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370 05 České Budějovice, Czech Republic

3 Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim Becher-Weg 7,
55128 Mainz, Germany; paulsen@uni-mainz.de

* Correspondence: marilena.divalentin@unipd.it (M.D.V.); donatella.carbonera@unipd.it (D.C.);
Tel.: +39-0498275139 (M.D.V.); +39-0498275144 (D.C.)

† These authors contributed equally to this work.

Abstract: A magnetophotoselection (MPS) investigation of the photoexcited triplet state of chloro-
phyll a both in a frozen organic solvent and in a protein environment, provided by the water-soluble
chlorophyll protein (WSCP) of Lepidium virginicum, is reported. The MPS experiment combines
the photoselection achieved by exciting with linearly polarized light with the magnetic selection
of electron paramagnetic resonance (EPR) spectroscopy, allowing the determination of the relative
orientation of the optical transition dipole moment and the zero-field splitting tensor axes in both
environments. We demonstrate the robustness of the proposed methodology for a quantitative
description of the excitonic interactions among pigments. The orientation of the optical transition
dipole moments determined by the EPR analysis in WSCP, identified as an appropriate model system,
are in excellent agreement with those calculated in the point-dipole approximation. In addition, MPS
provides information on the electronic properties of the triplet state, localized on a single chlorophyll
a pigment of the protein cluster, in terms of orientation of the zero-field splitting tensor axes in the
molecular frame.

Keywords: magnetophotoselection; triplet state; chlorophyll-binding protein; excitonic interaction;
TR-EPR

1. Introduction

Light-harvesting multi-chromophoric systems, such as photosynthetic subunits of
phototrophic organisms, rely in their functioning on the three-dimensional disposition and
site energy tuning of their bound chromophores, so as to create the energetic landscape
required for their functioning [1,2]. A major class of chromophores that ended up being
ubiquitous in this role is that of tetrapyrroles [3], particularly chlorophyll a (Chl a) in
oxygenic photosynthesis [4,5]. This molecule is characterized by the intense absorption in
the red portion of the visible spectrum of its lowest excited state (S1), referred as Qy due to
the orientation of its transition dipole moment (TDM), close to the molecular y axis (see
Figure 1B) [6].

The orientation of the Qy TDM of monomeric Chl a was the subject of numerous ex-
perimental investigations, using linear dichroism of oriented chlorophyll molecules [7,8],
fluorescence depolarization measurements [9] and polarization resolved pump-probe spec-
troscopy [10]. The Qy TDM was also determined in silico, at a density functional [11–14]
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configuration interaction [13] and, recently, at coupled cluster [15] levels of theory. The
cited investigations agree on an in-plane orientation of the TDM, which is within ±20◦

from the molecular y axis (see Figure 1B). In complex architectures containing Chls, like
those of photosynthetic complexes, the efficiency of singlet-singlet energy transfer critically
depends on the distance and reciprocal orientation of their Qy TDMs. Moreover, the low-
lying excited states in interacting Chls also depend on these factors. Therefore, knowledge
of the precise orientation of the TDM within the molecular structure is a prerequisite for
accurate calculations of chlorophyll-chlorophyll excitonic interactions and characterization
of the energy transfer pathways.

A system exceptionally well-suited to investigate excitonically coupled Chl a molecules
is the Water Soluble Chlorophyll Protein (WSCP) [16,17], a protein found in plants belong-
ing to the Brassicaceae family [18]. In contrast to other Chl-binding proteins, WSCP is
not involved in the photosynthetic process, but its actual physiological role is yet to be
determined [19]. Due to its cellular localization in Brassicaceae organelles, which are in-
volved in plant defence [20,21] and its stress-induced expression [22–25], a role in herbivore
defense [26] or signaling/regulation [27,28] was proposed. This homo-tetrameric protein, due
to its tetrahedral symmetry, binds its four chromophores in four identical binding sites [29–31],
organized into a “dimer of dimers” configuration of two “open-sandwich” [32,33] dimers
that are only weakly interacting [16,34] (see Figure 1D). The presence of excitonic interac-
tions causes important effects in the spectroscopic observables [14,16,32,35–43], including
a blue-shift of the absorption band in the Qy region. Figure 1C shows an illustrative
stick spectrum of the four excitonic transitions calculated in the framework of the point-
dipole approximation (labelled M1, M2, M3 and M4), assuming that the Qy TDM of each
monomeric Chl a is aligned with the molecular y axes, while in Figure 1D the corresponding
TDMs are shown for the two most intense transitions, M3 and M2 [16]. WSCP is an ideal
model system for detailed spectroscopic investigations [16,27,29,35–47], particularly when
compared to Chl-binding complexes involved in photosynthesis where tens to hundreds of
chlorophylls are bound in finely tuned Chls binding sites along with other chromophores
such as carotenoids [1,2,48].
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Figure 1. Optical axes of Chl a alone and in the excitonic system of WSCP. (A) Structure of WSCP 

