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ABSTRACT

Motivation: Network modelling in systems biology has become an
important tool to study molecular interactions in cancer research,
because understanding the interplay of proteins is necessary for
developing novel drugs and therapies. De novo reconstruction of
signalling pathways from data allows to unravel interactions between
proteins and make qualitative statements on possible aberrations
of the cellular regulatory program. We present a new method for
reconstructing signalling networks from time course experiments
after external perturbation and show an application of the method to
data measuring abundance of phosphorylated proteins in a human
breast cancer cell line, generated on reverse phase protein arrays.
Results: Signalling dynamics is modelled using active and passive
states for each protein at each timepoint. A fixed signal propagation
scheme generates a set of possible state transitions on a discrete
timescale for a given network hypothesis, reducing the number
of theoretically reachable states. A likelihood score is proposed,
describing the probability of measurements given the states of the
proteins over time. The optimal sequence of state transitions is
found via a hidden Markov model and network structure search
is performed using a genetic algorithm that optimizes the overall
likelihood of a population of candidate networks. Our method shows
increased performance compared with two different dynamical
Bayesian network approaches. For our real data, we were able to
find several known signalling cascades from the ERBB signalling
pathway.
Availability: Dynamic deterministic effects propagation networks
is implemented in the R programming language and available at
http://www.dkfz.de/mga2/ddepn/
Contact: c.bender@dkfz.de

1 INTRODUCTION
Studying the molecular biology of cells and tissues has developed
from the investigation of few genes or proteins in one experiment
to the analysis of the interplay of many components as a system.
Various array techniques have been devised for analysing cellular
behaviour on DNA, RNA and protein level that make it possible
to generate thousands of measurements in a single experiment.
These data can be plugged into de novo network reconstruction
methods in order to infer regulatory interactions between the
measured components. For this purpose, several approaches have
been developed in the past.

∗To whom correspondence should be addressed.

Bayesian Networks (BN; Heckerman, 1996) have been frequently
used to reconstruct gene regulatory networks from RNA expression
experiments (Friedman et al., 2000; Segal et al., 2005) as well as
causal protein–protein relationships for intensity data from protein
quantification (Sachs et al., 2005). The latter is an example where
directed perturbations of several measured proteins were performed
in order to resolve the structure of the underlying interactions.
External interventions can be introduced by multiple means, for
example, changing environmental conditions, applying drugs or
using gene silencing methods such as RNA interference. Another
example for BN usage under perturbation conditions is given in
Pe’er et al. (2001).

Besides BNs, there are several related approaches to infer
networks from perturbation data. Markowetz et al. (2005) derived
networks after knocking out specific genes by analysing expression
patterns in the discretized gene expression measurements. Fröhlich
et al. (2008) extended this approach to perform inference on non-
discretized expression levels. Tegner et al. (2003) suggested iterative
perturbation of the system in order to reveal the underlying network
structure. They modelled perturbations as a linear combination of
inputs and inferred weights for the pairwise node to node influences.
Nelander et al. (2008) improved this idea by using nonlinear
perturbation effects and modelled the interaction behaviour of
a number of components after several single and combinatorial
perturbations.

Time resolved measurements provide insight into the dynamical
behaviour of the system and do not restrict modelling to a ‘snapshot’
of the system’s state. A suitable approach for network inference from
time resolved data are dynamic Bayesian networks (DBN), a family
of reconstruction methods including Boolean network models, state-
space models or regression models (Akutsu et al., 1999; Imoto et al.,
2002; Lébre, 2009; Murphy and Mian, 1999; Rau et al., 2010).

While these methods model the dynamics of the system over time,
they do not model perturbation effects directly. However, Geier
et al. (2007) studied reverse engineering methods on simulated
data for time courses and external perturbations and came to the
conclusion that additional perturbation of the system is beneficial.
So methods that explicitly include perturbations in the modelling
approach for time course analysis are still needed. In addition, most
of the current network reconstruction methods are tailored to the
analysis of gene regulatory networks based on gene expression
data from microarray experiments. Rather few studies deal with the
signalling flow between proteins based on the analysis of protein
activation and abundance coupled with intervention effects. Fröhlich
et al. (2009) developed a network inference method for protein
networks after knockdown of the measured components that allows

