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Abstract: Dry friction and wear tests were performed on as-cast Mg97Zn1Y2 alloy using a pin-on-disc
configuration. Coefficients of friction and wear rates were measured as a function of applied load
at sliding speeds of 0.2, 0.8 and 3.0 m/s. The wear mechanisms were identified in the mild and
severe wear regimes by means of morphological observation and composition analysis of worn
surfaces using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer
(EDS). Analyses of microstructure and hardness changes in subsurfaces verified the microstructure
transformation from the deformed to the dynamically recrystallized, and properties changed from
the strain hardening to dynamic crystallization (DRX) softening before and after the mild–severe
wear transition. The mild–severe wear transition can be determined by a proposed contact surface
DRX temperature criterion, from which the critical DRX temperatures at different sliding speeds are
calculated using DRX dynamics; hence transition loads can also be calculated using a transition load
model. The calculated transition loads are in good agreement with the measured ones, demonstrating
the validity and applicability of the contact surface DRX temperature criterion.

Keywords: magnesium alloys; tribological behavior; wear maps; mild-severe wear transition;
dynamic recrystallization

1. Introduction

Among magnesium alloys, Mg97Zn1Y2 alloy has attracted a lot of attention due to its unique
long-period stacking ordered (LPSO) structure phase [1,2]. The LPSO structure phase in Mg97Zn1Y2
alloy is typically an intermetallic compound X-Mg12ZnY with a long-period 18 R modulated
structure [3]. The most famous role of the X-Mg12ZnY phase was found to be a strengthening phase
in an Mg97Zn1Y2 alloy prepared via a rapidly solidified powder metallurgy (RS/PM) technique in
2011. The RS/PM Mg97Zn1Y2 alloy demonstrates extraordinary mechanical properties at room and
elevated temperatures, namely high yield strength above 600 MPa and elongation of 5% at room
temperature and yield strength of 510 MPa at 150 ◦C [4]. Moreover, Mg97Zn1Y2 alloy also displays
other excellent characteristics, which makes it greatly different from those conventional magnesium
alloys containing ordinary intermetallic compound phases. X-Mg12ZnY phase with LPSO structure
enhances strength by preventing the growth of {10–12} deformation twin in Mg matrix [5], meanwhile it
contributes significantly to ductility by deforming through the kink band mechanism when subjected to
compressive stress parallel to the (0001) plane [6]. Furthermore, the LPSO phase exhibited a rather high
thermal stability up to 500 ◦C in an extruded Mg97Zn1Y2 alloy, which was proved by the unchanged
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morphology of the LPSO phase even after an annealing treatment at the elevated temperature of
500 ◦C [7].

Generally speaking, conventional magnesium alloys such as AZ (Mg-Al-Zn), AM (Mg-Al-Mn)
alloys are not considered suitable for tribological applications owing to their relatively low mechanical
properties except when they are reinforced with CNTs (Carbon Nanotubes) or ceramic particles [8,9].
However, the emergence of high-performance Mg97Zn1Y2 alloy means it has potential in certain
tribological situations which have been suitable for aluminum alloys before, such as low-load bearing
gears, clutch pistons, and self-lubricating aluminum-based bearing alloys. Before promoting the
tribological applications of Mg97Zn1Y2 alloy, firstly, the essential friction and wear characteristics
must be well understood, such as the effects of the applied load and sliding speed on the coefficient of
friction, wear rate and wear mechanisms. Secondly, the most important “safe wear operation region”
for engineering applications must be determined, and a corresponding practical prediction method
should also be established. The “safe wear operation region” normally refers to the mild wear regime
that was derived from a notion described by Chen and Alpas in their study on the dry sliding wear
behavior of AZ91 alloy [8]. They clarified the dry sliding wear behavior of AZ91 alloy into mild and a
severe wear regimes. Under the mild wear regime, the surfaces of magnesium alloys suffered from
only slight damage, and wear proceeded steadily with a low wear rate, whereas under the severe
wear regime—i.e., “unsafe wear operation region”—the surfaces were badly damaged by severe
plastic deformation or surface melting, and wear went on unsteadily because the wear rate was rather
high and increased rapidly with the wear period. Numerous follow-up research studies by others
also confirmed the clarification applicable to most magnesium alloys. However, to our knowledge,
although the friction and wear characteristics of the most commonly used AZ, AM alloys such as
AZ31, AZ51, AZ91, AM50B and AM60B alloys have been already well understood [10–13], only little
is known about wear the performance of Mg97Zn1Y2 alloy containing a LPSO phase. Our previous
study found that Mg97Zn1Y2 alloy exhibited superior wear resistance to AZ91 alloy due to the higher
thermal stability of the LPSO phase and mechanical properties at elevated temperature [12]. However,
as the previous study only focused on the wear behavior of the Mg97Zn1Y2 alloy at a constant sliding
speed of 0.785 m/s, the critical conditions for the mild–severe wear transition have not been elucidated
at other sliding speeds. Therefore, a safe wear operation region for Mg97Zn1Y2 alloy has not yet been
provided for reference regarding the tribological application of wear components made from the alloy.

In the present work, the variations of coefficient of friction and wear rate of Mg97Zn1Y2 alloy with
applied loads were measured under three typical sliding speeds—including low, intermediate and high
sliding speeds—and the wear mechanisms involved were identified by scanning electron microscopy
(SEM) and energy dispersive X-ray spectrometer (EDS). In addition, the safe wear operation region for
tribological applications of Mg97Zn1Y2 alloy was determined by the establishment of a wear transition
map using additional wear test data. The decisive mild–severe wear transition mechanism was also
discussed in terms of the microstructure and hardness changes of the surface layer materials of wear
specimens. An evaluation method for the mild–severe wear transition load was proposed based on a
contact surface DRX criterion and identified experimentally.