(PDB ID: 2DRE [31]) with the four Chl a highlighted (protein backbone in light grey ribbon; Chl a in 

dark green with the phytyl chains omitted for clarity). (B) The Chl a structure (R = phytyl chain) is 

shown with the TDM of the Qy transition (yellow) and the molecular axes (black). (C) Calculated 

stick spectrum of the four excitonic transitions of WSCP (black diamonds and coloured bars) as 

described in Section 2.4. (D) TDM of the two main states of the excitonic system, M2 (red) and M3 

(blue), and Qy TDM of the four monomers (yellow), all shown in the zoomed WSCP site structure 

(Chl a molecules in grey). 

Figure 1. Optical axes of Chl a alone and in the excitonic system of WSCP. (A) Structure of WSCP
(PDB ID: 2DRE [31]) with the four Chl a highlighted (protein backbone in light grey ribbon; Chl a in
dark green with the phytyl chains omitted for clarity). (B) The Chl a structure (R = phytyl chain) is
shown with the TDM of the Qy transition (yellow) and the molecular axes (black). (C) Calculated
stick spectrum of the four excitonic transitions of WSCP (black diamonds and coloured bars) as
described in Section 2.4. (D) TDM of the two main states of the excitonic system, M2 (red) and M3
(blue), and Qy TDM of the four monomers (yellow), all shown in the zoomed WSCP site structure
(Chl a molecules in grey).



Molecules 2022, 27, 3654 3 of 16

Knowledge of the TDM orientation within the molecular structure can be obtained
from magnetophotoselection (MPS) studies of triplet states performed by time-resolved
electron paramagnetic resonance (TR-EPR, [49–51]); a summary of the key concepts of the
techniques are reported in the Supporting Information. Since the conception of MPS by Kot-
tis and Lefebvre [52], this methodology has been applied to various tetrapyrroles [50,53–56],
including chlorophylls [57] in glassy matrix, as well as primary donors in photosynthetic
reaction centres [58–64]. Its great advantage is the possibility to obtain specific informa-
tion on the orientation of the TDM without the requirement of realizing macroscopic
orientations of the chromophores. This is particularly significant for proteins, which can
therefore be investigated in biologically relevant conditions. In the TR-EPR experiment
coupled to MPS, the triplet state is photoexcited by linearly polarized laser light, with a
laser polarization axis alternatively parallel or perpendicular to the magnetic field direction.
Selected molecules contribute to the triplet-state EPR spectrum depending on the relative
orientation of their TDM and the light polarization vector. The analysis of the TR-EPR
spectra, recorded both in the parallel and perpendicular photoexcitation modes for better
accuracy, thus allows the determination of the relative orientation of the TDM and the
principal axes of the zero-field splitting (ZFS) tensor in terms of two anglesω, ϕ. Then, if
the orientation of the ZFS axes in the molecular structure is known, that of the TDM in the
molecular structure can be obtained.

In the case of a monomeric chlorophyll a triplet state (3Chl a), the orientation of the
ZFS tensor with respect to the Qy TDM (ωm and ϕm in Figure 2A) has been assigned by
means of Linear Dichroism Optically Detected Magnetic Resonance (LD-ODMR) [65] as
follows: the ZFS Z axis is perpendicular to the molecular plane and the in-plane X, Y axes
are rotated by 48◦ relative to the Qy TDM. Electron Nuclear DOuble Resonance (ENDOR)
experiments were also reported to give hyperfine coupling tensors of methine protons
compatible with a 45◦ rotation of the X, Y axes relative to the molecular axes (see Figure 2A)
but with an uncertainty of about 10◦ due to the degree of orientational selection achieved
in correspondence of the X and Y canonical transitions [66].
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Figure 2. Relative orientation of the optical and magnetic axes of monomeric Chl a (assuming
for simplicity a Qy TDM oriented along the molecular y axis) (A) and in the excitonic system of
WSCP (B) (note that only one of the four Chls a of the tetramer is shown for clarity). Chl a in grey,
hydrocarbon tails are omitted for clarity. (A) In the monomer, theωm and ϕm angles (red and dark
red, respectively) define the orientation of the Qy TDM (yellow) relative to the ZFS axes system
(green). (B) In WSCP, theωex and ϕex angles (red and dark red, respectively) define the orientation
of the M3 TDM (blue) relative to the ZFS axes system (green). The projection of the out-of-plane M3
TDM is reported as a dashed line.
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In this work, reconstituted Lepidium virginicum WSCP is employed as a case study to
illustrate the potential of TR-EPR coupled to MPS for two main objectives: (i) to determine
the relative orientation between the TDM and the principal triplet axes in the excitonic
system (ωex and ϕex in Figure 2B), where the triplet state becomes localized on a single
molecule after singlet photoexcitation; and (ii) to verify the correctness of the excitonic
model through the angular constraints imposed by MPS.