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



[11:06 28/8/2010 Bioinformatics-btq385.tex] Page: i597 i596–i602

DDEPN for signalling network inference

Fig. 1. Overview of the approach: given a network hypothesis (A), we
generate a set of reachable system states by applying a fixed signal
propagation scheme (B) which in effect reduces the number of possible
system states. An optimal path through these reachable system states over
time is identified by an HMM (C). Using the series of system states from
the HMM, model parameters for two Gaussian distributions for each protein
(one for active, one for passive) are estimated (D) and a total likelihood of
our measurements given the network and model parameters is calculated (E).
We use this likelihood score in a GA in order to optimize the overall score
for an evolving population of candidate networks (F) and generate a final
network from this population, after we found convergence in the GA.

time series measurements, too. But their method treats each time
point as independent measurement and does not model the time-
dependent behaviour of the system explicitly. However, using only
few perturbations and gathering information on the signal flow
through longer time series would be desirable, too.

In this study, we set up a framework for reconstructing signalling
networks from time course measurements after external perturbation
(both inhibitory and stimulating). Figure 1 shows an outline of
the proposed workflow. Networks are represented as directed
cyclic graphs with distinct edge types for activating and inhibiting
interactions. We model signalling dynamics by a Boolean signal
propagation mechanism defining state transitions for a given
network structure. An optimal state transition series is found in
a hidden Markov model (HMM; Durbin et al., 1998) and the
fit of the data to such a transition matrix is assessed by our
proposed likelihood score. Network structure search is performed
in a genetic algorithm (GA) optimizing the overall likelihood
of a population of candidate networks. Our method shows good
performance for reconstructing signalling networks from artificial
data and outperforms two current DBN approaches.

As an application of the algorithm, we used protein
phosphorylation measurements for 16 ERBB signalling-related
phosphoproteins. The data were generated on reverse phase protein
arrays (RPPA; Loebke et al., 2007) in the human breast cancer
cell line HCC1954, which overexpresses the ERBB2 receptor
that is associated with reduced disease-free and overall survival
in breast cancer patients (Slamon et al., 1987, 1989). Note that
dynamic deterministic effects propagation networks (DDEPN) was
developed for protein phosphorylation data, but in principle is also
applicable to other types of high-throughput data, e.g. for RNA
microarrays. We stimulated the cells with two ligands [epidermal
growth factor (EGF) and heregulin (HRG)], both as separate and
combined stimulation experiments. All three experiments were
combined to infer a signalling network which was compared
with current literature knowledge. DDEPN was able to identify

several well-known signalling chains from the MAPK and AKT
signalling pathways, some of which originally were found in ERBB2
overexpressing cells. This shows the ability of our method to identify
meaningful interactions from experimental proteomics data.

2 SYSTEM AND METHODS

2.1 Modelling the dynamics of the system
Let V ={vi : i∈1,...,N} be the set of nodes representing proteins and �=
V ×V →{0,1,2} an adjacency matrix defining a network, where 0 means
no edge, 1 activation and 2 inhibition between two nodes. The signal flow
through a given network of proteins is represented as a matrix �={γik ∈
{0,1} : i∈1,...,N,k ∈1,...,M}, which contains a series of possible system
states γk ={γi : i∈1,...,N,γi ∈{0,1}}. These are vectors of activation states
for each node at a time step k. Define 0<M ≤2N as number of reachable
system states, determined as soon as a state is repeated during the signal
propagation. Each perturbation is seen as an external influence which is
included as a node into the network and whose state is constantly active (i.e.
1).

Starting at the stimuli nodes, the status of all children is subsequently
determined. A child is active if at least one parent connected by an activation
edge is active and all parents connected via inhibition edges are inactive in the
preceding step. For example, in the matrix � shown in Figure 1, the state γB2

of protein B at Step 2 is determined by γB2 =γS1 ∧¬γA1 =1∧1=1 (where
‘¬’ is the logical negation which is used whenever a parent is connected via
an inhibitory edge).

Aformal description of the signal propagation follows: given a set of nodes
V and a network �. Define S ⊆V as the set of input stimuli and consider
the network � as fixed for the propagation. We derive the state matrix �

that comprises all M reachable state vectors γk for the given network. The
propagation is stopped at a step M, if ∃k ≤M, such that γk =γM, i.e. if one
of the preceding states is found a second time.

