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Abstract

Background: Automatic extraction of biomedical events from literature, that allows for faster update of the latest
discoveries automatically, is a heated research topic now. Trigger word recognition is a critical step in the process of
event extraction. Its performance directly influences the results of the event extraction. In general, machine
learning-based trigger recognition approaches such as neural networks must to be trained on a dataset with plentiful
annotations to achieve high performances. However, the problem of the datasets in wide coverage event domains is
that their annotations are insufficient and imbalance. One of the methods widely used to deal with this problem is
transfer learning. In this work, we aim to extend the transfer learning to utilize multiple source domains. Multiple
source domain datasets can be jointly trained to help achieve a higher recognition performance on a target domain
with wide coverage events.

Results: Based on the study of previous work, we propose an improved multi-source domain neural network transfer
learning architecture and a training approach for biomedical trigger detection task, which can share knowledge
between the multi-source and target domains more comprehensively. We extend the ability of traditional adversarial
networks to extract common features between source and target domains, when there is more than one dataset in
the source domains. Multiple feature extraction channels to simultaneously capture global and local common
features are designed. Moreover, under the constraint of an extra classifier, the multiple local common feature
sub-channels can extract and transfer more diverse common features from the related multi-source domains
effectively. In the experiments, MLEE corpus is used to train and test the proposed model to recognize the wide
coverage triggers as a target dataset. Other four corpora with the varying degrees of relevance with MLEE from
different domains are used as source datasets, respectively. Our proposed approach achieves recognition
improvement compared with traditional adversarial networks. Moreover, its performance is competitive compared
with the results of other leading systems on the same MLEE corpus.

Conclusions: The proposed Multi-Source Transfer Learning-based Trigger Recognizer (MSTLTR) can further improve
the performance compared with the traditional method, when the source domains are more than one. The most
essential improvement is that our approach represents common features in two aspects: the global common features
and the local common features. Hence, these more sharable features improve the performance and generalization of
the model on the target domain effectively.
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Background
Recently, with the biomedical research development, an
explosive amount of literature has been published online.
As a result, it has brought a big challenge to the tasks
of biomedical Text Mining (TM) for automatic identifi-
cation and tracking of the new discoveries and theories
in these biomedical papers [1–3]. Recognizing biomed-
ical events in text is one of critical tasks, which refers
to automatically extracting structured representations of
biomedical relations, functions and processes from text
[3]. Since the BioNLP’09 [4] and BioNLP’11 [5] Shared
Tasks, event extraction has become a research focus, and
many biomedical event corpora have sprung up, espe-
cially on molecular-level. For instance, a corpus from
the Shared Task (ST) of BioNLP’09 [4] contains 9 types
of frequently used biomolecular events. A corpus from
the Epigenetics and Post-translational Modifications (EPI)
task of BioNLP’11 [5] contains 14 protein entity mod-
ification event types and their catalysis. And another
corpus consists of events relevant to DNA methylation
and demethylation and their regulations [6]. Moreover,
in order to obtain a more comprehensive understanding
of biological systems, the scope of event extraction must
be broadened from molecular-level reactions to cellular-,
tissue- and organ-level effects, and to organism-level out-
comes [7]. Hence, in MLEE corpus [8] wide coverage of
events from the molecular level to the whole organism
have been annotated with 19 event categories.
The structure of each event is defined through event

triggers and their arguments. Hence, the most popu-
lar methods of event extraction contain two main steps:
identifying the event triggers and then the arguments
sequentially [9]. The first step, event trigger recognition,
recognizing those verbal forms that indicate the appear-
ances of events, is crucial to event extraction. Event
extraction performance depends entirely on the recog-
nized triggers. Previous study of Björne et al. [10] clearly
reveals that more than 20 points performance degrada-
tion is caused by the errors introduced by the use of
predicted triggers rather than the gold standard triggers.
A large number of methods have been proposed to pre-
dict the types of trigger words. Each word in an input
sentence is assigned an event category label, or a nega-
tive label if it does not represent any event. Many machine
learning-based methods, especially Artificial Neural Net-
work (ANN) or deep learning-based methods, have been
successfully applied to recognize event trigger words
[11–13]. These methods mainly focus on improving the
network construction to acquire various effective feature
presentations from the text. The stronger feature learning
capabilities of deep learning models improve trigger word
recognition performance.
However, these deep learning-based approaches rely on

large quantity and high quality annotated training data.