2. Materials and Methods
2.1. Sample Preparation

Chl a was extracted from pea plants (Pisum sativum) and purified as described by
Booth and Paulsen [67]. Protein overexpression in E. coli and subsequent purifications
have been performed as previously reported [27]. The purified Lepidium virginicum WSCP
apoprotein was reconstituted with Chl a as previously described [68].

WSCP was concentrated up to a Chl a concentration of 700 µg/mL for TR-EPR mea-
surements. Glycerol, previously degassed by several freeze-pump-thaw cycles, was added
(60% v/v) to obtain a transparent matrix immediately before freezing to avoid sample
degradation [69].

Chl a was dissolved in either MeTHF or an EtOH:MeOH 3:2 solvent mixture for TR-
EPR measurements at a concentration ≈75 µM. The samples were degassed by performing
several freeze-pump-thaw cycles and were sealed under vacuum in the EPR tube.

TR-EPR experiments were performed using fused silica quartz tubes (3 mm i.d. × 4 mm
o.d.). The samples were frozen in liquid nitrogen and quickly transferred to the cold cavity
of the EPR spectrometer. The formation of a clear, transparent matrix was checked visually
before inserting the samples.

2.2. TR-EPR Experiments

TR-EPR experiments were performed on an ELEXSYS E580 spectrometer (from Bruker
BioSpin GmbH, Rheinstetten, Germany), equipped with a dielectric cavity (ER 4117-DI5,
TE011 mode, from Bruker) and operating at X-band (about 9.5 GHz) in continuous-wave
mode. The microwave frequency was measured by a frequency counter, HP5342A. An
Oxford CF935 cryostat, cooled by a thermostated nitrogen flow, was used to control the
temperature; all experiments were conducted at 80 K temperature, at which all samples
form rigid glassy matrices. Photo-excitation of the sample was realized with a laser system
that emits polarized light and allows for the tuning of the excitation wavelength in the
visible region (from Quantel Brilliant, Lannion, France): the system is composed of a
Nd:YAG pulsed laser (1064 nm,) equipped with both second and third harmonic and
optical parametric oscillator (Rainbow, from Opotek Inc., Carlsbad, CA, USA) modules.
The parameters of the laser pulses were: pulse length = 5 ns, E/pulse ∼= 3 mJ, 10 Hz
pulse repetition time. MPS experiments were realized by irradiating the sample with
polarized laser pulses. Two different polarizations were employed: one with the electric
field perpendicular and the other parallel to the static magnetic field of the spectrometer.
The rotation of the polarization plane of the light was obtained using a half waveplate; a
linear polarizer was inserted in the beam path near the optical window of the cavity for a
better control of the polarization, and oriented accordingly to the desired configuration.

TR-EPR experiments were carried out by recording the time evolution of the EPR
signal after the laser pulse with a LeCroy 9360 digital oscilloscope triggered by the laser
pulse. At each magnetic field position, 200 transient signals were usually averaged before
transferring them to the PC controlling the instrument via the XEPR software; 256 points
on the magnetic field axis were recorded, with a sweep width of 80.0 mT (in all solvents)
or 90.0 mT (in WSCP). The microwave power for TR-EPR experiments was set to be
low enough to be in a low-power regime and avoid Torrey oscillations on the time trace:
microwave attenuation: 28 dB in solvent, 35 dB in WSCP. The time vs. field surfaces were
processed using a home-written MATLAB program that removes the background signal
before the laser pulse (signal vs. magnetic field) and the intrinsic response of the cavity to
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the laser pulse (signal vs. time). The TR-EPR spectra shown in the main text were extracted
from the surface at the maximum of the transient to avoid potential distortions arising from
anisotropic relaxations: 1000 ns after the laser flash in all solvents, 1700 ns after the laser
flash in WSCP.

