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Rates of urbanization are increasing globally, with consequences for the
dynamics of parasites and their wildlife hosts. A small subset of mammal
species have the dietary and behavioural flexibility to survive in urban
settings. The changes that characterize urban ecology—including landscape
transformation, modified diets and shifts in community composition—can
either increase or decrease susceptibility and exposure to parasites. We used
a meta-analytic approach to systematically assess differences in endo-
parasitism between mammals in urban and non-urban habitats. Parasite
prevalence estimates in matched urban and non-urban mammal populations
from 33 species were compiled from 46 published studies, and an overall
effect of urban habitation on parasitism was derived after controlling for
study and parasite genus. Parasite life cycle type and host order were investi-
gated as moderators of the effect sizes. We found that parasites with complex
life cycles were less prevalent in urban carnivore and primate populations than
in non-urban populations. However, we found no difference in urban and
non-urban prevalence for parasites in rodent and marsupial hosts, or differ-
ences in prevalence for parasites with simple life cycles in any host taxa.
Our findings therefore suggest the disruption of some parasite transmission
cycles in the urban ecological community.

1. Introduction

Urbanization is transforming patterns of societal growth, resource consumption,
energy use and cultural attitudes towards the natural world [1]. More than half
of the human population has moved into cities, and the proportion of urban
residents is predicted to reach 68% by 2050, with most of the urban growth
occurring in lower-income countries [2]. One consequence of urbanization is
the rapid expansion of urban areas across the globe, resulting in the transform-
ation of landscapes and the disruption of ecological processes [3]. Over 3% of
global land has been modified into an urbanized environment characterized by
administrative boundaries, domination by human infrastructure and widespread
impervious surface area [4]. Large-scale land-use conversion, in turn, transforms
the biogeochemical and climatic processes of an area [5,6] and alters ecological
communities [7,8].

Studies that investigate urban ecology find a consistent pattern: urban expan-
sion causes shifts in species composition, which reduce species evenness and
often lead to a decrease in biodiversity in urban areas [9,10]. Intense land-use
change and urban dangers exclude most native mammals from the urban
environment, especially mammals with larger body sizes, slow life histories or
specialized diets and activity patterns [11-13]. These “‘urban avoiders” are dis-
placed from urbanizing areas by a select few species that establish populations
in or around cities [8,10]. Mammal species that survive in urban environments
often have omnivorous diets, flexible foraging strategies and increased sociality,
though diverse strategies are used to acquire urban space and resources [14].
Some species rely on natural areas surrounding cities but use urban areas for
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movement or additional food sources [15]. These “urban utili-
zers’ include howler monkeys (Alouatta spp.) and marmosets
(Callithrix spp.), known to travel along power lines in order
to traverse urban areas, and coyotes (Canis latrans) that move
through the urban-wildland interface and prey on domestic
animals [15-18]. Other species, termed “urban dwellers’, can
live entirely within urban boundaries, and include ubiquitous,
small-bodied mammals like Rattus norvegicus and Mus
musculus [13,15].

Changes in the ecological structure of urbanized land-
scapes can have cascading effects on the dynamics of hosts
and parasites [19]. Some parasites are expected to disappear
from cities along with their native hosts, thus reducing urban
parasite biodiversity [20]. However, the urban environment
also facilitates unique opportunities for parasite maintenance
and transmission, including through interactions between
wild mammals, humans and domestic animals [19]. Domestic
animals can serve as disease reservoirs, thus increasing disease
pressure on wildlife that frequent residential areas [21,22].
In addition, the movement of non-native host species in
urban areas may be accompanied by the introduction of
novel parasites into urban ecosystems [23].

The health of human populations living in cities is also
affected by parasites maintained in urban mammal populations
[24,25]. Non-human primates that use urban environments
often have contact with humans through food provisioning or
conflict [17,26,27]. Due to their close evolutionary relationship
to humans, primates are more likely to share parasites with
humans [28]. In addition, human populations living in areas
of severe urban poverty, where clean water and proper sani-
tation are inaccessible, are especially vulnerable to zoonotic
diseases that further exacerbate the cycle of poverty [29]. Inves-
tigating how the urban environment influences host-parasite
dynamics is therefore essential for understanding the health
of wildlife and humans in cities—including in the context of
zoonotic disease transmission—while also informing policy
on conservation and human-wildlife conflict management.