2. Materials and Methods

A cylindrical ingot of Mg97Zn1Y2 (in atomic percentage) alloy was prepared by using
conventional gravity casting process from pure Mg (99.9 wt %), Zn (99.9 wt %) and Mg-20.3
wt % Y master alloy in an electrical furnace under a shielding gas of CO2-0.05%SF6. The ingot
had the dimensions of diameter 95 mm and length 200 mm, from which specimens of 8 mm
diameter and 12 mm length were directly machined for measurements of hardness and compressive
properties. The phase constituents in the alloy were analyzed by a Rigaku D/MAX 2500PC X-ray
diffractometer (XRD, Tokyo, Japan). The optical microstructure of Mg97Zn1Y2 alloy was observed
using a LEXT-OLS3000 confocal scanning laser microscope (Orangeburg, NY, USA) after polishing and
etching in a picric acetic solution.
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Friction and wear tests were performed on a MG2000 pin-on-disc tribometer. All friction and wear
tests were conducted at a room temperature of 20 ◦C under dry sliding wear condition. The pins of
6 mm diameter and 13 mm length were machined out from the Mg97Zn1Y2 alloy ingot, and polished
and thoroughly degreased by acetone and dried before the commencement of each wear test. The discs
of 70 mm in diameter and 10 mm in thickness were made of AISI/SAE5150 steel with a quenching
hardness of 57 HRC. The diameter of wear tracks on the discs were 60 mm. The friction and wear
tests were carried out at three selected typical sliding speeds for 377 m (3000 cycles) to investigate the
wear behavior in detail. These were low, intermediate and high sliding speeds of 0.2, 0.8 and 3.0 m/s,
respectively. In order to accurately establish a wear mechanism transition map and demarcate the
safe wear operation region for engineering applications, friction and wear tests were also carried out
at the additional sliding speeds of 0.5, 1.0, 2.0 and 4.0 m/s. Prior to each wear test, the surfaces of
the pins and discs were polished to a constant surface roughness of about 0.4 µm Ra and cleaned in
an acetone solution. The friction moments and coefficients of friction were measured continuously
with an electronic sensor attached to the testing machine. The wear rate was calculated through the
volume loss divided by the sliding distance. The volume wear loss was determined by the height
difference of the pin after a sliding wear test using a digital precision micrometer with an accuracy of
0.001 mm. The worn surface morphologies were examined by a Carl Zeiss-EVO18 scanning electron
microscope (Oberkochen, Germany) equipped with an LINK-ISIS energy dispersive X-ray spectrometer.
The cross-sectional microstructures of subsurfaces parallel to the sliding direction were observed after
wear tests under a LEXT-OLS3000 confocal scanning laser microscope, and the Vickers hardness of
the surbsurfaces was measured as a function of depth from the surface by a HVS-1000 microhardness
tester using a load of 0.49 N for a dwell period of 15 s.

3. Results and Discussions

3.1. Microstructure and Mechanical Properties

The X-ray diffraction (XRD) analysis of the Mg97Zn1Y2 alloy is shown in Figure 1. This pattern
indicates that the alloy consists of α-Mg solid solution phase and X-Mg12ZnY compound phase.
The XRD peaks of the X-Mg12ZnY phase in Figure 1 agree with those reported in as-cast and hot-rolled
Mg97Zn1Y2 and Mg96Zn1Y3 alloys [14–16]. Therefore, the X-Mg12ZnY phase in the studied alloy
has a LPSO structure. The optical microphotograph of the Mg97Zn1Y2 alloy is illustrated in Figure 2.
The microstructure exhibits typical coarse dendrites of α-Mg phase surrounded with a network of a
X-Mg12ZnY eutectic phase. The measured compressive properties and Vickers hardness of Mg97Zn1Y2
alloy are listed in Table 1.

Figure 1. XRD (X-ray diffraction) spectrum of Mg97Zn1Y2 alloy.
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Figure 2. Optical microstructure of Mg97Zn1Y2 alloy.

Table 1. Mechanical properties of Mg97Zn1Y2 alloy.

Compressive Yield
Strength [MPa]

Compressive
Strength [MPa]

Compressive Strain
Limit [%]

Hardness
[HV]

125.6 221.1 18.7 76

3.2. Coefficients of Friction and Wear Rates

The variations of the coefficient of friction and wear rate with applied load at the three selected
sliding speeds are shown in Figure 3. Under the three given sliding speeds, the coefficient of friction
curves exhibit a similar decreasing and maintaining trend with an increasing load, as shown in
Figure 3a—i.e., they all decrease rapidly at first when load is not higher than 60 N or 55 N, then reduce
a little gently, and finally maintain low values with further increasing load. However, there are
still some differences between them. At the low sliding speed of 0.2 m/s, the coefficient of friction
decreased remarkably within 20–60 N, and decreased almost lineally within 60–180 N, then rose a
little at 220 N before entering a stable stage of 0.25–0.3 until 380 N. At the intermediate and high
sliding speeds of 0.8 and 3.0 m/s, both coefficients of friction also decreased considerably within 20–60
and 20–55 N respectively, then in case of 0.8 m/s, the coefficient of friction reduced slightly within
60–160 N and finally decreased a little to a low level of 0.24–0.28 till 380 N, while in case of 3.0 m/s,
the coefficient of friction decreased the least within the load range of 55–120 N, and finally entered a
stable stage of 0.32–0.35 until 220 N. It is noted that among the three stable stages of the coefficient of
friction, the highest was at the high sliding speed of 3.0 m/s, while the others were almost equal.

The variations of wear rate with load also showed clear stage features at the three given sliding
speeds, and they were more pronounced than the variations of coefficient of friction, as shown in
Figure 3b. At 0.2 m/s, there were two distinct stages: the first stage was within 20–180 N, where the
wear rate increased gradually, and the second stage was within 180–380 N, where the wear rate also
increased slowly with the applied load except for a sudden increase at 220 N. At 0.8 m/s, there were
three stages: the wear rate increased rapidly with the increasing load at the first stage within 20–60 N,
then increased gradually at the second stage within 60–160 N, and finally rapidly increased to a high
level within the third stage of 160–380 N. At 3.0 m/s, there were also three stages; the wear rate
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increased gently at the first stage within 20–55 N, then increased quickly at the second stage within
60–140 N, and finally entered a high level stage within 140–220 N. It was found that the wear rate was
higher at 0.8 m/s than at 0.2 m/s within the whole applied load range of 20–380 N, while the wear rate
was almost the lowest at 3.0 m/s within 20–120 N, and then it rose rapidly and exceeded the two others
within 160–220 N. It is also noticeable that the variation stages of coefficients of friction in general
corresponded to those of wear rates, suggesting that wear should be controlled by different mechanisms
within different stages. Therefore, worn surface morphologies were observed and analyzed using SEM
and EDS techniques to identify the wear mechanisms under different sliding conditions.