2.3. Spectral Analysis

Simulations of triplet spectra have been performed using a home-written MATLAB
program [54]. The program calculates the TR-EPR spectrum as superposition of spectra
obtained for a uniform distribution of the orientation of the molecules. To account for
MPS effects, the anisotropic orientational distribution of excited molecules is introduced.
Fittings have been performed using the esfit routine from EasySpin combined with custom
fitting functions [70]. Details of the calculation and of the theoretical basis for simulation
are reported in [54,71] and in the Supplementary Materials.

2.4. Excitonic Coupling Calculation

The excitonic coupling between each pair of Chls a in the WSCP structure (PDB.ID
2DRE [31]) was calculated in the framework of the point dipole approximation. This
approach, although simple when compared to more advanced methodologies, has been
shown to be suitable for describing Chls Qy − Qy interactions in many systems [16,72,73].
The calculation was limited to the Qy transitions of the four Chls a, varying the orientation
of the transition dipole moments from the starting direction defined from the positions
of the nitrogen atoms of the pyrrole rings A and C (axis y in Figure 1B), according to
Madjet et al. [13]. A transition dipole moment of 4.67 D has been adopted for Chl a [16].

The point dipole coupling term of the j-th and i-th chromophores, Vji is calculated as:

Vij =
f1

4πε0

[
µi·µj

Rij
3 − 3

(
µi·Rij

)(
µj·Rij

)
Rij

5

]

where µi,j is the transition dipole moment vector, Rij the distance vector, ε0 is the dielectric
constant in vacuum, and εr is the relative dielectric constant taken with a value of 2.40 (as
derived from a refractive index value of 1.55 typical for protein environments [31]). The local
field correction f1 has been treated with the sphere-cavity approximation (f1 = (εr + 2)/3).

The Hamiltonian describing the excitonic system is treated in terms of first-order
perturbation theory:

H = ∑
i
|i 〉E0〈 i|+ ∑

i 6=j
|j〉Vji 〈i|

where the site energy (E0) has been considered the same for the four pigments, adopting
the previously determined value of 15,080 cm−1 [16].

Solving the Hamiltonian, by means of a home-written MATLAB program, it was possi-
ble to determine the eigenvalues and eigenvectors for the four excitonic states (named in the
following M1, M2, M3, and M4 in the order of increasing energy). From the eigenvectors,
directions and oscillator strengths (

∣∣µMi

∣∣2) of the four excitonic states were obtained [74].
All four Chls were considered a potential site of 3Chl a localization as the monomeric nature
of 3Chl a in WSCP has been previously established spectroscopically [16,27] and the four
binding sites are identical due to the D2 symmetry of the system (in Figure 2B, the example
of the relative orientation between M3 TDM and the ZFS axes of 3Chl a localized on one of
the four Chls is reported). For this reason, average values are reported in the following and
in Tables S2 and S3.

3. Results and Discussion

In this work, we present the potential of the MPS methodology to gain quantita-
tive information on the excitonic network among chromophores in the WSCP complex,
employed as a paradigmatic chlorophyll-binding protein for the investigation of photosyn-
thetic proteins, due to its defined symmetric structure. MPS provides a key link between
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the optical and magnetic resonance experiments. The spectral analysis allows quantitative
determination of the relative orientation between the TDM, corresponding to the singlet
state excited excitonic transition, and the ZFS principal axes of the triplet state, populated
by inter-system crossing and localized on a single Chl a chromophore in WSCP.

We initially performed TR-EPR, coupled to linearly polarized light excitation, on 3Chl
a in two organic glasses in order to (i) compare the results of our MPS analysis to previously
determined TDM orientation by different methods, (ii) check the sensitivity of the technique
to the solvent dependence of the TDM, and (iii) directly determine the relative orientation
between the TDM and ZFS axes for the monomeric Chl a components which form the
tetra-chromophoric complex. The two solvents have been selected for their propensity to
form transparent glasses. MeTHF is characterized by a low dielectric constant, similar in
value to those of protein matrixes, whereas the EtOH:MeOH mixture has a much higher
one. The results are reported in Figure 3.
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Figure 3. TR-EPR spectra (greyscale lines) and simulations (green lines) of Chl a in solvent.
(A) MeTHF (λ = 661 nm), isotropic excitation; (B) EtOH:MeOH 3:2 (λ = 672 nm), isotropic excitation;
(C) MeTHF (λ = 661 nm), MPS experiment; (D) EtOH:MeOH 3:2 (λ = 672 nm), MPS experiment. In