Several factors may increase susceptibility or exposure to
parasites with different transmission modes in urban relative
to non-urban mammal populations. Chemical pollutants
and excess artificial light disrupt immune function, rendering
urban mammals more vulnerable to infection [30]. Populations
of urban mammals may occur at higher densities and forage in
areas of clumped food resources, allowing for more frequent
interactions with conspecifics that could increase exposure
to directly transmitted parasites [9,31-35]. The community
composition of the urban environment may exacerbate the
transmission of parasites that require intermediate hosts or
vectors if a higher relative abundance of urban-dwelling
species increases the ratio of competent to non-competent
hosts [36]. Finally, contact with humans and human waste
may expose urban mammals to zoonotic diseases that are
common in humans, particularly in areas without adequate
waste disposal [19,29].

Other aspects of the urban environment, however, may
reduce parasite risk in urban mammals. Urban wildlife often
derive a significant portion of their diet from human foods,
are less affected by seasonal food shortages and have better
body condition than their counterparts living in non-urban
settings [37,38]. Consistent access to higher caloric content
may bolster immune function and reduce susceptibility to
infection [39]. Similarly, although clumped food resources
may facilitate greater contacts for direct parasite transmission

between individuals, the abundance of food may also decrease
the need to actively forage, reducing the ranging area and
exposure to environmentally transmitted parasites [40]. Finally,
many parasites may be absent in the urban environment due to
the lack of hosts or proper climatic conditions for their life
cycles [20].

A number of studies have investigated the effects of urbaniz-
ation on parasitism in mammalian wildlife by comparing
geographically close populations across anthropogenic disturb-
ance gradients [41-43]. Because these studies occur in vastly
different locations and focus on different host and parasite
taxa, they often produce different findings. As described
above, multiple factors contribute to urban mammal parasite
dynamics, yet most pairwise comparisons of urban and non-
urban populations lack the statistical power to discern the
relative roles of these factors. In addition, the effect of urban habi-
tat on parasitism probably varies across host—parasite systems
depending on shifts in the abundance and behaviour of each
species in a transmission cycle. A broad, comparative approach
enables investigation into the nuanced patterns of interaction
across different hosts and parasites in the urban environment.

To more systematically assess the effects of the urban
environment on parasitism, we conducted a meta-analysis
investigating differences in parasitism between mammals
using or dwelling in urban habitats and those living in non-
urban habitats. We tested two competing hypotheses concerning
the effects of urban habitat use on mammal parasitism. Under
the ‘urban burden hypothesis’, urban habitat use increases
parasite prevalence because urban stressors, abundance of com-
petent reservoir species and higher host population density
increase susceptibility and exposure to infectious disease. By con-
trast, the “‘urban refuge hypothesis’ proposes that urban habitat
use decreases mammal parasite prevalence because greater
access to resources, less intensive home range use and less suit-
able habitat for parasites decreases susceptibility and exposure.
We predict that parasite prevalence will be higher in urban mam-
mals than in non-urban mammals if the former hypothesis is
supported, but the opposite pattern will prevail if the latter
hypothesis is supported.

We conducted a meta-analysis of studies that reported parasite
prevalence data for a mammal population occupying an urban
environment and the surrounding non-urban environment. A sys-
tematic search of studies published in peer-reviewed journals
from 1980 to the present was carried out using the Web of
Science ‘Topic’ function, which scans titles, keywords and
abstracts. We initially collected all publications returned after
using the search terms ‘mammal’ AND ‘parasit*’ AND (‘urban*
OR ‘disturbance’ OR ‘prevalence’). The term ‘disturbance’ was
included to encompass studies that investigated the effect of
human disturbance on parasitism and may have sampled at an
urban site. We then collected all additional publications from a
second search in which we replaced ‘mammal’ with ‘primat*’
OR ‘rodent* OR ‘canid* OR ‘felid* OR “procyon* OR ‘marsupi*’,
and ‘parasit*’ with ‘virus* OR ‘bacteria* OR ‘protozoa* OR
‘helminth*. In addition, we used the primate database within
the Global Mammal Parasite Database (GMPD), a source of
published parasite data on wild primate populations [44,45], to
examine all records for primates in the genera Papio, Cercopithecus,
Macaca, Trachypithecus, Semnopithecus, Callithrix, Sapajus and



Alouatta, which are known to occur in urban areas [46]. We focused
on the primate database within the GMPD because these records
are most up to date.