Acquiring manually labeled data is both time consum-
ing and expensive. It is not trivial to keep up to date
with the annotations of expanding event types across wide
coverage in biomedical literature, including molecular-,
cellular-, tissue-, organ-, and organism-levels. As we have
mentioned above, MLEE is one of this kind of corpus,
which has 19 event categories. Among them, there are
nearly 1000 annotations in the most annotated category,
while there are less than 10 annotations in the least anno-
tated category. Moreover, there are eight categories whose
annotations are less than 100. Hence, the main issues of
the dataset are lacking of labeled data and data imbal-
ance, which will greatly degrade recognition performance.
It is desirable to adopt other new techniques to learn a
higher accuracy trigger recognizer with limited annotated
and highly imbalanced training data. Recently, transfer
learning (TL) has been proposed to tackle the issues [14],
which has been successfully applied to many real world
applications, including text mining [15, 16]. Briefly, the
purpose of transfer learning is to achieve a task on a tar-
get dataset using some knowledge learned from a source
dataset [14, 17]. These transfer learning methods mainly
focus on obtainingmore data from related source domains
to improve the recognition performance. Through mak-
ing use of transfer learning, the amount of data on the
target dataset that needs manual annotation is reduced.
Moreover, the generalization of the model on the target
dataset can be improved. With transfer learning, a large
amount of annotated data from related domains (such as
the corpus of biomolecular event annotations, the corpus
of Epigenetics and Post-translational Modifications (EPI)
task, the corpus of DNA methylation and demethylation
event annotations, and so on) is helpful to alleviate the
shortage and imbalance problem of training data in the
target task domain (such as the MLEE corpus).
Many methods of transfer learning have obtained

remarkable results in many data mining and machine
learning fields through transferring knowledge from
source to target domains [18–20]. Among these transfer
learning methods, adversarial training achieves great suc-
cess recently [21], and attracts more and more researcher
attention. Zhang et al. ([22]) introduces an adversar-
ial method for transfer learning between two (source
and target) Natural Language Processing (NLP) tasks
over the same domain. A shared classifier is trained on
the source documents and labels, and applied to tar-
get encoded documents. The proposed transfer method
through adversarial training ensures that encoded features
are task-invariant. Gui et al. ([23]) proposes a novel recur-
rent neural network, Target Preserved Adversarial Neu-
ral Network (TPANN) to do Part-Of-Speech (POS) tag-
ging. The model can learn the common features between
source (out-of-domain labeled data) domain and target
(unlabeled in-domain data, and labeled in-domain data)
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domain, simultaneously preserve target domain-specific
features. Chen et al. ([24]) proposes an Adversarial Deep
Averaging Network (ADAN) for cross-Lingual sentiment
classification. ADAN has a sentiment classifier and an
adversarial language discriminator to take input from a
shared feature extractor to learn hidden representations.
ADAN transfers the knowledge learned from labeled data
on a resource-rich source language to low-resource lan-
guages where only unlabeled data exist. Kim et al. ([25])
proposes a cross-lingual POS tagging model that uti-
lizes common features to enable knowledge transfer from
other languages, and private features for language-specific
representations.
Traditional transfer learning models were designed to

transfer knowledge from a single source domain to the
target domain. In the practical application of biomedi-
cal trigger recognition, we can access to datasets from
multiple domains. This is also the case in many other
applications. Hence, some multi-source domain transfer
learning approaches are proposed. Chen and Cardie ([26])
proposes a Multinomial Adversarial Network (MAN) for
multi-domain text classification. MAN learns features
that are invariant across multiple domains. The method
extracts sharable features between source domains and
the target domain globally. Some multi-task learning
methods withmultiple source domains are involved. Chen
et al. ([27]) proposes adversarial multi-criteria learning for
Chinese word segmentation by integrating shared knowl-
edge from multiple segmentation criteria. The approach
utilizes adversarial strategy to make sure the shared layer
can extract the common underlying and criteria-invariant
features, which are suitable for all the criteria. Liu et al.
([28]) proposes an adversarial multi-task learning frame-
work for text classification, in which the feature space is
divided into the shared and private latent feature space
through adversarial training. These methods are dedi-
cated to extract shared features between source domains
and the target domains globally, which are invariant
among all the available domains. They don’t concern the
distinct importance of each source to the target domain.
On the other hand, Guo et al. ([29]) puts forward an
approach only from the aspect of capturing the relation
between the target domain and each source domain to
extract common features.
Generally, these models separate the feature space into

the shared and private space. The features from the private
space are used to store domain-dependent information,
while the ones from the shared space are extracted to
capture domain-invariant information that is transferred
from the source domain. We can assume that if there
are multiple datasets from different but related source
domains available, it may bring more transferred knowl-
edge and produce more performance improvement. The
major limitation of these methods is the fact that they

cannot be easily extended to make full use of datasets
from multiple source domains. With the division meth-
ods, the feature space that can be globally shared with the
target domain and all the source domains may be lim-
ited. These globally shared features are invariant to all
these domains. It is no guarantee that there are more
sharable features do not exist outside these global shared
features. Hence, some useful sharable features could be
ignored. Our idea is that a suitable shared feature space
should contain more common information besides the
global shared features. To address the problem, we pro-
pose a method to compensate for the deficiency. In our
method, common (shared) features are composed of two
parts: the global common (shared) features and the local
common (shared) features. The global common features
are extracted and domain-invarian among all the source
domains and the target domain, while the local common
features are extracted between a pair of single source
domain and the target domain. We attempt to combine
the capabilities of sharable features extracted from dif-
ferent aspects simultaneously. To achieve this goal, we
adopt adversarial networks into a multi-channel feature
extraction framework to transfer knowledge from multi-
ple source domains more comprehensively. This provides
us with more feature information from relevant datasets.
Our aim in this study is to transfer the trigger recog-

nition knowledge from multiple source domains to the
target domain more comprehensively. In summary, the
contributions of this paper are as follows:

