.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 19

Figure 15. System operating status.

Finally, in order to test the stability of the solution in this article under long-term
operation, this article recorded the system frame rate, temperature and power consump-
tion data within three hours of system operation. The recorded data are shown in Figure
16. The test data show that the frame rate is basically stable at about 28 frames, without
significant frame drop during the test time. The chip surface temperature is basically sta-
ble after the initial rise. From the above results, the scheme can be used for a long time in
actual production and real life, and meet the real-time requirements of this paper.

0

5

10

15

20

25

30

35

40

45

50

时间

帧率

温度(℃)

功耗(W)

Frame rate

Temperature(℃)

Time

Power
consumption(W)

Figure 16. System stability test results.

4.5. Results Comparison and Analysis
In this section, to compare the hardware acceleration scheme of this article and the

software acceleration scheme of TensorRT based on the NVIDIA platform, the two plat-
forms simultaneously tested the mAP and FPS of YOLOv3-416 based on the COCO da-
taset. The comparison results with the existing network in terms of structure accuracy and
instantaneity are shown in Figure 17.

Figure 16. System stability test results.

4.5. Results Comparison and Analysis

In this section, to compare the hardware acceleration scheme of this article and the
software acceleration scheme of TensorRT based on the NVIDIA platform, the two plat-
forms simultaneously tested the mAP and FPS of YOLOv3-416 based on the COCO dataset.
The comparison results with the existing network in terms of structure accuracy and
instantaneity are shown in Figure 17.

The experiment in the above figure reflects the mean average precision (mAP) and
frames per second (FPS) of YOLO V3 (IOU = 0.75) on the COCO dataset under different
hardware platforms. We chose Nvidia’s embedded edge computing platform Jetson AGX
and the server based on 1080Ti were used as references for this solution.

Through the comparison before and after acceleration, we can find that the FPS of
the two acceleration schemes was significantly improved after the acceleration, and the
FPS after the acceleration has reached the “usable” level. At the same time, the accelerated
mAP did not show a significant drop, and it was still within an acceptable range.

Sensors 2021, 21, 8069 14 of 18Sensors 2021, 21, x FOR PEER REVIEW 15 of 19

Figure 17. Comparison of network solutions.

The experiment in the above figure reflects the mean average precision (mAP) and
frames per second (FPS) of YOLO V3 (IOU = 0.75) on the COCO dataset under different
hardware platforms. We chose Nvidia’s embedded edge computing platform Jetson AGX
and the server based on 1080Ti were used as references for this solution.

Through the comparison before and after acceleration, we can find that the FPS of
the two acceleration schemes was significantly improved after the acceleration, and the
FPS after the acceleration has reached the “usable” level. At the same time, the accelerated
mAP did not show a significant drop, and it was still within an acceptable range.

Even when compared with a server with a 1080Ti card, the mAP and FPS of the so-
lution in this article are not too bad on the COCO dataset. The influence of different cut-
ting results on the accuracy and speed are shown in Figure 18. According to the compari-
son results, when the pruning amplitude is larger than 20%, the accuracy reduces rapidly
with the increase of the pruning ratio. Therefore, a cutting proportion of 20% was used as
the final network cutting amplitude.

A
ccuracy degree (%

)

60 70 80 90 100 110 120

Reasoning time (ms)

90

85

80

75

70

Cutting ratio
Reasoning time

(ms)
Accuracy

degree (%)

50% ————

40% 5380.28

30% 6188.92

20% 8590.23

10% 10390.22

0% 12090.25

Figure 18. Comparison of experimental results for different cutting ratios.

This paper compared the influence of different deployment schemes and segmenta-
tion schemes on the recognition accuracy and frame rate, and the results are shown in
Table 4. According to the comparison results, the pipelining technology can ensure the
accuracy of the system recognition while greatly reducing the memory consumption.
Compared with the double-threaded simultaneous reasoning, the piplining technology

Figure 17. Comparison of network solutions.