The titles and abstracts of returned publications were screened
for indications of prevalence estimates in wild mammal popu-
lations and narrowed to 433 studies. These studies were scanned
further for signs of mammal populations with territories that
extend into urban areas, as judged based on terms such as ‘city’,
‘metropolis’ and ‘high/dense human population’, or a map
indicating an urban sampling site. We confirmed the original
authors’ classifications of study sites as urban versus non-urban
by using Google Maps to search each sampling location by city
name; a site was confirmed as urban if the satellite imagery
showed the presence of dominating human infrastructure and
artificial substrates. Non-urban areas were characterized by a
lower density of humans, an absence of human infrastructure or
artificial substrates, and habitat types that included forest reserves,
forest fragments and agricultural land.

All prevalence data were extracted from studies that included
urban and non-urban mammal populations comprised of the
same species and compared within the same country. Publications
typically provided prevalence data on multiple parasites, giving
multiple effect sizes per study. If a source reported on multiple
urban or non-urban populations, the data were averaged by
population (weighted by sample size) to calculate a combined
prevalence estimate for each habitat type in the study. If a source
reported prevalence data along a gradient of urbanization, the
individuals sampled in sites with the lowest and highest degrees
of urbanization were used to calculate matched prevalence esti-
mates. Zero was included as a reported prevalence if a parasite
was searched for but not found in a population. We contacted
the corresponding author of a study if the data supporting the
study were not entirely reported in the publication but were clearly
relevant to our meta-analysis.

A parasite was defined as any micro- or macro-organism that
derives benefits from living within a host organism at the
expense of the host. All parasites investigated were endoparasites
(i.e. living inside the host). The life cycle of each parasite was
recorded as complex or simple based on information from the
GMPD and the Encyclopaedia of Parasitology [44,45,47]. Para-
sites with complex life cycles include vector-borne parasites
(i.e. transmitted when an infected arthropod bites a competent
host) and parasites that require transmission from an intermedi-
ate host to a primary host [33]. Parasites with simple life cycles
do not require multiple hosts. These include environmentally
transmitted parasites that spread through contaminated soil,
water or food, and directly transmitted parasites that spread
through close contact between conspecifics [33]. The order of
each host species was recorded as Carnivora, Primata, Rodentia,
Didelphimorphia, Diprotodontia or Permelemorphia. The latter
three orders were represented by fewer studies than the others
and were combined under the infraclass Marsupialia for analysis.

(b) Data analysis
An effect size, in the form of a log odds ratio, was obtained for each
paired urban and non-urban prevalence comparison. An odds
ratio measures the association between an exposure (in this case,
to the urban environment) and an outcome (parasite infection).
If the log odds ratio is greater than zero, there is a higher preva-
lence of parasite infection in the exposed, or urban, group and
vice versa for a log odds ratio less than zero. If the log odds ratio
equals zero, parasite prevalence was the same for both the urban
and the non-urban groups. A sampling variance was obtained
for each effect size based on the sample size used to estimate
prevalence in that study.

A random-effects meta-regression was performed on the effect
sizes using the ‘rma.mv’ function in the ‘metafor” package [48] in
R.3.6.1. [49], with a significance level of 0.05. Several studies

reported prevalence data for more than one parasite in the same
population, resulting in multiple effect sizes per study. These
data are not independent because individuals that are infected
with one parasite may be more susceptible to others; therefore,
‘study’ was included as a random effect. We also controlled for
phylogenetic relationships in our meta-analysis, as traits are
often more similar among closely related species [50,51]. The
same can be true for effect sizes obtained from different species
[52,53]. To account for the phylogeny of host species, a molecu-
lar-based phylogeny of mammals [54], along with the “phytools’
and ‘geiger’ packages [55,56], was used to test the residuals of
the random-effects meta-regression model for phylogenetic
signal by estimating Pagel’s A [57]. The parameter 1 is estimated
using maximum likelihood and ranges from 0 to 1. When 4
approaches zero, this reduces all internal branches to zero, result-
ing in a ‘star phylogeny’ [58], indicating that species are
statistically independent of the phylogenetic structure. A retains
greater than 90% power for phylogenies with a minimum of 20
species [57]. The detailed phylogenies are not available to assess
phylogenetic signal in parasite prevalence; thus, the parasite
genus was included as a random effect in the model. Random
effects were kept in the model if they had non-zero variance.
After random effects were evaluated, an overall effect of urban
habitat on parasite prevalence was obtained. The variables ‘host
order’ and ‘parasite life cycle’ were then added to the meta-
regression model to investigate whether they moderated the
overall effect. We also tested for an interaction between host
order and parasite life cycle, based on the expectation that
variation in urban habitat use may expose host taxa to different
types of parasites. In addition, the sampling variances of the
effect sizes were investigated as a moderator variable to test for
publication bias. If larger sampling variances predict larger effect
sizes, this would be consistent with a bias towards publishing
smaller studies that report significant differences in parasite preva-
lence for urban and non-urban habitat types (see [59]). To further
investigate publication bias, we applied Egger’s test of funnel plot
asymmetry to a plot of effect sizes and standard errors [59].