• We propose a improved Multi-Source Transfer
Learning-based Trigger Recognizer (MSTLTR)
framework to incorporate data from multiple source
domains by using adversarial network-based transfer
learning. To our knowledge, no reported research has
applied multi-source transfer learning to make the
best use of related annotated datasets to find the
sharable information in biomedical trigger word
recognition task. The MSTLTR framework can adapt
to the situation of zero to multiple source domain
datasets.

• We design multiple feature extraction channels in
MSTLTR, which aim to capture global common
features and local common features simultaneously.
Moreover, under the constraint of an extra classifier,
the multiple local common feature sub-channels can
extract and transfer more diverse common features
from the related multi-source domains effectively.
Finally, through feature fusion, the influence of
important features will be magnified, on the contrary,
the impact of unimportant features will be reduced.

• Comprehensive experiments on the event trigger
recognition task confirm the effectiveness of the
proposed MSTLTR framework. Experiments show
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that our approach improves the recognition
performance over the traditional division models
further. Moreover, its performance is competitive
compared with the results of other leading systems
on the same corpus.

The rest of this paper is organized as follows. A detailed
description of the proposed improved Multi-Source
Transfer Learning-based Trigger Recognizer (MSTLTR)
framework is introduced in “Methods” section.
“Results” section describes the used biomedical corpora
and experimental settings, and all the experimental
results. Then “Discussion” section presents in-depth
analysis. Finally, we present a conclusion and future work
in “Conclusions” section.

Results
Corpus description
An in-depth investigation is carried out to compare
the performance of our proposed Multi-Source Trans-
fer Learning-based Trigger Recognizer, MSTLTR. The
dataset DataMLEE is used as the target domain dataset.
With varying degrees of label overlapping, DataST09,
DataEPI , DataID and DataDNAm are used as the source
domain datasets.

DataMLEE

The MLEE corpus [8] is used to train and test our
MSTLTR model as a target dataset. The corpus is taken
from 262 PubMed abstracts focusing on tissue-level and
organ-level processes, which are highly related to certain
organism-level pathologies. In DataMLEE , 19 event types
are chosen from the GENIA ontology, which can be clas-
sified into four groups: anatomical, molecular, general and
planned. Our task is to identify the correct trigger type of
each word. Hence, there are 20 tags in the target label set,
including a negative one. The named entity and trigger
types annotated in the corpus are illustrated in Table 1. In
the trigger types of DataMLEE , ten labels overlapped with
source datasets are marked using ‘*’. Moreover, the corre-
sponding number of triggers of the overlapped types in
both DataMLEE and each source corpus, and also the pro-
portions of these numbers per total number of triggers in
each corpus are shown in Table 2. In the target domain
dataset DataMLEE , the overlapped trigger with the high-
est proportion is “Positive regulation”, and its proportion
is ‘966/5407’, i.e. 18%. On the other hand, the overlapped
trigger with the lowest proportion is “Dephosphorylation”,
and its proportion is only ‘3/5407’, i.e. 0.06%. There is a big
gap between them. At the same time, we can see that the
trigger “Phosphorylation” from the target dataset overlaps
in all the source domain datasets. “Dephosphorylation”
overlaps only in one source domain dataset DataEPI . And
the remaining triggers only overlap in the two source

Table 1 Named entity and trigger types in DataMLEE , the target
domain dataset. In the trigger types of DataMLEE , the labels
overlapped with source domain datasets are marked using ‘*’

Corpus Named entity
type

Trigger type

DataMLEE Gene or gene
product

Cell proliferation, Planned process

Drug or
compound

Development, Synthesis

Developing
anatomical
structure

Blood vessel develop

Organ, Tissue Growth, Death

Immaterial
anatomical entity

Breakdown, Remodeling

Anatomical
system

Regulation*, Localization*

Organism, Cell Binding*, Gene expression*

Pathological
formation

Transcription*

Organism
subdivision

Protein catabolism*

Multi-tissue
structure

Phosphorylation*

Cellular
component

Dephosphorylation*

Organism
substance

Positive regulation*

Negative regulation*

domain datasets, DataST09 and DataID. All the statis-
tics of sentences, words, entities, triggers and events in
the training, development and test sets are presented in
Table 3.