MPS spectra: dark colours—laser polarized parallel to the magnetic field (
⇀
E ‖

⇀
B ); light colours—laser

polarized perpendicular to the magnetic field (
⇀
E⊥

⇀
B ). The arrows denote enhanced absorption (A)

and emission (E); the positions of the principal ZFS components are indicated below the isotropic
spectra. Spectra and simulations are normalized to the most intense spectral feature, keeping the
intensity ratio between the two polarizations. All TR-EPR spectra are recorded at 80 K.
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The excitation around the maximum of the Qy (0-0) absorption band, at 661 nm for
MeTHF and 672 nm for EtOH:MeOH, provides selective Qy excitation since the Qx transi-
tion has negligible absorption at these wavelengths. Figure 3A,B displays the isotropically
excited TR-EPR spectrum in the two different glassy matrices at 80 K and the correspond-
ing simulations. In order to fulfill isotropic excitation conditions, the TR-EPR spectrum is
obtained as the sum of the experimental spectrum recorded after excitation with polariza-
tion of the light parallel to the external magnetic field and twice the spectrum obtained
with perpendicular polarization, in analogy to optical polarization measurements. The
simulation parameters, reported in Table 1, are in good agreement with previous work
performed without linearly polarized light for excitation [27]. They have been used as fixed
parameters in the simulations of the MPS experiments in the following.

Table 1. Simulation parameters used in the fitting of Chl a MPS spectra in glassy matrix. ZFS
parameters (D, E), ±0.1 mT; triplet sublevel populations (px, py, pz), ±0.01; angles defining the
orientation of the transition dipole moment relative to the ZFS axes system (ωm and ϕm, defined
in Figure 2), ±2◦; percentage of the polarized contribution (cP), ±1%. Details of the parameters are
reported in the Supporting Information.

Solvent |D| (mT) |E| (mT) px py pz
ωm
(◦)

ϕm
(◦)

cP
(%)

MeTHF 30.4 4.3 0.31 0.56 0.13 90 65 63
EtOH:MeOH 3:2 29.5 3.8 0.31 0.57 0.12 90 54 64

The TR-EPR spectra, obtained exciting with light polarized either parallel or perpen-
dicular to the external magnetic field, are reported in Figure 3C,D. Since the experimental
set-up assured the same excitation conditions, the spectra are displayed with their relative
intensities and show an evident MPS effect, with enhanced Y canonical transitions in the
parallel spectrum and enhanced X and Z canonical transitions in the perpendicular spec-
trum, in both glass matrices. The simulations, based on common parameters for the two
excitation modes, exhibit the correct orientational effects and also reproduce the relative
intensities of the parallel and perpendicular configuration. The presence of E-strain, due to
an inhomogeneous coordination environment or molecular distortions, affects the lineshape
in correspondence of the X and Y transitions, precluding an accurate simulation of the
lineshape between the two turning points.

The key parameters of the spectral simulations are the anglesωm and ϕm as defined
in Figure 2A, while the ZFS parameters (D and E) and the relative triplet population rates
are derived from the isotropically-excited spectrum (see Table 1). The angle ωm is kept
fixed at 90◦ to fulfil the condition that Qy and the X, Y ZFS axes lay in the macrocycle plane.
The value obtained for ϕm is in excellent agreement with those obtained by Vrieze et al. in
the LD-ODMR experiments [65] and confirm a solvent-dependent configuration, where
the Qy TDM and the in-plane triplet axes are not collinear, in contrast to other porphyrin
derivatives [54,75]. Therefore, we can safely state that MPS is a sensitive method for the
determination of the orientation of the TDM in the ZFS frame. In particular, based on the
selection of specific excitation wavelengths, for 3Chl a in vitro the TDM orientation of the
Qy transition is derived, while for the 3Chl a in WSCP the TDM corresponding to a Mi
(i = 3 and 2) excitonic transition is obtained. In both cases, the TDM orientation is given
with respect to the ZFS principal axes (X, Y, and Z), as experimentally derived.