3. Results

Our literature search identified 184 effect sizes from 46 published
studies in which parasitism was compared between host
populations in urban and non-urban settings [41-43,60-102]
(electronic supplementary material, S1). In total, parasite
prevalence data were available on mammal populations repre-
senting 33 species in urban and non-urban habitats of six
continents (figure 1a). Seventy-seven unique parasite genera
were represented, consisting mostly of helminths (68%), fol-
lowed by protozoa (23%), bacteria (5%) and viruses (4%).
Twelve parasite genera were found in urban wildlife hosts and
absent (zero prevalence) from non-urban hosts, while seven
genera were found only in non-urban hosts.

Accounting for confounding variables, we found that the
urban setting was weakly associated with overall lower para-
site prevalence in mammal populations (OR = —0.37, p = 0.05;
figure 1b). Both ‘study’ (6*=0.26) and ‘parasite genus’ (6> =
0.52) were included as random effects. Phylogenetic signal
was tested with a phylogeny of 32 out of 33 species; one
study reported the prevalence of Peromyscus leucopus and
Peromyscus maniculatus together due to the difficulty of dis-
tinguishing between them, so we included P. leucopus in the
tree for these data [91]. Phylogenetic signal was not evident
in residuals from the model (maximum-likelihood estimate of
A=0), so no further phylogenetic regression methods were
deemed necessary.
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Figure 1. Phylogeny and effect sizes. (a) Phylogeny of mammal species included in the meta-analysis [53]. Branches are unscaled. The host species within each
order are coded by a unique colour/shape combination. (b) Forest plot of log odds ratios computed for each host/parasite, arranged by host order and coded by host
species according to the phylogeny on the left-hand side. Error bars indicate sampling variance of each effect size, and parasites with complex and simple life cycles
are represented by solid and dotted bars, respectively. The mean log odds ratio and standard error are listed for each order. A log odds ratio less than zero indicates
lower parasite prevalence in urban habitat relative to non-urban habitat, while a log odds ratio greater than zero indicates a higher prevalence in urban habitat.
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Figure 2. Interaction between host order and parasite life cycle moderates
parasite prevalence differences. A log odds ratio less than zero indicates a
lower prevalence of parasite infection in the urban environment. The
urban environment has a more negative effect on the prevalence of complex
life cycle parasites, compared to simple life cycle parasites, in Primata and
Carnivora, but this trend is not present in Marsupialia or Rodentia. Circles
show the mean log odds ratio of each group, while error bars indicate stan-
dard errors.

Table 1. Coefficients of all variables included in the meta-regression model
indicating how the effect of the urban environment on parasite prevalence,
calculated as a log odds ratio, is moderated by host order, parasite life
cydle and sampling variance of the effect sizes. The effect of ‘order is
compared to Marsupialia. An interaction is present between host order and
parasite life cycle. A log odds ratio of less than zero indicates a lower
prevalence of parasite infection in the urban environment.

model coefficients estimate + s.e. z-value p-value
intercept 0.98 £ 0.50 1.98 0.05
simple life cycle —0.01£0.44 —0.02 0.86
(arnivora —2.48 £0.58 —4.26 <0.01
Primata —3.47 £ 0.60 —5.76 <0.01
Rodentia —0.82 £0.54 —1.51 0.13
simple x Carnivora 0.97 £0.56 1.72 0.08
simple X Primata 216 £ 0.53 4.04 <0.01
simple X Rodentia —0.11+0.50 —-0.21 0.83
sampling variance 0.07 +0.10 0.65 0.51