All stimuli nodes s∈S are active in all steps, i.e. γsk =1∀k, and all other
nodes are initialized to be 0 in the first step, i.e. γvi1 =0∀vi ∈V \S. Let pa(vi)
be the set of all parents of a node vi and φwvi an edge from a node w to vi.
For any status k and protein vi, define

E+
k−1(vi)={γwk−1 :φwvi =1, ∀w∈pa(vi)}

E−
k−1(vi)={γwk−1 :φwvi =2, ∀w∈pa(vi)}

as the sets of states of parental nodes of vi in step k−1, connected by
activating edges (E+

k−1) and connected by inhibiting edges (E−
k−1). An entry

γvik in � is then determined by:

γvik =
⎛
⎜⎝ ∨

e+∈E+
k−1(vi)

e+

⎞
⎟⎠∧¬

⎛
⎜⎝ ∨

e−∈E−
k−1(vi)

e−

⎞
⎟⎠ (1)

This procedure reduces the maximal number of columns in the system state
matrix � from 2N to M ≤2N . However, the states in � do not necessarily
correspond to the actual measured time points in the data. In general, it is
expected that a different number of reachable states than time points is found.
For example, in the hypothetical case that the system remains in a constant
state, only one state would be present �. Thus, we have to find a series
of system states that is consistent with the measured experimental data and
represents expected dynamics under our given network hypothesis, which is
described in the next section.

2.2 HMM for searching the optimal sequence of system
states

Let t ∈1,...,T denote the index for the time point and r ∈1,...,R denote
the index for the replicated measurements. Our measured data are recorded
in a data matrix X ={xitr : i∈1,...,N,t ∈1,...,T ,r ∈1,...,R}. The true
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sequence of reachable system states is represented in an unknown matrix
�∗ ={γ∗

itr : i∈1,...,N,t ∈1,...,T ,r ∈1,...,R}. Each entry in �∗ represents the
state of a node i at time point t and corresponds to each measurement xitr ,
where replicate measurements indexed by r are assumed to have the same
state. We omit the index r for notational simplicity for the rest of this section,
but the reader should be aware that optimization in the HMM is done by
multiplying all replicate emission probabilities for determining the entries in
the Viterbi matrix [as shown in Equation (4)].

Intuitively, �∗ provides a classification of measurements into
measurements coming from an active state and those from an inactive state.
We infer an estimate �̂∗ for �∗ by using an HMM H = (W ,�,A,e). Here,
W represents the range of possible values for observations, i.e. all positive
real-valued intensities generated by the array scanning software (in our case
[0,216 −1]). � is the set of possible states, as derived in Section 2.1. A is
a matrix of transition probabilities for the system states. We refer to e as
the emission probability e(xt)=p(xt|γ̂ ∗

t ,�̂) [Equation (4)], where �̂ is the
matrix of estimated model parameters [Equation (3)]. e corresponds to the
likelihood of observing data point xt given its state γ̂

∗
t . Note that xt is a

column in the measurement matrix X, i.e. a vector of intensity values.
We use the Viterbi training algorithm (Durbin et al., 1998) to find an

optimal sequence of system states and optimize the transition matrix A as
well as the parameter matrix �̂. We initialize �̂∗ by sampling random states
from �, while preserving the order of the states, and the transition matrix A to
uniform probabilities for all state transitions. We estimate model parameters
�̂ depending on �̂∗ [Equations (2) and (3)]. Now �̂∗ is updated using the
HMM and the procedure iterated until convergence, as described in Durbin
et al. (1998). This yields the final state matrix estimate �̂∗ used for the
likelihood calculation, described in the next section.