DataST09
This corpus is taken from the Shared Task (ST) of BioNLP
challenge 2009 [4] and contains training and development
sets, including 950 abstracts from PubMed. It is used to
train our MSTLTR as a source dataset. In this corpus, 9
event types are chosen from the GENIA ontology involv-
ing molecular-level entities and processes, which can be
categorized into 3 different groups: simple events, bind-
ing events and regulation events. The named entity and
trigger types annotated in the corpus are illustrated in
Table 4. In the trigger types of DataST09, the labels over-
lapped with the target dataset are marked using ‘*’. We can
see that it is nested in the label set of the target domain
with 9 overlapped labels. The training and development
sets are combined as a source domain dataset DataST09.
Moreover, the corresponding number of triggers of the
overlapped types in both DataST09 and the target corpus,
and also the proportions of these numbers per total num-
ber of triggers in each corpus are shown in Table 2. In the
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Table 2 The detailed statistics of triggers of overlapped types between each source corpus and the target corpus, including (1) the
numbers of triggers of overlapped types between each source corpus and the target corpus, (2) and the proportions of these numbers
per total number of triggers in each corpus

Overlapped trigger type Target Source Source Source Source

DataMLEE DataST09 DataEPI DataDNAm DataID

Regulation 540/5407 1026/10270 - - 187/2155

Localization 415/5407 268/10270 - - 43/2155

Binding 158/5407 1007/10270 - - 125/2155

Gene expression 342/5407 2374/10270 - - 347/2155

Transcription 23/5407 654/10270 - - 47/2155

Protein catabolism 24/5407 120/10270 - - 27/2155

Phosphorylation 29/5407 231/10270 112/2038 3/707 54/2155

Dephosphorylation 3/5407 - 3/2038 - -

Positive regulation 966/5407 2379/10270 - - 298/2155

Negative regulation 683/5407 1311/10270 - - 180/2155

source domain dataset DataST09, the overlapped trigger
with the highest proportion is “Positive regulation”, and its
proportion is ‘2379/10270’, i.e. 23%. On the other hand, the
overlapped trigger with the lowest proportion is “Protein
catabolism”, and its proportion is only ‘120/10270’, i.e. 1%.
All the statistics of sentences, words, entities, triggers and
events in DataST09 are shown in Table 5.

DataEPI
This corpus is taken from the Epigenetics and Post-
translational Modifications (EPI) task of BioNLP chal-
lenge 2011 [5] and contains training and development
sets, including 800 abstracts relating primarily to protein
modifications drawn from PubMed. It is also used to train
our MSTLTR as a source domain dataset. In this corpus,
there are 15 event types, including 14 protein entity mod-
ification event types and their catalysis. The named entity
and trigger types annotated in the corpus are illustrated
in Table 6. In the trigger types of DataEPI , the labels over-
lapped with the target dataset are marked using ‘*’. There
are only 2 labels are overlapped, which is weakly related
with the target domain. The training and development
sets are combined as a source domain dataset DataEPI .
Moreover, the corresponding number of triggers of the

Table 3 Statistics of sentences, words, entities, triggers and
events in the dataset DataMLEE , including the training set, the
development set, and the test set, respectively

Item Training Development Test

Sentences 1271 457 880

Words 27,875 9,610 19,103

Entities 4147 1431 2713

Triggers 2685 913 1809

Events 3,296 1,175 2260

overlapped types in both DataEPI and the target corpus,
and also the proportions of these numbers per total num-
ber of triggers in each corpus are shown in Table 2. In the
source domain dataset DataEPI , one overlapped trigger is
“Phosphorylation”, and its proportion is ‘112/2038’, i.e. 5%.
The other overlapped trigger is “Dephosphorylation”, and
its proportion is only ‘3/2038’, i.e. 0.1%. All the statistics of
sentences, words, entities, triggers and events in DataEPI
are shown in Table 5. The number of annotated triggers in
DataEPI is less than that in the DataST09, annotating the
more event types.

DataDNAm
This corpus consists of abstracts relevant to DNA methy-
lation and demethylation events and their regulation. The
representation applied in the BioNLP ST on event extrac-
tion was adapted [6]. It is also used to train our MSTLTR
as a source dataset. The named entity and trigger types
annotated in the corpus are illustrated in Table 7. In the
trigger types of DataDNAm, the only one label overlapped
with the target dataset are marked using ‘*’. The training
and development sets are combined as a source domain

Table 4 Named entity and trigger types in DataST09. In the
trigger types of DataST09, the labels overlapped with DataMLEE are
marked using ‘*’

Corpus Named entity type Trigger type

DataST09 Protein Gene expression*

Transcription*, Binding*

Protein catabolism*

Phosphorylation*

Localization*, Regulation*

Positive regulation*

Negative regulation*
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Table 5 Statistics of sentences, words, entities, triggers and events in the source domain datasets, DataST09, DataEPI , DataID and
DataDNAm , respectively

Source dataset Sentences Words Entities Triggers Events

DataST09 10,761 269,861 16,315 10270 13,560

DataEPI 7,827 170,809 10,094 2038 2,453

DataDNAm 1,305 32,510 1,964 707 1,034

DataID 3,412 83,063 8,501 2155 2,779

dataset DataDNAm. From Table 2, in the source domain
dataset DataDNAm, the only overlapped trigger is “Phos-
phorylation”, and its proportion is ‘3/707’, i.e. 0.4%. All the
statistics of sentences, words, entities, triggers and events
in DataDNAm are shown in Table 5.