The coefficients from the full meta-regression model
revealed variation in effect sizes for the different factors
that were included, with some factors (or their interactions)
resulting in higher prevalence in urban settings (table 1).
Thus, effect sizes were more negative for parasites with com-
plex life cycles in primate hosts (u=-1.86, 0=2.59) and
carnivore hosts (u=-1.46, 0=1.07) than for parasites with
simple life cycles in primate hosts (u=-0.34, 0=1.89) and
carnivore hosts (u = 0.23, o= 1.33), but this interaction between
a transmission mode and host taxonomy was not found in
marsupials or rodents (figure 2). The significant positive
intercept indicates that parasite prevalence was significantly
higher in urban settings for Marsupilia. We did not find evi-
dence for publication bias: the sampling variance was not a
significant moderator of effect sizes (=0.07 +0.10, p=0.51),

non-urban I
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prevalence

urban parasite life cycle

complex

lower
prevalence
no prevalence no prevalence
difference - — difference
Rodentia Marsupialia
simple

no prevalence
difference

no prevalence

" ; ; _— difference
Carnivora Primata Rodentia Marsupialia

Figure 3. Summary of findings. Parasites with complex life cycles were less
prevalent in primate and carnivore populations using urban habitats than
those in nearby non-urban habitats. No difference in urban and non-urban
prevalence was observed for rodent and marsupial hosts, or for parasites
with simple life cycles in any of the host taxa. All images are public
domain except ‘Marsupialia silhouette, used with permission by Sarah Wern-
ing under Creative Commons Attribution 3.0 Unported licence. (https:/
creativecommons.org/licenses/by/3.0/legalcode).

and the test for funnel plot asymmetry was not significant
(z=-1.30, p=0.19; electronic supplementary material, S2).

4. Discussion

In support of the urban refuge hypothesis, we found that para-
sites with complex life cycles were less prevalent in primate
and carnivore populations using urban habitats than those in
surrounding rural or forest habitats. However, no difference
in urban and non-urban prevalence was observed for rodent
and marsupial hosts, or for parasites with simple life cycles
in any of the host taxa (figure 3). The effect of the urban
environment on parasite prevalence was variable and highly
moderated by the taxonomic order of the host and the life
cycle of the parasite, suggesting that unique characteristics of
host—parasite systems determine specific responses to highly
altered environments. Among papers included in this meta-
analysis, observed decreases in urban parasite prevalence
were commonly attributed by the authors to a greater avail-
ability of human-derived food and elimination of some
habitat suitable for parasites or organisms involved in parasite
life cycles. On the other hand, observed increases in urban
parasite prevalence were attributed by authors to increased
host population densities, aggregation of resources and
abundance of domestic animals. We consider each of these
potential factors in turn.

The consistent availability of food in cities, and resulting
shifts in diet, have been well studied in urban wildlife [7].
Altered diets may reduce consumption of intermediate hosts,
thereby disrupting the complex life cycles of parasites that
infect carnivore and primate definitive hosts. One study
included in our analysis found that rural coyotes (Canis latrans)
consumed more rodents, while urban coyotes foraged on gar-
bage [42]. A similar trend was observed in urban foxes (Vulpes
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vulpes) that were later found to have lower infection rates of
Echinococcus multilocularis, a helminth that requires rodents
as an intermediate host [78,79,81]. Chacma baboons (Papio
ursinus) are known to forage regularly for human-derived
foods in Cape Town, which may reduce consumption of insects
[103]. Nematodes of the Physaloptera genus depend on beetles
or roaches as an intermediate host, and P. ursinus closer to
Cape Town had a lower prevalence of Physaloptera sp. (8%)
than a population in a nearby nature reserve (78% [73]).

The climatic and structural changes associated with the
urban environment can alter the survival of vectors, intermedi-
ate hosts or parasites at various life stages, thereby disrupting
the complex life cycles of some parasites. Vector species are
small, ectothermic arthropods, and their survival and fitness
is sensitive to the higher temperatures of urban air, standing
water and physical substrates [104]. Also, the conversion of
natural, heterogeneous landscapes to urbanized areas domi-
nated by infrastructure removes favourable breeding habitat
for vectors and hosts [105]. For example, Macracanthorhynchus
ingens primarily infects raccoons (Procyon lotor) but uses reptile
or amphibian species as paratenic hosts [95]. Procyon lotor in
rural Canada had a higher rate of M. ingens infection than P.
lotor in urban Ontario, where habitat conditions are less ideal
for reptiles and amphibians [95]. Therefore, parasite life cycles
dependent on specific food webs are disrupted by not only
the overabundance of human food but also the reduced abun-
dance of prey species that are unable to find suitable habitat in
the urban environment.