2.3 Likelihood model
For calculation of emission probabilities in Section 2.2 as well as
computation of the total network likelihood in the structure search
(Section 2.4), we set up a likelihood score that describes the probability
of observing measurements under our model, represented by the network
hypothesis. Given a state matrix estimate �̂∗, each measurement xitr for
protein i, time point t and replicate r comes from an ‘active’ normal
distribution N (µi1,σi1), if its state γ̂∗

itr =1, and from a ‘passive’ normal
distribution N (µi0,σi0), if γ̂∗

itr =0:

xitr ∼
{ N (µi0,σi0), if γ̂∗

itr =0 (passive)
N (µi1,σi1), if γ̂∗

itr =1 (active)
(2)

The parameters of each distribution for one protein are obtained as
unbiased empirical mean and SD of all measurements for this protein in
the given class. This yields the parameter matrix:

�̂={θ̂i0,θ̂i1}={(µ̂i0,σ̂i0),(µ̂i1,σ̂i1)}∀i∈1,...,N (3)

Now we can write the likelihood for a data point xt as:

p(xt|�)=p(xt|γ̂ ∗
t ,�̂)

=
N∏

i=1

R∏
r=1

p(xitr |θ̂ iγ̂∗
itr

) (4)

The total likelihood for a network hypothesis � can be written as:

p(X|�)=p(X|�̂∗,�̂)=
T∏

t=1

p(xt|γ̂ ∗
t ,�̂)

=
T∏

t=1

N∏
i=1

R∏
r=1

p(xitr |θ̂ iγ̂∗
itr

) (5)

2.4 Network structure search
The previous two sections dealt with the assessment of a single
network hypothesis. However, the aim of our method is to optimize the

network structure with respect to the network likelihood, so a suitable
network structure search strategy has to be chosen. We use a GA as
sampling-based technique for network structure search that optimizes a
whole population of candidate networks. Studies of Wahde and Hertz (2000)
and Spieth et al. (2006) show the usefulness of evolutionary strategies for
network reconstruction. We evolve a population of networks in parallel by
selection and mutation of the individuals. Selection should choose the fittest
individuals and mutations should be beneficial for the overall fitness of all
networks. Further, we allow ‘communication’ between the networks in form
of crossovers. To avoid overfitting by inclusion of too many edges in the
networks, we use the Bayesian information criterion (BIC; Schwarz, 1978)
as fitness score, which penalizes higher numbers of edges and is calculated
from the likelihood [Equation (5)]:

BIC=−2log(p(X|�))+K log(n)

where K is the number of edges in � and n is the number of data points in X.
This will result in sparse network structures.

2.4.1 GA specification A population P={�j : j∈1,...,p} of p networks,
a crossover (selection) rate q (1−q) and mutation rate m with q,m∈[0;1]
are given. During selection we choose a fraction 
(1−q)p� individuals with
probability proportional to their fitness. We require that BICs of selected
networks are smaller than the median of the BICs of all individuals in the
population, mimicing a simple greedy search, but leaving the possibility for
selecting suboptimal moves. The selected individuals are added to the next
generation population P′.

For crossing over we choose 
 qp
2 � random pairs from P, again proportional

to each individuals’ fitness. To perform crossing over of two networks, each
network adjacency matrix is represented as a vector (simply attaching all
columns to each other) and two point crossover is performed for these
vectors. The modified individuals are added to P′ if their BICs are smaller
than the median BIC for all individuals in P′. In case that after crossover the
size of the modified population P′ is smaller than p, we add as many random
individuals from P to P′, such that the population size stays constant.

Finally, we perform mutation of 
mp� networks chosen from the new
population P′. For each selected network a random edge is drawn and its type
is changed randomly to one of the remaining types. As an example, given an
edge φvw =2, it can be either changed to φ′

vw =1 or φ′
vw =0. Mutations are

allowed if the fitness of the individual improves by introducing the mutation.
These three steps are repeated until a prespecified number of iterations

(usually 1000) have been run or the median of all BICs in the population
does not change for 10 times in a row. At the end of the GA, the population
of candidate networks is combined into a final network by including each
edge that occurs in more than a prespecified fraction of all networks in the
population (usually 50% if not stated explicitly).