DataID
This corpus is taken from the Infectious Diseases (ID)
task of BioNLP challenge 2011 [5], drawn from the pri-
mary text content of recent 30 full-text PMC open access
documents focusing on the biomolecular mechanisms of
infectious diseases. It is also used to train our MSTLTR
as a source dataset. In this corpus, 10 protein entity mod-
ification event types are chosen. The core named entity
and trigger types annotated in the corpus are illustrated
in Table 8. In the trigger types of DataID, the labels
overlapped with the target dataset are marked using ‘*’.
Same as DataST09, there are 9 overlapped trigger labels.
The difference is that DataID has one label “Process”
that does not belong to the target domain. The training
and development sets are combined as a source domain
dataset DataID. From Table 2, in the source domain
dataset DataID, the overlapped trigger with the highest
proportion is “Gene expression”, and its proportion is
‘347/2155’, i.e. 16%. On the other hand, the overlapped
trigger with the lowest proportion is “Protein catabolism”,
and its proportion is only ‘27/2155’, i.e. 1%. All the statis-
tics of sentences, words, entities, triggers and events in

Table 6 Named entity and trigger types in DataEPI . In the trigger
types of DataEPI , the labels overlapped with DataMLEE are marked
using ‘*’

Corpus Named entity type Trigger type

DataEPI11 Protein Hydroxylation, Dehydroxylation

Phosphorylation*, Deglycosylation

Dephosphorylation*, Catalysis

Ubiquitination, Acetylation

Deubiquitination

DNA methylation

DNA demethylation

Glycosylation, Deacetylation

Methylation, Demethylation

DataID are shown in Table 5. In addition to “protein”, the
DataID defines four more types of core entities, includ-
ing “two-component-system”, “regulon-operon”, “chemi-
cal” and “organism”.

Implementation details
All of the experiments are implemented using the Tensor-
flow library [30]. Batch size is 20 for all the tasks from no
matter what domain the recognition task comes from. We
tune the pre-trained word embedding vector Ew to 200
dimensions, character embedding vector Ec to 100, POS
embedding vector Ep to 50, named entity type embed-
ding vector Ee to 10, and dependency tree-based word
embedding vector Ed to 300 dimensions for all the source
domains and the target domain. BiLSTMs are used in the
private, global common and local common feature extrac-
tion components. In particular, they are all with a hidden
state dimension of 300 (150 for each direction). In the
feature fusion layer, the fully-connected units are 600.
Hyper-parameters are tuned using training and devel-
opment sets through cross-validation and then the final
model is trained on the combined set of the optimal ones.
The trade-off hyper-parameters are set to α1 = 0.04, α1 =
0.01, and β = 0.1. In order to avoid overfitting, dropout
with a probability 0.5 is applied in all components.

Performance assessment
We measure the performance of the trigger recognition
system in terms of the F1-measure. The F1 is determined
by a combination of precision and recall. Precision is the
ratio of the real positive instances to the positive instances
in the classification results of the model. Recall is the ratio

Table 7 Named entity and trigger types in DataDNAm . In the
trigger types of DataDNAm , the labels overlapped with DataMLEE

are marked using ‘*’

Corpus Named entity type Trigger type

DataDNAm Protein DNA methylation

DNA demethylation

Phosphorylation*

Ubiquitination

Methylation

Deacetylation
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Table 8 Named entity and trigger types in DataID . In the trigger
types of DataID , the labels overlapped with DataMLEE are marked
using ‘*’

Corpus Named entity type Trigger type

DataID Protein Gene expression*

two-component-system Transcription*

regulon-operon Protein catabolism*

chemical Phosphorylation*

organism Localization*

Binding*

Process

Regulation*

Positive regulation*

Negative regulation*

of the real positive instances in the classification results of
the model to the real positive instances in the data. They
are defined as follows:

F1 − measure = 2Precision × Recall
Precision + Recall

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

where TP is the number of the instances that are correctly
classified to a category, FP is the number of the instances
that are misclassified to a category, and FN is the number
of the instances misclassified to other categories.