While we found a reduced prevalence of parasites with
complex life cycles in carnivore and primate hosts, this pattern
was not apparent in rodent and marsupial species. In fact, mar-
supial hosts seemed to have higher parasite prevalence in the
urban environment, although the sample size of studies for
this host taxa was smaller than the others. The complex life
cycles of certain parasites found in rodents and marsupials
may be completed in domestic animals, which are present at
high populations in urban areas. For example, domestic
cats are definitive hosts of Toxoplasma gondii and shed oocysts
that infect intermediate hosts [47]. Studies of T. gondii in
woodchucks (Marmota monax) and quenda (Isoodon obesulus)
suggested that urban prevalence was affected by the increased
presence of cats [43,64]. Dogs and cats are also definitive
hosts for some cestodes and roundworms identified in urban
rodents [79,94].

We found no significant differences in the prevalence of
parasites with simple life cycles in urban and non-urban popu-
lations for any of the host taxa. Models of host biodiversity
loss and parasite species richness have predicted that
parasites species with simple life cycles are more robust to
decreased host diversity [106]. This anticipated robustness
may be reflected in the stable infection rates observed between
urban and non-urban mammal populations in our meta-
analysis. Individual studies within the meta-analysis did
report higher or lower urban prevalence of parasites with
simple life cycles. In Australia, for example, I. obesulus and
Trichosurus vulpecula were found to have a higher prevalence
of Giardia spp. and Cryptosporidium spp. [60,64]. Increased
urban population densities and aggregation of food and
water resources may contribute to an increased likelihood of
faecal-oral transmission [64]. On the other hand, Rhabdomys
pumilio was present at lower population densities in urban
environments of the Western Cape Province, South Africa
[74]. Reduced nematode prevalence and species richness in

these rodents were attributed to a lack of adequate micro- [ 6 |

habitat necessary for nematodes to complete the external
stages of their life cycles [74]. Variation in effect sizes across
studies may also reflect shifting interactions of parasites
within hosts in response to urban habitation, especially given
the decreased presence of parasites with complex life cycles
in some hosts, although further research is needed on this
topic [107].

Each of the four mammalian orders included in this meta-
analysis are represented by a small subset of species that
occupy or use urban environments, indicative of the lack of
diversity among urban wildlife. The subfamily Cercopitheci-
nae, for example, was overrepresented among primate
species, and Muridae was overrepresented among rodents.
Though we did not consider parasite host range as a factor in
this study, we predict that the small size of the host community
in urban environments may hinder the success of parasites that
infect a wide array of hosts in a non-urban setting. Not all
urban wildlife was represented; notably, no study on the Virgi-
nia opossum (Didelphis virginiana) was included, although
studies have been done on their diet, home range and body
mass in urban areas [108,109]. Overall, this collection of studies
represents a reasonably diverse sample of species that use
urban environments but excludes the vast majority of fauna
native to each region.

In addition, although we sought to include all endoparasite
taxa of urban and non-urban mammals, the majority of
parasites included were helminths and protozoa. We attribute
this to the parasitological methods adopted by most studies,
which typically involved visual identification of parasites in
the stool or intestinal samples. Additional studies are needed
that compare bacterial and viral infections in urban and non-
urban wildlife. Furthermore, future research could investigate
whether the trends observed in this study apply to multiple
measures of parasitism, or whether reduced urban parasite
prevalence is associated with increases in other measures,
such as individual parasite load.

We did not formally evaluate whether parasites with zoo-
notic risk to humans are affected differently by the urban
environment than non-zoonotic parasites. Many of the studies
we included identified parasites to the genus level, making it
difficult to determine whether a species was host-specific or
to assess its zoonotic status. However, the close proximity of
wildlife to areas of dense human activity is likely to increase
the risk of zoonotic disease transmission, and risk will be high-
est where socioeconomic and environmental conditions are
appropriate for urban hosts and parasites. For example,
inadequate sanitation is associated with an increased presence
of rodents in the home, which maintain the cestodes H. dimin-
uta and R. nana [94,101]. Children of low-income families are at
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