2.5 Data generation and preprocessing for HCC1954
RPPA data

The human breast cancer cell line HCC1954 was cultivated as recommended
by ATCC and cells were split three times per week. For stimulation
experiments, cells were seeded in 6-well plates, cultivated for 24 h and
serum-starved in phenol red-free medium for additional 24 h. EGF (Sigma,
Steinheim, Germany) and HRG (Biovision, Mountain View, CA, USA) were
added to the cells to a final concentration of 5 nM. After times 0, 4, 8,
12, 16, 20, 30, 40, 50 and 60 min, medium was replaced by ice-cold PBS
and plates were put on ice. Afterwards, PBS was aspirated and cells were
harvested by manual scraping in 40 µl lysis buffer [M-PER (Pierce, Bonn,
Germany), Complete Mini, PhosSTOP (Roche, Mannheim, Germany)]. Cells
were lysed for 20 min at 4 ◦C.After centrifugation, total protein concentration
was determined using the BCA method (Pierce, Bonn, Germany) and all
samples were adjusted to the same protein concentration. Prior to printing,
samples were mixed with Tween-20 to a final concentration of 0.05%. Three
biological replicates were generated at three different days. The samples
were printed in triplicate onto nitrocellulose coated glass slides [Oncyte;
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Table 1. Proteins and phosphorylation sites used in the RPPA analysis

Protein Phosphosite Protein Phosphosite Protein Phosphosite

AKT S473 EGFR Y1068 ERBB2 Y1112
ERBB3 Y1289 ERBB4 Y1162 ERK1/2 T202,Y204
GSK3 Y279,Y216 MEK1/2 S217,S221 MTOR S2448
p38 T180,Y182 p70S6K T389 PDK1 S241
PKCα S657,Y658 PLCγ S1248 PRAS T246
SRC Y416

Grace-Biolabs (Bend, OR, USA)] with a contact spotter [2470 Arrayer;
(Aushon Biosystems, billerica, MA, USA)] using 180 µm pins. Slides were
blocked in 50% Odyssey Blocking Buffer LI-COR (Lincoln, NE, USA)
in PBS containing 5 mM sodium fluoride and 1 mM vanadate. Primary
antibodies were diluted 1:300 in antibody diluent with background reducing
components (Dako, Glostrup, Denmark). Alexa 680 labelled secondary
antibodies (Molecular Probes, Darmstadt, Germany) were diluted 1:5000 in
PBS (+0.2% NP-40, 0.02% SDS + 0.5% BSA). After drying, arrays were
scanned using the Odyssey Infrared Imaging System (LI-COR, Lincoln,
NE, USA) and signal intensities were determined with GenePix Pro 5.0
(Molecular Devices, Sunnyvale, CA, USA). Sample normalisation was
done using Fast Green FCF dye (see Loebke et al., 2007; Luo et al.,
2006) to account for different protein concentrations in each spot on the
array. Replicate time courses were centred around their common mean to
remove systematic shifts in the intensities. Sixteen antibodies for specific
phosphorylation sites were used to obtain signal intensities of phosphorylated
protein. A list of the proteins and phosphorylation sites is shown in Table 1.
The antibodies were obtained from the following companies: ERBB4 and
GSK3 from Epitomics (Burlingame, CA, USA), ERBB2 from Millipore
(billerica, MA, USA), MEK1/2 from Sigma, PKCα from Abcam (Cambrige,
UK) all others from Cell Signaling (Beverly, MA, USA).

3 RESULTS AND DISCUSSION

3.1 Simulations
3.1.1 Generation of simulation data Given a number of nodes
and a number of input stimuli, we generated networks as follows:
starting at the input stimuli, we sampled outgoing activation edges
until all nodes were connected and added 20% of the number of
activating edges as inhibitions to retrieve fully connected networks.
This ensured that all nodes could be reached by a stimulus signal and
that feed forward and feed back loops were included in the network.

Given such a sampled network, a data matrix X (as defined in
Section 2.2) was constructed. We refer to parameters nstim as the
number of distinct input stimuli and cstim as the number of stimulus
combinations. Each stimulus gives rise to a separate experiment, so
for each stimulus a separate state matrix was constructed by our
effect propagation. A state transition matrix for each stimulus was
built up by sampling T columns with replacement from each state
matrix, while the order of the states was preserved. Each column
in the state transition matrix was repeated R times to generate
replicates. Finally, all state matrices were attached to get the total
state matrix �, and all state transition matrices were attached to
generate �∗.

Then, for each time point, replicate and node a measurement xitr
was sampled from two Gaussian distributions, either from xitr ∼
N (1200,400) if γ∗

itr =0 or from xitr ∼N (2000,1000) if γ∗
itr =1.