Transfer learning performance
In this section, comprehensive experiments is carried out
to study the performance of our proposed Multi-Source
Transfer Learning-based Trigger Recognizer, MSTLTR.
First of all, we will analyze the impact of different com-
binations of source domain datasets on our transfer
learning-based model through a group of experiments.
Then, based on these experiments, the performance of the
best model is compared with other leading systems.
The first group of experiments is used to compare

the performance changes of our transfer learning model
under different number of source domain datasets. For
convenience, all source datasets are numbered from S1
to S4 in the order of DataST09, DataEPI11, DataDNAm and
DataDI . The results are summarized in Table 9, which
can be divided into 4 modes, including “No source”, “One
source”, “Two sources” and “Multi-source”. In the first
“No Source” mode, the trigger recognition result with-
out transfer learning is displayed, which is a Basic Model.
The more detailed description of the Basic Model is in
“Basic model” section. Then in the second “One Source”
mode, all the transfer learning model results using only

one source dataset are listed. The third mode, “Two
Sources”, illustrates the results under all the combination
of 2 source datasets. However, there are many combina-
tions. Considering the limited space, we only list the com-
binations of the best single source dataset (S1) and other
datasets. Finally, “Multi-Source” mode shows the results
of 3 and 4 source datasets. The illustrated 3 source dataset
results are obtained based on the best “Two Sources”
results. In each mode, the average results of all possible
combinations of the source domains are listed by “AVG”.
From the results we can see that no matter how many

source datasets are utilized, our proposed MSTLTR can
improve the trigger recognition performance. Further,
the more source datasets are used, the more perfor-
mance improvements can be achieved. Compared with
the “No Source” result, which is achieved without using
transfer learning, “One Source” can increase the perfor-
mance by 1.19% on average, “Two Sources” can increase
the performance by 1.9% on average, and “Multi-Source”
can increase the performance by 2.91% on average. In
the best case, when 4 source domain datasets are used,
the performance improvement can reach 3.54%. This
improvement is due to the fact that with multiple source
domain datasets, more features are transferred to the tar-
get domain, signifying more effective knowledge sharing.
It is worth noting there are improvements in both pre-
cision and recall, which refer to the ability of MSTLTR
to identify more positive triggers. Higher precision and
recall signify identification of more potential biomedical
events during the subsequent processing phase, which is
important for the ultimate event extraction application.
If we make a more detailed analysis, it is shown that

the amount of knowledge that can be transferred from
the source datasets is different, when they have different
degrees of overlap with the target dataset. In the “One
Source” mode, the source datasets DataST09 and DataDI
having 9 overlapping event triggers with the target dataset
can both improve the performance more than the source
datasets DataEPI11 and DataDNAm having just 2 and 1
overlapping event triggers, respectively. The more related
the source dataset is to the target dataset, the more effec-
tive the transfer learning is. However here, the difference
between them is not significant.

MSTLTR compared with other trigger recognition systems
Then, based on the best setting of the previous group
of experiments, we compare the performance of the pro-
posedMulti-Source Transfer Learning-based Trigger Rec-
ognizer, MSTLTR, with other leading systems on the same
DataMLEE dataset. The detailed F1-measure results are
illustrated in Table 10.
Pyysalo et al. [8] defines an SVM feature-based Sys-

tem with rich hand-crafted features to recognize triggers
in the text. Zhou et al. [31] also defines an SVM-based
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Table 9 Detailed results achieved by the proposed MSTLTR Model with different number of source datasets. All source datasets are
numbered from S1 to S4 in the order of DataST09, DataEPI11, DataDNAm and DataDI . In the first “No Source” mode, the trigger recognition
result without transfer learning is displayed. Then in the second “One source” mode, all the results using only one source dataset are
listed. In the third “Two sources” mode, only the results of the combinations of the best single source dataset (S1) and other datasets
are listed. Finally, “Multi-source” mode shows the results of multiple source domain transfer learning, including 3 and 4 source datasets.
The illustrated 3 source dataset results are obtained based on the best “Two Sources” results. In each mode, the average results of all
possible combinations of the source domains are listed by “AVG”

Mode Source domain Precision Recall F1-measure

No Source - (Basic Model) 79.47 77.23 78.34

One Source DataST09(S1) 82.25 77.89 80.01

DataEPI11(S2) 81.74 76.60 79.09

DataDNAm(S3) 81.99 76.44 79.12

DataDI(S4) 82.80 77.24 79.92

AVG - - 79.53

Two Sources S1 + S2 81.79 78.78 80.26

S1 + S3 83.28 77.77 80.43

S1 + S4 83.16 78.56 80.80

AVG - - 80.24

Multi-Source S1 + S2 + S4 83.62 78.36 80.90

S1 + S3 + S4 84.10 78.36 81.13

S1 + S2 + S3 + S4(MSTLTR Model) 83.96 79.89 81.88

AVG - - 81.25

System with word embeddings and hand-crafted features.
Nie et al. [32] proposes a word embedding-assisted Neural
Network-based System to model semantic and syntactic
information in event trigger identification. Wang et al.
[33] defines a window-based convolution neural network
classifier, a CNN-based Neural Network System. Rahul et
al. [34] proposes a method that uses a recurrent neural
network (RNN-based Neural Network System) to extract

higher-level sentence features in trigger identification. Li
et al. [35] proposes a novel contextual label sensitive
gated network for biomedical event trigger extraction,
as well as attention mechanism (Attention-based Neu-
ral Network System) to get more focused representations
of dependency-based semantic information. Hao et al.
[11] proposes a recursive neural network to represent
the whole dependency tree globally (Tree-base Neural