Even when compared with a server with a 1080Ti card, the mAP and FPS of the
solution in this article are not too bad on the COCO dataset. The influence of different
cutting results on the accuracy and speed are shown in Figure 18. According to the
comparison results, when the pruning amplitude is larger than 20%, the accuracy reduces
rapidly with the increase of the pruning ratio. Therefore, a cutting proportion of 20% was
used as the final network cutting amplitude.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 19

Figure 17. Comparison of network solutions.

The experiment in the above figure reflects the mean average precision (mAP) and
frames per second (FPS) of YOLO V3 (IOU = 0.75) on the COCO dataset under different
hardware platforms. We chose Nvidia’s embedded edge computing platform Jetson AGX
and the server based on 1080Ti were used as references for this solution.

Through the comparison before and after acceleration, we can find that the FPS of
the two acceleration schemes was significantly improved after the acceleration, and the
FPS after the acceleration has reached the “usable” level. At the same time, the accelerated
mAP did not show a significant drop, and it was still within an acceptable range.

Even when compared with a server with a 1080Ti card, the mAP and FPS of the so-
lution in this article are not too bad on the COCO dataset. The influence of different cut-
ting results on the accuracy and speed are shown in Figure 18. According to the compari-
son results, when the pruning amplitude is larger than 20%, the accuracy reduces rapidly
with the increase of the pruning ratio. Therefore, a cutting proportion of 20% was used as
the final network cutting amplitude.

A
ccuracy degree (%

)

60 70 80 90 100 110 120

Reasoning time (ms)

90

85

80

75

70

Cutting ratio
Reasoning time

(ms)
Accuracy

degree (%)

50% ————

40% 5380.28

30% 6188.92

20% 8590.23

10% 10390.22

0% 12090.25

Figure 18. Comparison of experimental results for different cutting ratios.

This paper compared the influence of different deployment schemes and segmenta-
tion schemes on the recognition accuracy and frame rate, and the results are shown in
Table 4. According to the comparison results, the pipelining technology can ensure the
accuracy of the system recognition while greatly reducing the memory consumption.
Compared with the double-threaded simultaneous reasoning, the piplining technology

Figure 18. Comparison of experimental results for different cutting ratios.

This paper compared the influence of different deployment schemes and segmentation
schemes on the recognition accuracy and frame rate, and the results are shown in Table 4.
According to the comparison results, the pipelining technology can ensure the accuracy of
the system recognition while greatly reducing the memory consumption. Compared with
the double-threaded simultaneous reasoning, the piplining technology greatly reduced the
memory consumption and the time for reading disk and output images. This design also
limited the network dimension to a multiple of 16, thus greatly improving the reasoning
speed of the network.

Sensors 2021, 21, 8069 15 of 18

Table 4. The comparison between different deployment schemes.

Deployment
Scheme

Memory
Consumption

(MB)

Frame Rate
(FPS/s)

Precision
(mAP)

Overall Power
Consumption of
the System (W)

Official solutions 81.3 8.9 50.31% 5.0
Double-threaded
synchronization 166.1 17.5 50.6% 5.5

Queuing scheme 83.4 27.6 50.8% 5.5
Server deployment

(Titan-X) 250 32 51.2% ——

4.6. On-Site Deployment Test

During the on-site deployment test, the system was installed in the kitchen and the
data were tested and saved. A total of 1000 images (10 cameras) were randomly selected
for the result analysis. The results are shown in Table 5.

Table 5. Record of the field test results.