The parameters for the Gaussians (mean and variance) were chosen

A B

Fig. 2. Performance of state recovery for increasing number of nodes N (A)
and number of stimuli nstim (B).

similar to the observed measurements in our real data. We chose
T =10 and R=9 as number of time points and number of replicates
for the simulations.

3.1.2 Recovering the true state sequence We tested how good the
HMM from Section 2.2 is able to recover a true state sequence �∗.
For this purpose we sampled networks for increasing number of
nodes and performed the effect propagation from Section 2.1 for
different numbers of input stimuli. �∗ matrices were sampled 100
times for each network and stimulus combination, and for each �∗
data was generated as described in Section 3.1.1. We performed the
HMM state sequence search for all data matrices and compared the
resulting state transition matrix �̂∗ with the corresponding reference
�∗ in terms of sensitivity SN= (TP/(TP+FN)) and specificity
SP= (TN/(TN+FP)), counting the true and false occurrences of the
entries in �̂∗. Figure 2 shows that the recovery performance stays
constantly high at average values of around SN=0.84 and SP=0.95
for networks up to 30 nodes, and around SN=0.83 and SP=0.97
for increasing the number of input stimuli nstim. Hence, given an
unknown series of system states, the HMM is able to identify the
correct states, even for bigger networks with up to 30 nodes.

3.1.3 Performance of structure search We sampled random
networks and generated intensity measurements as described in
Section 3.1.1. For network comparisons, we counted the number of
truly inferred edges (TP), truly not inferred edges (TN), erroneously
inferred edges (FP) and erroneously not inferred edges (FN). Note
that now we counted edges in the network, and not entries in the
state matrix as in the previous section. Network reconstructions were
done for artificial networks of size N =10 with population sizes from
p∈{100,250,500}, q=0.3 and m=0.8. Also increasing numbers
of different input stimuli were compared. We chose nstim∈{1,2}
and cstim∈{0,1}. To measure the performance, the GA was run
for 25 sampled networks, each time with the maximum number of
generations set to 1000. The edge inclusion threshold for the final
network (Section 2.4) was varied in [0;1], and the respective final
network for each given threshold was compared with the original
net, yielding SN and SP values for the generation of receiver operator
characteristic (ROC) curves and area under curve (AUC) values.

Figure 3 shows that the reconstruction performance was limited
for the case of nstim=1,cstim=0 and increasing population
size p=100, p=250 and p=500 (AUCs 0.57,0.6,0.61), while
a slight increase could be found for the bigger population size.
This is expected because the use of a bigger population ensures
broader sampling of the network search space. However, true
increase in performance was reached when including two distinct
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A

B

Fig. 3. (A) ROC curves and AUCs for different settings of input (nstim)
and combinatorial stimuli (cstim) and population sizes (p). SN and SP were
calculated as average of each 25 network reconstructions with network size
of N =10. (B) Example SN and SP plot for th=0.5 for all settings. For
p=500, SP was high at ∼0.83, while SN increased from ∼0.17 to ∼0.4.
This shows, that DDEPN found edges with strong support from the data
with low FP rates. The increase in SN for bigger population sizes shows,
that broader sampling of the network search space yielded better inference
results.

stimuli (nstim=2) and further including one stimulus combination
(cstim=1). Here, the AUCs increased to 0.75 and 0.73, respectively.
As before, for higher population sizes the AUCs increased (from
0.7 to 0.75). In Figure 3B, for a fixed threshold th=0.5, SN and
SP were plotted for each simulation test. In the nstim=1 case,
SP was high around 0.87, while SN was rather low around 0.17.
For nstim=2, SN increased to values around 0.4, while SP improved
from 0.78 to 0.83 for growing population sizes. This showed that
inclusion of multiple stimuli triggering signalling in the network
at different input nodes increased the amount of information that
could be used to find the signalling connectivity, and thus resulted
in better identification of true edges in the network (apparent in the
increasing SN values). However, it was also apparent that SN levels
were still rather low, so the reconstruction missed quite a number
of edges, that should have been found. On the other hand, the high
values for SP ensured that inferred edges were those with strong
support from the experimental measurements, and thus could be
expected to be meaningful. Summarising this, our method was able
to recover parts of the original signalling networks but did this with
high specificity, meaning that predominantly true edges were found.
This makes the method useful for the generation of new interaction
hypotheses.