Figure 3. Coefficients of friction (a) and wear rates (b) as a function of applied load for tests conducted
at different speeds of 0.2, 0.8 and 3 m/s.

3.3. Wear Mechanisms

SEM micrographs of the worn surfaces subjected to different loads at the low sliding speed of
0.2 m/s are depicted in Figure 4. The worn surfaces were firstly observed for pins worn at the first
stage of the wear rate curve. At 20 N, the worn surface presented typical features of abrasion and
oxidation wear, which were characterized by a series of deep grooves parallel to the sliding direction
and a large amount of fine scattered debris, as shown in Figure 4a. EDS revealed that the oxygen
element content on the worn surface was as high as 11.26%. Since the deep grooves exhibited minimal
displacement of material to the sides, the type of deep grooves was apparently formed by microcutting
of hard asperities of the disc or detached particles from the pin. This suggests that the microcutting
mechanism has a dominant effect on the friction force, resulting in a high coefficient of friction of
0.74. With the increasing load to 100 N, the grooves showed a wide displacement of material to the
side, and some flaky debris was found on the worn surface, as shown in Figure 4b; meanwhile the
oxygen element content decreased to 8.57%. These attributes demonstrate that abrasion was still the
main wear mechanism, but the micro mechanism was transformed from microcutting to ploughing,
and oxidation wear also accompanies abrasion wear. As the load was increased to 180 N, the worn
surface morphology changed greatly. The depth and number of grooves decreased significantly, but the
oxidation wear climaxed, because a great deal of fine powders debris detached from the oxidation
layer was left all over the worn surface, as shown in Figure 4c. The oxygen element content on the
worn surface reached a high level of 15.7%. From the magnification microphotograph shown in
Figure 4d, a large scale of thin oxidation layer was found breaking into fine powders on the worn
surface. However, when the load exceeded 180 N, i.e., at the second stage of the wear rate curve,
the wear mechanism changed into a totally different type. At 260 N, the worn surface exhibited a
certain extent of plastic deformation with a flattened surface, and a few irregular scars were formed
together with several incidents of sheet debris on the worn surface, as shown in Figure 4e. A few
cracks were observed perpendicular to or at a certain angle to the sliding direction on the worn surface
in the magnification microphotograph shown in Figure 4f. This is a typical feature of delamination
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wear. In addition, the oxygen element content of the worn surface was found to increase to the
highest level of 19.4%, but no evident spallation of the oxide layer was observed except for small oxide
patches formed on the localized area, suggesting that the main wear mechanism was a mixed mode of
delamination and heavy surface oxidation.

Figure 4. SEM (scanning electron microscope) morphologies of worn surfaces of Mg97Zn1Y2 alloy at
0.2 m/s and different applied loads: (a) 20 N, (b) 100 N, (c) 180 N, (d) 180 N, (e) 260 N, (f) 260 N.

The SEM analysis of the worn surfaces can explain the lowest coefficient of friction at 180 N
and the rapid increase of the wear rate above 180 N that occurred in Figure 3a,b, respectively. It is
the presence of a large amount of fine oxide powder between the contact surfaces that might have
significantly helped reduce the coefficient of friction to the low value of 0.26, and maintain a steady
state with a low wear rate even lower than the value at 140 N. Therefore, when the fine powders
disappeared from the worn surface at loads above 180 N, a rapid increase in the wear rate occurred
when the wear was controlled by the delamination mechanism. Apparently, the rapid rising of the
wear rate above 180 N does not correspond to the mild–severe wear transition, since the delamination
that occurred above 180 N is a typical wear mechanism in a mild wear regime. The SEM examination
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of the worn surfaces identified that under 0.2 m/s, the wear proceeded in the mild wear regime
throughout the experimental load range of 20–380 N. This conclusion is similar to the experimental
results of AZ, AM and AS alloys, which also showed mild wear behavior when tested at the low
sliding speeds of 0.1 and 0.2 m/s [8,10–13].

SEM images of the worn surfaces at the intermediate sliding speed of 0.8 m/s are shown in
Figure 5. At the first stage of the wear rate curve, when the applied load was 20 N, the worn surface
also exhibited the features of abrasion wear and oxidation wear—i.e., a number of grooves and fine
debris were produced on the worn surface, as shown in Figure 5a—and meanwhile, the oxygen
element content of the worn surface was 18.20%. With the increased load to 60 N, wear entered
the second stage, and the wear mechanism started transforming to delamination and heavy surface
oxidation, because several irregular scars and a series of cracks perpendicular to the sliding direction
were observed in Figure 5b. In addition, the oxygen element content of the worn surface was still
maintained high above 10%. The delamination mechanism became much more evident at 140 N since
cracks emerged extensively on the worn surface, and the plastic deformation extent of surface layer
material increased, as shown in Figure 5c. When the load was increased above 160 N, wear entered
the third stage. For example, at 260 N, the surface was apparently subjected to a severe plastic
deformation since the surface layer material was extruded out at the edge of pin, and a few pieces
of oxidation layer were found detached at the center of the worn surface, as shown in Figure 5d,e.
Since the oxygen element content was still maintained above 13%, the oxidation layer was largely not
destroyed. The wear mechanism was a mixed mode of severe plastic deformation and spallation of
the oxidation layer. The onset of severe plastic deformation actually indicated a mild–severe wear
transition, which resulted in the rapid increase of the wear rate at 180 N. At the largest experimental
load of 380 N, the spallation of oxidation layer became much more severe, all over the worn surface,
as shown in Figure 5f. Therefore, this type of mixed wear mechanism can prevail through the load
range of 160–380 N.