Table 10 Detailed performance results achieved by the proposed MSTLTR and the other leading trigger recognition systems

Trigger recognition system Precision Recall F1-measure

SVM feature-based System [8] 81.44 69.48 75.67

SVM-based System [31] 80.60 81.60 78.32

Neural Network-based System [32] 71.04 84.60 77.23

CNN-based Neural Network System [33] 80.67 76.76 78.67

RNN-based Neural Network System [34] 79.78 78.45 79.11

Attention-based Neural Network System [35] 81.33 79.48 80.39

Tree-base Neural Network System [11] 81.12 79.15 80.28

Convolutional Highway Neural Network System [12] 80.06 81.25 80.57

Hybrid Neural Network System [13] 80.03 81.54 80.66

Joint-GATE-Sentence Neural Network System [36] 81.58 81.08 81.33

Joint-GATE-Document Neural Network System [36] 82.11 82.53 82.32

BioBERT-based Neural Network System [37] 79.48 83.76 81.57

Our MSTLTR System 83.96 79.89 81.88
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Network System), to better incorporate dependency-
based syntax information. Chen et al. [12] presents an
end-to-end Convolutional Highway Neural Network Sys-
tem and extreme learning machine (CHNN-ELM) frame-
work to detect biomedical event triggers. Diao et al. [13]
proposes a Hybrid Neural Network System which consists
of Fine grained Bidirectional Long Short Term Mem-
ory (FBi-LSTM) and Support Vector Machine (SVM)
to deal with the event trigger identification. Zhang et
al. [36] proposes a variational neural approach, which
can take advantage of latent topics underlying doc-
uments for biomedical event extraction. Joint-GATE-
Document model is the proposed model that jointly trains
document-level latent topics, obtained through a designed
document-level neural topic model (NTM), and trigger
detection. Joint-GATE-Sentence is a similar model, but
latent topics are learned on the sentence-level. Lee et
al. [37] proposes a domain-specific language representa-
tion model BioBERT, which is pre-trained on large-scale
biomedical corpora. It uses bidirectional encoder repre-
sentations from transformers, which has almost the same
architecture of BERT [38]. BioBERT-base Neural Net-
work System is built using the source code1 on DataMLEE
through fine-tuning based on the pre-trained weights
BioBERT-Base v1.1. The optimal combination of hyper-
parameters and pre-trained weights is obtained using
cross-validation.
From the results in Table 10, we can draw following

conclusions:

• The neural network methods outperform the
feature-based methods on the average. In Table 10,
only the first SVM feature-based System uses purely
hand-crafted features. The second SVM-based
System uses word embeddings learned by neural
language modeling in addition to the rich hand-
crafted features. The remaining neural network-based
systems use distributional representations of words,
rather than manual features. All these neural network
methods have brought different degrees of
performance improvement. F1-measure can be
increased by 6.65 at most and 1.56 at least.

• Through careful structure design, recognition
performance of neural network system is better. In
the neural network systems, compared with the basic
CNN or RNN network structures (Neural Network-
based System, CNN-based Neural Network System
and RNN-based Neural Network System), careful
designs of tree structure (Tree-base Neural Network
System), attention mechanism (Attention-based
Neural Network System), convolutional Highway
structure (Convolutional Highway Neural Network

1https://github.com/dmis-lab/biobert

System), hybrid structure (Hybrid Neural Network
System), document-level neural topic structure
(Joint-GATE-Document Neural Network System),
transfer learning from transformers (BioBERT-based
Neural Network System) and transfer learning from
adversarial networks (Our MSTLTR System) have
brought the performance enhancement. F1-measure
can be increased by 5.09 at most and 1.17 at least.

• Compared with Joint-GATE-Document Neural
Network System, the F1-measure performance of our
MSTLTR System is 0.44 lower, but it is still a
competitive result with a higher precision. In
Joint-GATE-Document Neural Network System, one
of the important factors for performance
improvement is the designed document level neural
topic model, which extracts document-level context
information. Compared with that,
Joint-GATE-Sentence Neural Network System model
mentioned in [36], using sentence-level context
information, has a F1-measure 0.55 lower than our
MSTLTR System. Another important factor is the
use of BERT word embeddings. In addition to the
word2vec model we all use, they also employ BERT
embeddings. According to their comparison,
“without the BERT embeddings, it leads to mostly
1.55 degradation” of the model performance.

• Similar to BioBERT-based Neural Network System,
we all use the idea of transfer learning. And our
models both are pre-trained on the source domain
datasets, and work on the target domain through
fine-tuning. However, we use different mechanisms
and network structures to realize transfer learning.
BioBERT has almost the same architecture of BERT,
which consists of 12 layers of multi-head
self-attention networks. BioBERT is pre-trained on
PubMed abstracts (PubMed) and PubMed Central
full-text articles (PMC). Then, all the pre-trained
network weights are used to represent features and be
fine-tuned on the target domain. For our MSTLTR
System, adversarial network is used to transfer
knowledge. Our MSTLTR System is pre-trained on
some relevant source domain data with overlapping
labels. Then, only common features (including global
common and local common features), not all the
features, are fine-tuned on the target domain. The
F1-measure of our MSTLTR System is 0.31 higher
than that of BioBERT-based Neural Network System.