3.2 Comparison with related approaches for network
inference

We compared our method with the DBN reconstruction approach
G1DBN of Lébre (2009) and to a recent method of Rau et al.
(2010), called ebdbNet. For network size N =10, 25 networks
were simulated and the reconstruction performed. We repeated each
network reconstruction 100 times and calculated ROCs and AUCs
as shown in Section 3.1.3. The results are depicted in Figure 4.
For nstim=1,cstim=0, DDEPN performed slightly better than

A

B

Fig. 4. ROC curves and AUCs for DDEPN network reconstruction
compared with G1DBN and ebdbNet. (A) For nstim=1,cstim=0, a slight
improvement of AUCs was observed, and performances were limited for
all approaches. (B) For nstim=2,cstim={0,1}, a clear increase in AUC
was found for DDEPN, showing the improved quality of the network
reconstructions.

G1DBN and ebdbNet (AUCs 0.61 for DDEPN, 0.58 and 0.55
for G1DBN and ebdbNet, respectively). However, the performance
was limited in this case for all methods. Using nstim=2, DDEPN
clearly outperformed G1DBN and ebdbNet, for both cstim=0
(AUC = 0.75) and cstim=1 (AUC = 0.73). This highlighted the
ability of DDEPN to make use of the additional information gained
from multiple perturbations. The better performance had its price in
terms of computation time. On average, a 10 node network with three
input stimuli was reconstructed in around 7000 s using DDEPN,
while G1DBN and ebdbNet completed this task in a few seconds.
However, the network inferred in DDEPN was derived from a whole
population of candidate networks that covers larger portions of the
network search space than the other two approaches. Calculation
was done on a Quad-Core AMD Opteron(tm) 2.7 GHz machine
with 64 GB memory, on which each 14 cores were used in parallel
to optimize the population of networks in the GA. Because of the
better performance of the reconstruction and the fact that DDEPN
was able to infer both activation and inhibition edges, we think this
price is worth paying.

We also compared our new approach DDEPN with the related
approach deterministic effects propagation networks (DEPNs) of
Fröhlich et al. (2009), but were not able to infer reasonable networks
under the settings applied here. This was for two reasons: first,
DEPN was designed for the setting of few time points and many
perturbations, i.e. the information on the signal flow is collected
through the perturbation of many or even all nodes in the network,
so a small number of time points is sufficient. In DDEPN, we only
introduced few perturbations and got additional information on the
signal flow through a higher number of time points. Therefore, it was
not possible to capture the signalling relationships of the components
downstream the perturbed nodes with high resolution using DEPN.
Second, DEPN cannot model perturbations as stimulation, but only
as knockdown. So both methods have specific requirements and
cannot be exchanged without care for different datasets. However,
DDEPN can also be run with more than two perturbed nodes and
has the advantage, that both types of perturbation can be included.
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Fig. 5. Network reconstructed from HCC1954 data. Interactions found in
the literature are marked as thick lines. Dark nodes mark the input stimuli.
The numbers at the edges show the proportion of networks in the final GA
population, in which the respective edge was contained.

3.3 Signalling networks in HCC1954 breast cancer cell
line

We used DDEPN to reconstruct a signalling network from our
data. Parameters were chosen as population size 500, maximum
iterations 1000, crossover rate q=0.3 and mutation rate m=0.8.
The inferred network is shown in Figure 5. An edge is shown if it
was contained in at least 50% of the networks in the final population
(th=0.5), allowing only interactions with strong support from the
data. We saw several signal cascades in our network that were
known from the literature. For example, we inferred the regulation
HRG → ERBB1. Olayioye et al. (1999) showed that HRG is an
activator of the ERBB-Dimers 1/3 and 1/4, which supported this
result. Activation of ERBB2 by EGF or HRG could be found in
Jones et al. (1999) (EGF/HRG → ERBB2/3), which also supported
activation of PKCα by HRG through the cascade HRG → ERBB2
→ PKCα, since crosstalk between ERBB2 and PKCα in ERBB2
overexpressing breast cancer cells was reported by Magnifico et al.
(2007). The result was further interesting, since our HCC1954 cells
overexpress ERBB2. Kim et al. (2009) reported activation of p38 by
ERBB2 in ERBB2 overexpressing breast cancer cells, reflected in
our activation EGF → p38. The activations of MEK1/2, ERK1/2 and
p70S6K by EGF are key elements in the classical MAPK signalling
cascade EGF → ERBB1/1 → GRB2 → SOS1 → RAS → RAF1
→ MEK1/2 → ERK1/2 → p70S6K. EGF → ERBB1/1 → PLCγ