Figure 5. Cont.
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Figure 5. SEM morphologies of worn surfaces of Mg97Zn1Y2 alloy at 0.8 m/s and different applied
loads: (a) 20 N, (b) 60 N, (c) 140 N, (d) 260 N, (e) 260 N, (f) 380 N.

For the high sliding speed of 3.0 m/s, the SEM micrographs of the worn surfaces are shown
in Figure 6. When wear was at the first stage, at 20 N, the worn surface was flattened due to a
certain extent of plastic deformation, and a few irregular scars were observed, as shown in Figure 6a.
An important point to note is that the oxygen content of worn surface is only 6.7%, suggesting that the
surface oxidation layer cannot maintain its extensive existence at such a high sliding speed. Therefore,
the main wear mechanism was delamination. When the load was increased above 55 N, wear entered
the second stage. For instance at 60 N, the worn surface was severely deformed, leaving behind a
smooth surface without cracks, as shown in Figure 6b. This represents the commencement of the
mild–severe wear transition. The plastic deformation extent was more evident at 100 N because
the surface layer material was largely extruded out of the contact surface forming a curved edge,
as shown in Figure 6c. Even so, the wear rate was found not to exceed those subjected to equal loads
under the sliding speed of 0.2 and 0.8 m/s in the mild wear regime. This rare phenomenon was not
found during the investigation of the wear behavior of AZ and AS alloys. Once the wear behavior of
the AZ and AS alloys transited to severe wear at the sliding speed of 3.0 m/s, the wear rate would
immediately surpass those in the mild wear regime under 0.1 and/or 0.8 m/s [8,11,17]. The smaller
rise in the wear rate for Mg97Zn1Y2 alloy after the mild–severe wear transition, could be attributed to
a smaller drop of surface hardness compared with AZ and AS alloys. The worn surface hardness of
Mg97Zn1Y2 alloy was measured at the transition load and plus 25 N—i.e., at 55 N and 80 N using a
microhardness tester. The wear rate increase and surface hardness decrease of Mg97Zn1Y2 alloy at
the two applied loads are listed in Table 2 for comparison with the experimental results for AZ and
AS alloy in references [10,11,17]. It can be seen that as the applied load is increased to 25 N above the
transition load, the worn surface hardness of the Mg97Zn1Y2 alloy decreased from 134 HV to 125 HV,
only a 7.5% reduction ratio, which is the lowest among the four given types of magnesium alloys.
However, AZ31, AZ51 and AS31 alloys exhibit a surface hardness reduction ration above 10% when
subjected to an applied load 20 N higher than the transition load, where the AZ31 alloy has the largest
reduction ratio value of 13.6%. When further increasing the load to 180 N—i.e., when wear entered
the third stage—a sign of surface melting was observed since the worn surface was much smoother
than that under the severe plastic deformation mechanism, and a tongue-shaped edge was formed,
as shown in Figure 6d. Surface melting is a typical wear mechanism for magnesium alloys that is
induced by a large frictional heating, and has been observed in many magnesium alloys, such as AZ31,
AZ51, AZ91, Mg-Al-Si alloys, under high loads and/or high sliding speeds [7–9,15]. Even when the
load was increased to 260 N, the edge still maintained the tongue shape as shown in Figure 6e, rather
than the frequently-reported multilayered structural edge of AZ alloys. This could be ascribed to the
fact that the Mg97Zn1Y2 alloy has a much higher melting temperature (about 543 ◦C) than AZ alloys
(about 431 ◦C) [14], therefore the surface layer material did not completely melt at loads under 3.0 m/s.
Only at a higher sliding speed, such as 4.0 m/s, did the morphology of the surface melting mechanism



Materials 2018, 11, 505 9 of 20

present a typical multilayered structure edge with the help of larger frictional heating, as shown in
Figure 6f.

Figure 6. SEM morphologies of worn surfaces of Mg97Zn1Y2 alloy at sliding speed of 0.3 m/s and
4.0 m/s and different applied loads: (a) 20 N, (b) 60 N, (c) 100 N, (d) 180 N, (e) 260 N, (f) 140 N, 4 m/s.

Table 2. Comparison of changes in wear rate and surface hardness between AZ, AS31 and Mg97Zn1Y2
alloys after mild-severe wear transition.

Material Transition
Load [N] Load [N] Wear Rate Wear Rate

Increase [%]
Surface

Hardness [HV]
Surface Hardness

Decrease [%] Reference

AZ31 30 30 7.5 - 118 - -
- - 50 33.1 341.3 102 13.6 [10]

AZ51 40 40 6.5 - 113 - -
- - 60 12.94 99.1 98 13.2 [11]

AS31 60 60 13.5 104
- - 80 20.3 50.4 93 10.5 [17]

Mg97Zn1Y2 55 55 10.5 - 134 - -

- - 80 13.8 31.4 125 7.5 Present
study

3.4. Wear Rate and Wear Transition Maps

It is well known that wear proceeds steadily for magnesium alloys under wear mechanisms such
as oxidation, abrasion and delamination wear [8,10–13]. The volumetric wear increases slowly in a
linear relationship with the sliding distance, and wear surfaces are damaged slightly and are generally
covered by tribological layers. These wear mechanisms of magnesium alloys are included in mild wear
regimes according to the notation proposed by Archard and Hirst [18]. In contrast, the wear progresses
in an unsteady state have a higher wear rate for magnesium alloys under wear mechanisms including
severe plastic deformation and surface melting. These two wear mechanisms are classified as severe
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wear, since the wear surfaces are massively damaged, and are usually subjected to large-scale material
transfer to the counterface.