Camera No. Identification
Error (pcs) Mislabeling False

Detection
Missed

Detection
Accuracy

Rate

SXSZBG006 0 0 0 0 100.00%
SXSZBG10 0 0 0 41 95.90%

SXSZBLDJD001 0 0 0 0 100.00%
SXSMHGJD004 0 0 0 19 98.10%
SXXHDJD003 0 0 0 23 97.70%

SXSZGXDJD001 4 0 0 0 99.60%
SXKYMD004 0 0 0 11 98.90%
SXKJJD002 8 0 0 9 98.30%

SXSZYHBG003 9 0 0 21 97.00%
HZCZZX001 0 0 0 26 97.40%

Total 21 0 0 150 98.29%

As shown in Table 5, the accuracy rate in most scenes is more than 97%, and the loss
rate of some scenes is high, with an average accuracy rate of 98.29%, which basically meets
the design requirements. Field test results are shown in Figure 19.

Sensors 2021, 21, 8069 16 of 18
Sensors 2021, 21, x FOR PEER REVIEW 17 of 19

Figure 19. Field test results.

5. Conclusions
This paper proposed a scheme for deploying neural networks in embedded devices

and applied them to the task of kitchen overalls recognition. This solution significantly
reduced the power consumption and equipment cost required for target recognition
through the neural network, and further expanded the application range of the neural
network. Through the pruning, segmentation, quantification of the network model and
the algorithm optimization for the Hi3559A embedded processor hardware, this design
realized a good recognition accuracy while increasing the recognition frame rate to about
28 frames, thereby achieving the expected design goal (a recognition frame rate greater
than 25). We proved that the embedded platform can complete the recognition task of
kitchen overalls through optimization. In the next step, we will try to incorporate some of
the latest software acceleration solutions into this solution, and integrate them with the
existing hardware acceleration solutions to achieve better acceleration effects.

Figure 19. Field test results.

5. Conclusions

This paper proposed a scheme for deploying neural networks in embedded devices
and applied them to the task of kitchen overalls recognition. This solution significantly re-
duced the power consumption and equipment cost required for target recognition through
the neural network, and further expanded the application range of the neural network.
Through the pruning, segmentation, quantification of the network model and the algo-
rithm optimization for the Hi3559A embedded processor hardware, this design realized a
good recognition accuracy while increasing the recognition frame rate to about 28 frames,
thereby achieving the expected design goal (a recognition frame rate greater than 25). We
proved that the embedded platform can complete the recognition task of kitchen overalls
through optimization. In the next step, we will try to incorporate some of the latest software
acceleration solutions into this solution, and integrate them with the existing hardware
acceleration solutions to achieve better acceleration effects.

Sensors 2021, 21, 8069 17 of 18

Author Contributions: Conceptualization, Q.S. and H.S.; methodology, Q.S.; software, H.S.; vali-
dation, Q.S., H.S. and Z.L.; formal analysis, P.G.; investigation, P.G.; resources, Q.S.; data curation,
P.G.; writing—original draft preparation, H.S.; writing—review and editing, H.S.; visualization,
Z.L.; project administration, H.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Key R&D of Zhejiang Province (2021C03183); National
Natural Science Foundation of China (NSFC, 61972123); National Natural Science Foundation of
China (NSFC, 62031009); and Zhejiang Provincial Key Lab of Equipment Electronics(2019E10009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Food Safety. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 19 Novem-

ber 2021).
2. Chen, X.Z.; Chang, C.M.; Yu, C.W.; Chen, Y.L. A Real-Time Vehicle Detection System under Various Bad Weather Conditions

Based on a Deep Learning Model without Retraining. Sensors 2020, 20, 5731. [CrossRef]
3. Amin, M.S.; Yasir, S.M.; Ahn, H. Recognition of Pashto Handwritten Characters Based on Deep Learning. Sensors 2020, 20, 5884.

[CrossRef]
4. Li, Z.; Zhou, Y.; Sheng, Q.; Chen, K.; Huang, J. A High-Robust Automatic Reading Algorithm of Pointer Meters Based on Text

Detection. Sensors 2020, 20, 5946. [CrossRef]
5. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
6. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 4820–4828.
7. He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; Yang, Y. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.