The MPS experiment allows the determination of the relative orientation of the TDM
and ZFS axes, but not their localization in the molecular frame (x, y and z). Thus, our results
do not distinguish between the two different configurations, as illustrated in Figure 4A,B. One
possibility is obtaining the Qy orientation based on the assignment of ZFS axes directions,
as derived from triplet-state ENDOR experiments [66,76] (see Figure 4A). Alternatively,
the Qy TDMs can be fixed in the molecular frame as parallel to the molecular y axis,
consequently assigning the triplet ZFS directions (see Figure 4B). Although the two possible
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configurations cannot be discerned, MPS experiments introduce angular constraints and
clearly demonstrate that the assignment of the Qy TDM along the molecular y axes as
well as that of the 3Chl a ZFS tensor axes of 3Chl a along the methine protons, based on
spectroscopic or in silico investigation, should be considered with caution.
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Figure 4. Chl a structure is shown with the transition dipole moment of the Qy transition (yellow),
the molecular axes (black), and the X and Y ZFS axes. (A) Qy TDM (dark yellow) has been rotated
accordingly to the ϕm determined for Chl a in MeTHF and EtOH:MeOH 3:2, while keeping the ZFS
frame (green) as in Figure 2. (B) X and Y ZFS axes (dark green) have been rotated accordingly to
the ϕm determined for Chl a in MeTHF and EtOH:MeOH 3:2, while keeping the Qy TDM along the
y axis. (C) X and Y ZFS axes (green) have been rotated by 8◦ and the Qy TDM (dark yellow) has been
rotated accordingly to the ϕm determined for Chl a in MeTHF and EtOH:MeOH 3:2.

The MPS results obtained for the Chl a pigment in glassy matrix were used to guide
simulations of the corresponding experiments performed on the 3Chl a in the tetrameric
complex and gain information on the relative orientation between the excitonic TDMs and
the ZFS axes of the Chl carrying the triplet state in WSCP (the corresponding anglesωex
and ϕex are reported in Figure 2B).

The isotropically-excited TR-EPR spectra of 3Chl a in WSCP at 80 K, with excitation
at two different wavelengths, are shown in Figure 5B. Moving along the Qy absorption
region allows the selection of different excitonic contributions. Based on calculations,
shown in Figure 1C, M2 is expected to be excited on the red-shifted shoulder, observed
in Figure 5A. The ZFS parameters and the relative population rates obtained from the
simulation of the spectra are, within error, identical to those obtained previously by pulse
and time-resolved EPR at X-band [27] and do not vary significantly with the excitation
wavelength (see Table 2). The magnetic parameters are also very similar to those of 3Chl a
in the solvent glass, confirming localization of the triplet exciton on a monomeric Chl a in
WSCP, as demonstrated previously by ENDOR spectroscopy [27,46].

The MPS spectra at the two different excitation wavelengths are reported in Figure 5C,D.
The spectra show MPS effects that differ for the two selected wavelengths and also from
those found for the 3Chl a in glassy matrix. Qualitatively, the differences with the excitation
wavelength point out a different orientation of the excitonic TDM with respect to the ZFS
frame or contributions of different excitonic transitions, as expected from calculations.

The simulations of the MPS experiments in WSCP are based on angular parameters
obtained from the crystallographic structure [31] in the framework of a strong excitonic
interaction in the excited singlet state, which is lost in the corresponding triplet state. Due
to the symmetry of the WSCP tetrameric complex, the four Chl binding sites are equivalent
and the triplet state is localized on any of the Chl a monomers in the protein with the same
probability. As pointed out in the previous sections, MPS experiments on 3Chl a in a glassy
matrix demonstrate that the orientation of the Qy TDM could deviate from the molecular
y axis. Moreover, the influence of the environment on the Qy TDM location in the molecular
plane, which can be attributed to solvent polarity, hydrogen bonding, and/or molecular
distortion effects, has also been highlighted. For this reason, calculation of the excitonic
TDMs required an angular scanning of the orientation of the Qy TDM and the ZFS axes in
the molecular frame. Initially, calculations were performed assuming that the Qy TDM is
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collinear to the molecular y axis and the in-plane ZFS axes are along the methine groups
(Figure 1B), as defined by Lendzian et al. [66], but with the uncertainty deriving from the
orientational selection of ENDOR spectroscopy (i.e., ±10◦ from the molecular y axis). From
this starting point, calculations were repeated for different orientations of the Qy TDM and
for gradual rotation of the ZFS frame (see Figure S5), in a range that comprises the angular
parameters found for 3Chl a in glassy matrix and those reported in the literature [8,10–15].
Details are described in the Materials and Methods and the full set of data is summarized
in the SI.
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Figure 5. Spectra (greyscale lines) and simulations (coloured lines) of Chl a in WSCP. (A) Low-
temperature UV-Vis absorption spectrum of WSCP in the Q-bands (adapted from [16]), temperature
1.8 K; the coloured arrows point to the wavelength used to obtain the TR-EPR spectra: green
λ = 658 nm; red/orange λ = 675 nm. (B) TR-EPR spectra with isotropic excitation (greyscale lines) and
simulations (coloured lines). (C,D) MPS TR-EPR spectra (greyscale lines) and simulations (coloured