In order to provide a useful reference for the tribological engineering application of Mg97Zn1Y2
alloy, the boundary between the mild and severe wear regimes was carefully drawn by conducting
additional friction and wear tests at other sliding speeds including 0.5, 1.0, 2.0 and 4.0 m/s,
and corresponding analyses were carried out based on SEM and EDS examinations of the worn
surfaces. The chemical compositions of the worn surfaces were examined by EDS and listed in
Table 3. The wear rate map of the Mg97Zn1Y2 alloy was constructed on a rectangular coordinate
system with applied load as the vertical coordinate and sliding speed as the horizontal coordinate,
as shown in Figure 7a. The wear rate data were obtained under different loading conditions at
sliding speeds of 0.2–4.0 m/s, and they are presented in 10−12 m3m−1 on the map. SEM observations
and the chemical composition information of the worn surfaces were utilized to draw the boundary
lines separating the wear regimes and sub-regimes. It can be seen that increasing sliding speed
decreases the wear rate at the boundary between the mild and severe regimes, and that the wear rate
decreases faster at the low and intermediate sliding speeds of 0.5–2.0 m/s than at the high sliding
speed of 3.0–4.0 m/s. For example, the wear rates at transition boundary were 40.5 × 10−12 m3m−1 at
0.5 m/s, 30.1 × 10−12 m3m−1 at 0.8 m/s and 1.0 m/s, and 15.5 × 10−12 m3m−1 at 2.0 m/s, however
only 10.7 × 10−12 m3m−1 at 3.0 m/s and 9.8 × 10−12 m3m−1 at 4.0 m/s, respectively. This means
that the wear rate data cannot fully reflect the real extent of the surface damage, especially at high
sliding speeds, because the extensive surface damage mechanisms originating from the severe plastic
deformation and surface melting are not considered by the volumetric wear rate.

Figure 7. Wear rate map (a) and wear transition map (b) for Mg97Zn1Y2 alloy. O-Oxidation;
A-Abrasion; D-Delamination; H.S.O-Heavy Surface Oxidation; S.P. D-Severe Plastic Deformation;
S.O.L-Spallation of Oxide Layers; S. M-Surface melting.

The wear transition map for Mg97Zn1Y2 alloy is shown in Figure 7b. The map can be classified
into two main wear regimes, i.e., the mild wear regime (safe wear operation region) and the severe wear
regime. They are separated by solid line AA′, i.e., below AA′ is the mild wear regime, and above AA′

is the severe wear regime. At 0.2 m/s, the mild–severe wear transition does not occur until the largest
experimental load of 380 N. Increasing the sliding speed from 0.5 to 4.0 m/s decreases the transition
load from 340 N to 40 N in the exponential decay mode. The mild wear regime consists of three
sub-regimes, namely oxidation + abrasion, delamination + heavy surface oxidation and delamination.
The severe wear regime is composed of three sub-regimes, i.e., severe plastic deformation + spallation
of oxidation layer, severe plastic deformation and surface melting. The transition boundary AA′ was
established mainly according to the onset of severe plastic deformation. The wear transition from
severe plastic deformation to surface melting is indicated by the dashed line BB′; above the line BB′ is
the surface melting sub-regime. The boundary line CC′ between the oxidation + abrasion sub-regime
and the delamination + heavy surface oxidation and delamination sub-regimes was determined
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by the occurrence of delamination mechanisms and/or disappearance of abrasion mechanisms.
The boundary line DD′ between severe plastic deformation + spallation of oxidation layer and severe
plastic deformation sub-regimes was determined by the occurrence of spallation of the oxidation
layer by SEM and the existence of a high content of oxygen elements by EDS on the worn surfaces.
The boundary line EE′ between delamination + heavy surface oxidation and delamination sub-regimes
was determined by the high oxygen element content in the range of 7.53–20.42% on the worn surfaces
subjected to delamination wear.

Table 3. Chemical composition analysis of worn surfaces under different sliding conditions (wt %).

Sliding Speed (m/s) Wear Regime Load [N] O Y Zn

0.5 Mild

20 18.20 4.81 1.76
60 17.96 5.38 2.23

100 15.41 5.26 2.22
180 12.25 5.56 2.21
300 18.04 5.51 2.05
340 9.38 5.72 2.39
380 16.18 5.64 2.26

1.0

Mild

20 19.63 5.24 2.34
80 11.92 5.41 2.41

100 12.85 12.85 5.53
140 5.82 7.21 2.8

Severe

160 7.53 6.54 2.36
220 6.79 6.20 2.42
340 14.49 5.83 2.10
380 14.17 5.59 2.28

2.0

Mild
20 15.70 5.93 2.33
60 14.70 6.33 2.27
80 9.37 6.13 2.58

Severe

100 4.83 6.26 2.91
180 3.24 7.09 2.74
220 4.82 6.78 2.60
260 9.29 6.41 1.90
300 1.89 7.56 2.87