IEEE Trans. Cybern. 2020, 8, 11041–11051. [CrossRef]
8. Kang, D.; Kang, D.; Kang, J.; Yoo, S.; Ha, S. Joint optimization of speed, accuracy, and energy for embedded image recognition

systems. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
19–23 March 2018; pp. 715–720.

9. Fang, W.; Wang, L.; Ren, P. Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments. IEEE Access 2020,
8, 1935–1944. [CrossRef]

10. Ma, J.; Chen, L.; Gao, Z. Hardware implementation and optimization of tiny-YOLO network. Commun. Comput. Inf. Sci. 2018, 815,
224–234.

11. Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, M.; Chen, D.; Lee, H.; Ngiam, J.; Le, Q.; Wu, Y.; et al. GPipe: Efficient training of
giant neural networks using pipeline parallelism. In Proceedings of the Vanco 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp. 103–112.

12. Wei, H.; Yu, J.; Yu, H.; Qin, M.; Gao, G.R. Software Pipelining for Stream Programs on Resource Constrained Multicore
Architectures. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 2338–2350. [CrossRef]

13. Li, T.; Dong, Q.; Wang, Y.; Gong, X.; Yang, Y. Dual buffer rotation four-stage pipeline for CPU–GPU cooperative computing. Soft
Comput. 2019, 23, 859–869. [CrossRef]

14. Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.; Chen, Y. Compressing neural networks with the hashing trick. In Proceedings of
the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 2285–2294.

15. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental Network Quantification: Towards Lossless CNNs with Low-Precision
Weights. arXiv 2017, arXiv:1702.03044.

16. Cattaneo, D.; di Bello, A.; Cherubin, S.; Terraneo, F.; Agosta, G. Embedded Operating System Optimization through Floating to
Fixed Point Compiler Transformation. In Proceedings of the 2018 21st Euromicro Conference on Digital System Design (DSD),
Prague, Czech Republic, 29–31 August 2018; pp. 172–176.

17. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. Lect. Notes Comput. Sci. 2014, 8693, 740–755.

18. Mushtaq, H.; Al-Ars, Z.; Bertels, K. DetLock: Portable and Efficient Deterministic Execution for Shared Memory Multicore
Systems. In Proceedings of the 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake
City, UT, USA, 10–16 November 2012; pp. 721–730.

19. Gowanlock, M.; Blair, D.M.; Pankratius, V. Optimizing Parallel Clustering Throughput in Shared Memory. IEEE Trans. Parallel
Distrib. Syst. 2017, 28, 2595–2607. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/food-safety
http://doi.org/10.3390/s20205731
http://doi.org/10.3390/s20205884
http://doi.org/10.3390/s20205946
http://doi.org/10.1109/TCYB.2019.2933477
http://doi.org/10.1109/ACCESS.2019.2961959
http://doi.org/10.1109/TPDS.2012.41
http://doi.org/10.1007/s00500-017-2795-0
http://doi.org/10.1109/TPDS.2017.2675421

Sensors 2021, 21, 8069 18 of 18

20. Koo, Y.; You, C.; Kim, S. OpenCL-Darknet: An OpenCL Implementation for Object Detection. In Proceedings of the IEEE
International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–17 January 2018; pp. 631–634.

21. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7
November 2014; pp. 675–678.

	Introduction
	System Scheme
	Scheme Introduction
	Embedded Deployment Scheme
	Interface of Console Software

	Core Acceleration Method
	Introduction of Pipelining Technology
	Network Cutting
	Model Segmentation and Quantization
	Fixed-Point Data Flow
	Multithreaded Optimization
	Shared Memory in the Critical Zone
	Introduction of a Circle Buffer

	Experiments
	Experimental Environment Preparation
	Dataset Used for the Experiment
	Network Result Validation
	Reasoning Speed and Stability Test
	Results Comparison and Analysis
	On-Site Deployment Test

	Conclusions
	References