was shown by Kim et al. (1990), which demonstrated the relevance
of the activation EGF → PLCγ in our network. Further EGF →
AKT � GSK3α is found in the cascade EGF → ERBB → GRB2
→ GAB1 → PI3K → AKT � GSK3α.

More hypothetical interactions included the inferred SRC
activation (ERBB3 → SRC), interpreted as activation of SRC by
ERBB2 (see e.g. Luttrell et al., 1994; Mao et al., 1997; Xian et al.,
1997) through the ERBB2/3 heterodimer. Finally, PDK1 activation
by receptor tyrosine kinases was shown by Cohen et al. (1997) in
insulin signalling. We found the activation ERBB3 → PDK1, which
supported the hypothesis that the cascade ERBB1/3 → PI3K →
PIP3 → PDK1 (see Oda et al., 2005; Vanhaesebroeck et al., 1997)
might also play a role in cancer-related signal transduction processes.

All of these inferred and literature confirmed interactions had high
support by our data (occurrence in >75% of all networks in the final
population, see edge labels in Figure 5). Our findings showed that
literature knowledge was reproduced well by our method and in
addition allowed for discussion of the newly inferred interactions.

However, there were cases, where interactions would have been
expected, but were not found in the network. For example, in the
classical MAPK cascade, MEK1/2 phosphorylates ERK1/2 directly.
In our network, the interaction between MEK1/2 and ERK1/2
was not found, but only direct activations of the two proteins by
EGF. The reason was that we only measured phosphorylation at
time points 8 and 12 min. Activation of MEK1/2 and ERK1/2 is
expected around 10 min after stimulation, but in our data we saw
peaks for both proteins at the 12 min time point. Thus, we could
not resolve this cascade at a higher resolution. Another problem
arised when proteins of a signalling cascade were not measured
on the array, as seen, for example, for several of the components
in the MAPK cascade (e.g. RAS, RAF, etc.). So even if a direct
edge between two proteins is found, it has to be carefully assessed
whether this edge is a direct influence or an indirect interaction over
multiple intermediate steps. Our data only represents the abundance
of phosphorylated protein in the cells, which might increase or
decrease in response to a ligand. All interactions from such data are
abstract influences between two proteins that have to be validated in
further experiments. However, considering these kind of caveats and
performing careful interpretation of the results makes our method
suitable for the generation of reasonable hypotheses on signalling
cascades.

4 CONCLUSION
In this work, we showed a novel approach for the reconstruction
of signalling networks from high-throughput proteomics data
generated on RPPAs. The phosphorylation of 16 proteins related
to ERBB signalling in human breast cancer was measured after
three different stimulations (EGF, HRG, EGF+HRG). We devised
a method that describes the signalling dynamics in a discretized
way and infers the most likely series of activation states for all
proteins at each time point given a candidate network by using an
HMM. A likelihood model was set up to describe the goodness of
fit of our measurements for a particular candidate network. To find
a best fitting network, the space of possible network hypotheses is
searched by a GA. We tested our method on simulated data and found
good performance for the reconstruction of given networks, and
improved performance over two other DBN approaches that were
suitable for analysing our kind of data. Finally, we used our method
to infer a signalling network from real protein phosphorylation
measurements, generated by RPPAs for cell lysates from the human
breast cancer cell line HCC1954. We successfully identified parts
of signalling cascades, as they could be found in the literature,
in particular from the MAPK and AKT signalling cascades, with
some interactions originally found in ERBB2 overexpressing breast
cancers (e.g. HRG→PKCα). As new technologies such as RPPAs
arise that make parallel measurement of larger numbers of proteins
feasible, the need for suitable methods for the analysis of this kind of
data is apparent. Our method aims precisely at this niche and gives
an example for upcoming systems proteomics methodology.
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