4.0

Mild 20 5.45 6.78 2.55

Severe
60 5.02 6.31 2.47

100 6.97 6.39 2.56
140 3.28 6.16 2.31

3.5. Microstructure Change Mechanism for the Mild–Severe Wear Transition

From the wear transition map, it can be seen that increasing the sliding speed decreases the
mild–severe wear transition load; the transition load decreases most rapidly at low and intermediate
sliding speeds within 0.5–1.0 m/s. In addition, it was found from the morphological analysis of
the worn surfaces that just before the wear transition, the main wear mechanism was delimination
or delimination + surface oxidation. In the delamination mechanism, the cracks initiate beneath
the surface and propagate to the surface, finally causing the removal of material in the sheet shape.
However, after the onset of the mild–severe wear transition, the wear mechanism transforms to
severe plastic deformation, in which cracks are rarely observed and the surface layer material is
extruded out the contact surface in the curved shape, especially at high sliding speed. This implies
that the ductility of the surface layer material must be improved by a friction-induced microstructure
change accompanying a severe plastic deformation transition. Therefore, a comparative microstructure
analysis of the subsurface material was carried out between several selected specimens tested at 0.8
and 3.0 m/s.
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The microstructure change in the subsurfaces before and after the mild–severe wear transition
under 0.8 m/s is shown in Figure 8. At 140 N under the mild wear regime, the subsurface was
apparently subjected to a certain extent of plastic deformation, and a plastic deformation zone was
formed with a depth of about 260 µm (Figure 8a), where the dendrites elongated towards the surface.
The strips of Mg12ZnY phase also bent in the sliding direction in the magnification microphotograph
(Figure 8b). At 200 N, under the severe wear regime, a distinct fine microstructure zone of about 50 µm
thickness formed above the plastic deformation zone of about 170 µm thickness (Figure 8c). This zone
was actually composed of DRX microstructures because the deformed α-Mg dendrites in the top part
of the plastic deformation zone were replaced by newly-formed fine grains on the submicrometer
scale, despite the fact that the DRX grains were not well recognized due to the limited resolution of the
microscope. The phenomenon whereby the surface material was transformed from the deformed to
the DRX microstructure during dry sliding wear was also found in other magnesium alloys (AZ31,
AZ51 and Mg-3Al-0.4Si), pure magnesium and pure copper, when the applied load or sliding speed
surpassed a certain critical value [10,11,17,19,20]. Chen et al. [21] found a worn subsurface layer
consisting of a DRX microstructure formed beneath the top nanostructured mixing layer for Cu-Al
alloys, and an extremely fine DRX microstructure at the nanometer scale in subsurface layers when
the Al content was higher than 1.5%. However, the Mg12ZnY phase in the DRX zone was found to
demonstrate a strong microstructural stability, elongating in the sliding direction, but still maintaining
the strip shape, and most of Mg12ZnY strips took positions parallel to the sliding direction (Figure 8d).
The Mg12ZnY phase in the surface layer demonstrated a unique deformation behavior that is obviously
different from those intermetallic phases in the AZ and AS alloys. The intermetallic phases, such as
Mg17Al12 in AZ alloys and Mg2Si in AS alloys, are usually broken into particles in the surface layers
even at low loads such as 20 N and 40 N [11,17]. Therefore, the Mg12ZnY phase could continuously act
as a fiber enforcement in the surface material even after the mild–severe wear transition.

Figure 8. Cross-sectional optical microstructures of Mg97Zn1Y2 alloy after sliding at 0.8 m/s and
different loads: (a) 20 N, (b) 100 N, (c) 200 N, (d) 200 N, showing fine DRX (dynamic crystallization)
microstructure in surface layer.
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Under 3 m/s, the surface layer also experienced a similar microstructure development before
and after the mild–severe wear transition, as shown in Figure 9. At 40 N, in the mild wear
regime, a deformation zone of about 220 µm thickness was formed beneath the surface (Figure 9a),
while Mg12ZnY strips could coordinate with the deformation of α-Mg dendrites by bending or by
forming kinks from the magnification microphotograph (Figure 9b). It was reported that the kink
bands developed when compressive stress was loaded parallel to the (0001) plane—i.e., basal slippage
was inhabited—and they could contribute to some extent to the ductility of the Mg97Zn1Y2 alloy [22].
When the load was increased to 100 N under the severe wear regime, a DRX zone of about 40 µm
thickness was formed, followed by a plastic deformation zone of about 120 µm thickness underneath
(Figure 9c). The Mg12ZnY strips in DRX zone were essentially as intact as in plastic deformation zone,
maintaining a fiber enforcing effect, as shown in the magnification microphotograph (Figure 9d).

Figure 9. Cross-sectional optical microstructures of Mg97Zn1Y2 alloy after sliding at 3.0 m/s and
different loads: (a) 40 N, (b) 40 N, showing deformation kinks of Mg12ZnY phase strips, (c) 100 N,
(d) 100 N, showing fine DRX microstructure in surface layer.

The microstructural observation reveals that the most important change in the subsurface
microstructure before and after the mild–severe wear transition is the transformation from the
deformed to the DRX microstructure. It is known that Mg and its alloys have limited ductility
due to their close-packed hexagonal structure, which is why the cracks are typically formed on worn
surfaces under the delamination mechanism. Therefore, it is the DRX realization that improves the
plastic deformation ability of the surface layer material and brings about the disappearance of cracks
on the worn surfaces, even under a large plastic deformation (extruded edge). The transformation from
the plastic deformed to the DRX microstructure in the surface layer material could also bring about
changes to the mechanical properties accordingly, because the DRX transformation is a typical softening
mechanism during the hot deformation of magnesium alloys. Therefore, the hardness distribution
on the subsurfaces before and after the mild–severe wear transition were compared to identify the
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softening effect of DRX realization. Figure 10a,b show the variations in hardness with depth from the
surface for the selected pins after sliding at 0.8 m/s and 3.0 m/s, respectively. At 0.8 m/s, it can be seen
that with increasing depth, the subsurface hardness measured at 140 N decreased until the original
hardness of 76 HV at a depth of 280 µm, except for the point at the depth of 10 µm. The hardness
increasing above the original hardness of the studied material could be due to surface oxidation (oxide
layer or MML) and strain hardening of surface layer material. The oxide layer is typically harder
than magnesium alloys. The extremely high hardness within 0–20 µm could be largely influenced
by MML, whereas high hardness within 20–260 µm is apparently ascribed to the strain-hardening
effect. The strain-hardening effect weakens with increasing depth. However, the subsurface hardness
measured at 200 N is much lower than that at 140 N, within a depth range of 0–100 µm, and the
hardness curve presents a valley at 50 µm before rising a little and then decreasing to the original
hardness of the alloy at 240 µm. The subsurface softening aroused by the larger load of 200 N is contrary
to the strain-hardening effect, and the width of the softening zone roughly agrees with the depth of the
DRX zone. This proves that the DRX softening effect occurring in the subsurface after the mild–severe
wear transition from the aspect of hardness change. Similarly, at 3.0 m/s, the strain-hardening effect
was also observed in the variation of subsurface hardness with depth for a pin worn at 40 N in the mild
wear regime, while a softening effect was found within 40 µm in the subsurface hardness curve for a
pin worn at 100 N under the severe wear regime. Consequently, it can be concluded from the aspects
of microstructure evolution and subsurface hardness change that the mild–severe wear transition
mechanism is the DRX softening of the surface material in the wear process.