lines): dark colours—laser polarized parallel to the magnetic field (
⇀
E ‖

⇀
B); light colours—laser

polarized perpendicular to the magnetic field (
⇀
E⊥

⇀
B ). The arrows denote enhanced absorption (A)

and emission (E); the positions of the principal ZFS components are indicated below the isotropic
spectra. Spectra and simulations are normalized to the most intense spectral feature keeping the
intensity ratio between the two polarizations. All TR-EPR spectra are recorded at 80 K.
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We first analysed the EPR dataset obtained at 658 nm, near the maximum of the
excitonic absorption band. At this wavelength, we expect only a contribution from the M3
transition, since its oscillator strength is much higher than the oscillator strength correspond-
ing to M4 (within all the selected angle for the Qy TDM based on magnetophotoselection
in vitro), the only other transition close in frequency [16] (see Table S1). We verified that,
due to symmetry reasons, displacements of the Qy TDM of the Chl a monomers with
respect to the principal triplet axes, in a range of ±10◦, does not significantly change
the orientation of the M3 excitonic TDM in terms of the angles ωex and ϕex (defined in
Figure 2B). On the other hand, rotations of the ZFS axes do affect the value of ϕex. The
simultaneous fitting of the TR-EPR spectra (Figure 3C), for the parallel and perpendicular
configurations, was performed fixing the value of ωex to 76◦, as calculated in the frame
of the excitonically coupled Chl a tetramer. An optimal ϕex angle of 30◦ was obtained as
indicated in Table 2, where all the simulation parameters are also reported. These angular
parameters allow us to precisely determine the orientation of ZFS axes in the molecular
frame: a rotation of 8◦ with respect to the axis passing through the methine groups has
been found(see Figure 4C). Assignment of the ZFS tensor directions in the molecular frame
is an important task to be fulfilled for exploiting the full potential of orientation-selective
triplet-state EPR techniques [77,78]. As a further result, fixing the ZFS directions, this
leads to a final orientation of the Qy TDM axes in the Chl a monomers, which translated to
MeTHF and EtOH:MeOH mixture gives a deviation of 12◦ and 3◦ from the molecular y axis,
respectively. The assumption that the ZFS tensor directions are the same in the solvents
and in WSCP is based on the fact that the ZFS axes orientations are not particularly affected
by the environment, as demonstrated by the comparative ENDOR investigations on 3Chl a
in glassy matrix, in WSCP, as well as in photosynthetic reaction centres [27,46,66,78]. Thus,
exploiting the excitonic interaction, we were also able to give the orientation of the Chl a
Qy TDM, resulting in it being slightly rotated with respect to the molecular y axis.

Table 2. Simulation parameters used in the fitting of WSCP MPS spectra. Excitation wavelength (λ);
ZFS parameters (D, E), ±0.1 mT; triplet sublevel populations (px, py, pz), ±0.01; angles defining the
orientation of the ZFS axis system relative to the transition dipole moment (ωex and ϕex, defined in
Figure 2); percentage of the polarized contribution (cP), ±1%; percentage of each spectral component
(W), ±1%. Details of the parameters are reported in the Supporting Information.

λ

(nm)
|D|
(mT)

|E|
(mT) px py pz

ωex
(◦)

ϕex
(◦)

cP
(%)

W
(%)

658 30.9 3.65 0.29 0.59 0.12 76 30 57 100

675 30.9 3.65 0.29 0.59 0.12 52 72 57 64
30.9 3.65 0.29 0.59 0.12 76 30 57 36

The TR-EPR spectra obtained by photoexcitation at 675 nm can be considered the sum
of two contributions, one still deriving from the excitation of the M3 transition and a second
one due to the excitation of either the M1 or M2 transitions. In general, considering all the
four excitonic transitions, the rotation of the Qy TDM of the monomer in the molecular
plane does not alter the orientation of the resulting excitonic TDMs (less than 1◦ in the
investigated range of ±10◦), but does affect the oscillator strengths. In particular, a rotation
of Qy can reverse the order of the oscillator strengths of M1 and M2 (see Table S1). For this
reason, as a second contribution to the experimental MPS effect, the relative orientations of
the M1 and the M2 TDMs with respect to the triplet frame were alternatively considered as
angular parameters to simulate the TR-EPR spectra obtained at 675 nm. The polar angles
were calculated, for both transitions, fixing the monomer Qy TDM along the molecular
y axis and rotating the in-plane ZFS axes of 8◦, as obtained for the simulation of the TR-
EPR spectra at 658 nm. The complete angular scanning is reported in the SI, together
with frequencies and oscillator strengths of the excitonic transitions. Simulations of the
corresponding triplet TR-EPR spectra, in the parallel and perpendicular excitation mode,
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demonstrates that the orientation of the M1 TDM (ωex = 42◦, ϕex = 44◦) is incompatible
with the MPS effects recorded in WSCP (see Figure S6B,C), while for M2 (ωex = 52◦,
ϕex = 72◦) a satisfactory agreement can be obtained. A fitting of M2 and M3 relative
contributions, keeping their orientation fixed at the values obtained for the first data set,
was successively performed, as shown in Figure 5D.

We have therefore demonstrated that the two independently measured triplet-state
spectra, excited with light polarized parallel and perpendicular to the EPR magnetic
field, can be satisfactorily simulated with the same set of angular parameters, and that an
excellent agreement is found with the angular parameters calculated in the point-dipole
approximation for the four Chls excitonically coupled and arranged in two open-sandwich
dimers, based on the X-ray structure of the pigment cluster. The localization of the triplet
state on a single chromophore is an important prerequisite for a correct and effective
characterization of the excitonic system, as demonstrated here in the case of WSCP. This is
a common case since excitonic interactions in the triplet state are in most cases negligible as
they depend exclusively on exchange integrals and are therefore of reduced size compared
to the corresponding interaction involving singlet states, whose dependence on additional
long-range Coulomb integrals ensures a significant coupling in a wide distance range
exceeding 1 nm [79].

Since a simplified excitonic model, which considers the interactions between the two
Chl a dimers negligible (see Figure 1A), was used to satisfactorily reproduce the absorption
and circular dichroism spectra of WSCP [14,80], we have verified its appropriateness to
describe the MPS experiments. The two excitonic states of each of the two identical dimers
are named MH and ML. The higher energy MH transition is characterized by a TDM with
the same orientation to the one corresponding to M3 transition, whereas in the case of
the lower energy ML transition the TDM orientation differs from those corresponding to
both M1 and M2, resulting in a specific set of polar angles with respect to the Chls a ZFS
frames (ωex = 30◦, ϕex = 72◦). As described in detail in the SI, while the MH transition
is compatible with the triplet TR-EPR spectra at 658 nm, the polar angles correspond-
ing to the ML transition preclude the simulation of the TR-EPR spectra at 675 nm (see
Figures S6C and S7C). This result confirms that in the description of the excitonic states
of WSCP a tetrameric model is required, as previously suggested on the basis of ODMR
results [16]. Moreover, this outcome highlights the sensitivity of MPS to variations of
the geometry of the multi-chromophoric system and the excitonic network, making it an
experimental technique very well suited to investigate these systems.

4. Conclusions

MPS is an important methodological tool for deriving orientation parameters as
demonstrated in the comparative investigation on 3Chl a monomer in glassy matrix and
embedded in the WSCP complex. From the simulation of the TR-EPR spectra, excited with
light polarized parallel and perpendicular to the magnetic field, the direction of the TDM in
the frame of the principal triplet axes were determined with high accuracy. The information
on the angular parameters is crucial to gain insight into the excitonic structure of the protein
complex, going beyond the chromophore organization provided by the crystallographic
structure. This renders MPS complementary to other spectroscopic techniques to contribute
to a complete picture of structure-function relationships in electronic states other than
the ground state. In the present work, this approach has confirmed that a tetrameric
model is required to properly describe the interactions among Chls and has provided
important details on the excitonic structure of WSCP. Furthermore, for the first time, precise
information on the orientation of the ZFS axes of 3Chl a in the molecular frame has been
accessible due to the symmetry of the cluster and to the localization of the triplet state.

The application of this high-resolution methodology to antenna complexes would
provide key information for structure-based quantitative calculation of excitonic couplings
between photosynthetic pigments. As a design strategy of nature, excitonic interactions in
photosynthetic light-harvesting complexes are used to expand the spectral cross-section
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for light absorption and ensure a considerably faster and directional excitation energy
transfer. Although WSCP is not involved in the photosynthetic process, it is considered an
ideal model system to investigate the detailed nature of the pigment-protein and pigment-
pigment interactions at the heart of this process, due to its relatively simple structure
and to the possibility to modify the number and molecular structure of the bound chro-
mophores [27,81–84]. Unravelling the details of excitonic delocalization is a fundamental
requisite to improve artificial photosynthetic systems based on multi-chromophore assem-
blies [85,86], and high-resolution MPS represents an effective spectroscopic tool giving
important constraints to verify the applicability of theoretical models to describe these
complex systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27123654/s1, Description of the technique; Figures S1–S7;
Tables S1–S3. References [87,88] are cited in the supplementary materials.
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