Figure 10. Variations in hardness with depth from the worn surface for Mg97Zn1Y2 alloy sliding at
0.8 m/s (a) and 3.0 m/s (b) before and after mild–severe wear transition.

3.6. Critical Surface DRX Temperature Criterion for the Mild–Severe Wear Transition

It was reported that a large equivalent shear plastic strain accumulated in the subsurfaces of
magnesium alloys during dry sliding wear, even though the applied load was much less than the
mild–severe wear transition load [10,11]. There are two necessary conditions for DRX realization in
the subsurface, namely sufficient plastic strain and surface temperature. As plastic strain was always
found to satisfy the requirements even before the mild–severe wear transition, the only condition to
considered was surface temperature. Therefore, we propose a critical surface temperature criterion
for the mild–severe wear transition based on the above experimental results and analyses. Once the
friction-induced contact surface temperature TS reached the onset temperature of DRX TDRX, the DRX
softening effect simultaneously took place in the near surface region, triggering the mild–severe wear
transition. The criterion is expressed by Equation (1).

TS ≥ TDRX (1)
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The DRX dynamics point out that the DRX realization period can be expressed by a function of
DRX temperature and activation energy. In the present study, it can be presumed that when mild
wear transits into severe wear, most of the sliding contact period contributes to the DRX realization
of the surface material, that is, the sliding contact period approximately equals the DRX realization
period. Therefore, a correlation between the sliding speed and critical DRX temperature of the surface
material can be established using DRX dynamics. The DRX realization period t can be expressed by
Equation (2) using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation [23].

t =
L
v
≈ B exp(

Q
RTDRX

) (2)

where L and v are the sliding distance and sliding speed respectively, B the experimental constant,
Q the apparent activation energy for DRX, and R the gas constant.

The values of the experimental constant B and the activation energy for DRX Q must be estimated
firstly before calculating the critical surface DRX temperatures at various sliding speeds using
Equation (2). For these purposes, hot compression tests of the studied alloy were carried out within a
certain strain rate range. In the hot deformation process of magnesium alloys, the onset temperature of
DRX mainly depends on the strain rate [24–27]. Since the worn specimen at 1.0 m/s and 140 N was
at the critical state of mild–severe wear transition and its surface had a low oxygen element content
(5.82%), choosing it for the evaluation of the subsurface plastic strain rate can avoid the influence of
the surface oxidation layer. The distribution of equivalent plastic strain in the subsurfaces at 1.0 m/s
and 140 N were measured as a function of the sliding cycle (sliding distance), using the curvature
of the flow lines according to Equation (3) [27,28], and the measured average strain rate at depth of
0–15 µm was determined to be within a range of 1.0 × 10−2 to 8.0 × 10−2 s−1.

ε(z) =
√

3
3

tan(θ(z)) (3)

where z is the depth beneath the worn surface, and θ is the shear angle of the flow lines.

3.7. Determination of Activation Energy and DRX Temperatures

It has been reported that most magnesium alloys experience DRX softening at temperatures
of 200–360 ◦C when subjected to hot deformation [24–27]. Considering the high DRX temperature
of Mg97Zn1Y2 alloy, in order to determine the activation energy and temperature for DRX in the
subsurface of the alloy at strain rates of 1.0 × 10−2 to 8.0 × 10−2 s−1, hot compression tests of
Mg97Zn1Y2 alloy were performed within a strain rate range of 1.0 × 10−4–1.0 × 10−1 s−1 and a
temperature range of 300–380 ◦C.

The true-stress–true-strain curves at the strain rate 1.0 × 10−2 s−1 and temperature 320 ◦C are
shown in Figure 11. It can be seen from Figure 11a that when the deformation temperature is increased
above 320 ◦C, strain softening begins to occur clearly. The great decrease of true stress at 1.0 × 10−1 s−1

occurring at strain above 0.4 in Figure 11b is not a real result, and was found to be caused by the
cracking of the specimen during the hot-compressive test. The curves at 1.0 × 10−4–1.0 × 10−2 s−1

display the normal single peak and a concave-down appearance, i.e., after the peak the stress decreases
with increasing strain due to DRX. Therefore, the strain hardening and strain softening of Mg97Zn1Y2
alloy varies with the strain rate and deformation temperature. The relation between the strain rate ,
flow stress σ and deformation temperature T can be described by the hyperbolic sine law proposed by
Sellars and Tegart [29].

.
ε = A[sinh(ασ)]n exp(− Q

RT
) (4)

The value of Q was calculated to be 238.2 kJ mol−1 based on the slopes of lines in Figure 12.
The microstructure examination of the hot deformed specimens of Mg97Zn1Y2 alloy revealed that
DRX took place at 320 ◦C and above at strain rates of 1 × 10−2–1 × 10−1 S−1, as shown in Figure 13.
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The observed DRX temperature of Mg97Zn1Y2 alloy was very close to the DRX temperature of 325 ◦C
for an extruded Mg96Zn1Y3 alloy containing X-Mg12ZnY phase, which was observed during tensile
tests at strain rates of 1 × 10−4–1 × 10−3 S−1 by Li et al. [16]. As a result, B can be determined to be
4.83 × 10−19 s by Equation (2) using the data obtained at 1.0 m/s, namely DRX temperature 320 ◦C
and activation energy Q 238.2 kJ mol−1. The critical DRX temperatures at other sliding speeds were
subsequently calculated, as listed in Table 4. It is noted that the critical DRX temperature varies
between 311.6 ◦C and 340.7 ◦C as the sliding speed is increased from 0.5 to 4.0 m/s. This variation
trend apparently follows the DRX dynamics, namely that high sliding speeds make the contact surface
reach a high temperature state faster than low sliding speeds, which allows DRX realization of the
surface layer material at a higher temperature.

Figure 11. True stress-strain curves of Mg97Zn1Y2 alloy under hot compression conditions:
(a) 300–380 ◦C, 1 × 10−3 s−1; (b) 320 ◦C, 1 × 10−4 s−1 × 10−1 s−1.

Figure 12. The linear relationship between ln[sinh (ασ)] and 1/T.
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Figure 13. Optical microstructure of Mg97Zn1Y2 alloy hot-deformed at 320 ◦C and at strain rate
of 1 × 10−1 s−1.

Table 4. Calculated DRX (dynamic crystallization) temperatures, transition load and coefficient of
friction of Mg97Zn1Y2 alloy under different sliding speeds.

v [m/s] TDRX [◦C] Coefficient
of Friction

Measured Transition
Load [N]

Calculated Transition
Load [N]

0.5 311.6 0.27 340 345.6
0.8 317.3 0.36 160 165.2
1.0 320 0.32 150 150
2.0 328.6 0.32 80 77.2
3.0 336.9 0.32 55 52.8
4.0 340.7 0.32 40 40.1

3.8. Evaluation of Mild–Severe Wear Transition Loads

At a given sliding speed, the mild–severe wear transition of magnesium alloys can be
characterized by the transition load. The relationship between the average surface temperature
TS in sliding contact, applied load F and sliding speed v can be expressed using Equation (5), proposed
by Lim and Ashby [30].

TS = T0 +
αµFvlb
AnKmp

(5)

where T0 is the temperature of the heat sink where the heat flows, it can be considered as the room
temperature of 20 ◦C; α is the fraction of the heat conducted into the pin, µ is the coefficient of friction,
An is the nominal contact area, lb is the mean diffusion distance, and Kmp is the thermal conductivity of
the pin.

When the sliding wear is under the critical condition of the mild–severe wear transition, an almost
steady-state temperature distribution of both pin and disc can be established [8]. It is reasonable to
assume that the parameters α, lb, An, Kmp in Equation (5) are approximate constants under different
sliding speeds. Therefore, Equation (5) can be rewritten as Equation (6) by introducing a constant KDRX.

FT =
(TDRX − T0)

KDRXµv
(6)
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KDRX =
αlb

AnKmp
(7)

where FT is the transition load at sliding speed v, KDRX is an approximate constant relating with the
testing equipment and material properties of the pin and the disc at the critical DRX state. The value of
KDRX was determined to be 6.25 using the already known data of Mg97Zn1Y2 alloy sliding at 1.0 m−1

and 20 ◦C: TDRX 320 ◦C, FT 150 N and µ 0.32. The coefficients of friction varied around 0.32, except for
the sliding speeds of 0.5 and 0.8 m/s at the transition loads, as listed in Table 4. At 0.5 and 0.8 m/s,
the coefficients of friction were about 0.27 at the transition load of 340 N and 0.36 at the transition load
of 160 N. By plugging the DRX temperatures and coefficients of friction into Equation (7), the transition
loads at different sliding speeds were calculated, as shown in Figure 14. It can be seen that the
calculated transition loads almost agree with the experimental results, even though a large deviation
was at the sliding speed of 2.0 m/s and 2.9 N, about 3.6% of the measured transition load. Considering
the assumptions in the modeling, the deviation is allowable. Therefore, the proposed surface DRX
temperature criterion can be used to evaluate the mild–severe wear transition loads of Mg97Zn1Y2
alloy. In addition, the transition loads of AZ magnesium alloys such as AZ31 and AZ51 alloys at
different sliding speeds are also incorporated in Figure 14 for the purpose of comparison [10,11].
Apparently, Mg97Zn1Y2 alloy has a better resistance to mild–severe wear transition within the sliding
speed range of 0.5–4.0 m/s. The largest difference in the transition load between Mg97Zn1Y2 alloy
and AZ alloys occurs at 0.5 m/s, about 100 N, and the difference reduces with increasing sliding speed
until 4.0 m/s, at which Mg97Zn1Y2 alloy and AZ alloys almost have the same transition load.

Figure 14. Measured and calculated transition loads of Mg97Zn1Y2 alloy at different sliding speeds.

4. Conclusions

From the above results and analysis, the following conclusions have been drawn.

(1) Friction and wear sliding tests were conducted within a wide load range at sliding speeds of 0.2,
0.8 and 3.0 m/s. Under the three sliding speeds, all the coefficients of friction decreased rapidly
when load was not higher than 60 N or 55 N, and then decreased a little and gently within the
load ranges of 60–220 N at 0.2 m/s, 60–160 N at 0.8 m/s and 55–120 N at 3.0 m/s, and finally
maintained a low level with tiny fluctuations as the load was further increased.
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(2) The wear-rate–load curves show a clear stage feature, i.e., at 0.2 m/s, there were two slowly
increasing stages separated by 180 N, while at 0.8 m/s, there were two stages, a slow increase
stage and a fast increase stage; at 3.0 m/s there were three stages, a slow increase stage, a fast
increase stage and a high level stage.

(3) At the low sliding speed of 0.2 m/s, wear proceeded under the mild wear regime until the largest
experimental load of 380 N, and the main wear mechanisms were oxidation + abrasion and
delamination + surface oxidation. At the intermediate sliding speed of 0.8 m/s, the main wear
mechanisms were oxidation + abrasion, delamination + surface oxidation under the mild wear
regime and severe plastic deformation + spallation of oxidation layer under the severe wear
regime. At the high sliding speed of 3.0 m/s, the wear mechanisms were delamination under
the mild wear regime, and severe plastic deformation and surface melting under the severe
wear regime.

(4) The wear rate and wear transition maps for Mg97Zn1Y2 alloy were established on a rectangular
coordinate system with applied loads as the vertical coordinate and sliding speed as the
horizontal coordinate.

(5) The mild–severe wear transition was caused by the softening effect in the surface layer material
due to frictional heating-induced DRX realization.

(6) A the surface DRX temperature, the criterion was proposed for the determination of the
mild–severe wear transition, and the critical surface DRX temperatures at various sliding speeds
were calculated by means of DRX dynamics theory.

(7) The mild–severe wear transition loads of Mg97Zn1Y2 alloy at sliding speeds of 0.5–4.0 m/s can
be calculated based on the critical surface DRX temperature criterion and the calculated values
agree well with the measured ones.
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