• Our MSTLTR System has the highest precision and
competitive F1-measure values. However, the recall is
lower than that of some systems. Then the recall
needs to be further improved in our system, because
that higher recall will bring more possible triggers
available in the following step in the process of
biomedical event extraction.

https://github.com/dmis-lab/biobert
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Discussion
Effect of common features
In this section, we take a closer look at the impact of
different scope of feature channels on the trigger recog-
nition performance. The features of MSTLTR model are
provided by feature extraction channels, including a pri-
vate feature channel, a global common feature channel
and multiple local common feature sub-channels. All the
trigger recognition models used to compare their results
are illustrated in Table 11. First, “Model I” is the Basic
Model without using any common features brought by
transfer learning, which is a baseline performance here.
Then, “Model II”s are the models just using global com-
mon features, which is a traditional adversarial method of
transfer learning. The four models from “Model II-1” to
“Model II-4” are built using 1 to 4 source datasets respec-
tively. The combinations of source domain datasets adopt
the modes that can achieve the best results in Table 9.
Hence, “Model II-1” is built using source domain dataset
S1, “Model II-2” is built using S1 + S4, “Model II-3” is
built using S1 + S3 + S4, and “Model II-4” is built using
S1 + S2 + S3 + S4 respectively. Finally, based on all
the 4 source datasets, “Model III”, which is our proposed
MSTLTR model, utilizes the global common and local
common features simultaneously.
From the results in Table 11, we can get two main con-

clusions about global and local common features. First,
no matter extracted from how many source datasets, the
global common features can always improve the recogni-
tion performance. The global common features, extracted
from a trained adversarial network, are domain-invariant,
which can effectively improve the performance of recog-
nition on the basis of private features. The global common
features extracted using a single source domain increase
F1-measure by 1.67. At the same time, from the results of
the four “Model II”s we can see that, the model “Model II-
4” trained through themost source datasets is not the best.
On the contrary, the model “Model II-2” trained using
two source datasets can obtain the best performance. In
other words, more source data from different domain
datasets may not bring more domain-invariant features.

The global common feature channel is built to extract
the domain-invariant features across all the target and
source domain datasets. As the number of source domain
datasets keeps increasing, the total domain-invariant fea-
tures among them that can be extracted will decrease. In
our system, some of common features will be provided
and enhanced by local common feature channel. There-
fore, when only global common features are used, the
“Model II-2” obtains the best performance with the most
global common features. The performance of “Model II-4”
decreases with less global common features.
Second, based on global common features, adding the

local common features can further improve recognition
performance. Each local common feature sub-channel is
also trained on an adversarial network, which can bring
more transferred local common features between the tar-
get domain and certain source domain datasets. More-
over, an extra classifier is designed to prevent local com-
mon features of different source domains from interfering
with each other. Hence, they can effectively provide dif-
ferent emphases from different domains to supplement
the global common features. After feature fusion, the
global common features are enhanced by the local com-
mon features. The influence of important features will be
magnified, and the impact of unimportant features will be
reduced. When “Model II-4” incorporates the local com-
mon features, the performance is further improved by
1.89.

Quantity effect of target data
It is important to analyze the effect of the quantity of
the target domain data. We keep the size of the 4 source
datasets unchanged, and gradually change the size of the
target dataset. The changes in MSTLTR Model results
are shown as broken line diagrams in Fig. 1, with the
ratio as 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%
and 10% of the original target dataset DataMLEE . In order
to ensure that in each ratio, the proportion of instances
among each category remains the same as the original tar-
get dataset DataMLEE , we adopt the stratified sampling
method. Hence, the number of instances in each category

Table 11 Detailed results achieved by using different scope of feature channels of MSTLTR. The following situations are included: no
shared features are used; only global shared features from 1 to 4 source domain datasets are used; both global common and local
common features from 4 source domain datasets are used

Models Precision Recall F1-measure

Model I: no common feature (Basic Model) 79.47 77.23 78.34

Model II-1: global common features (Single Source) 82.25 77.89 80.01

Model II-2: global common features (Two Sources) 82.44 79.10 80.74

Model II-3: global common features (Three Sources) 82.75 78.35 80.49

Model II-4: global common features (Four Sources) 82.40 77.71 79.99

Model III: Model II-4 + local common features (MSTLTR) 83.96 79.89 81.88
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Fig. 1 The quantity effect of the target domain data DataMLEE

including overlapped categories is reduced by the percent-
age of sampling. Then on each ratio of target dataset, we
compare the F1-measure results with those of the Basic
Model without transfer learning. We can find that under
the condition of different quantities of target datasets, the
performance results of MSTLTR Model are always better
than those of the Basic Mode. As the amount of target
data decreases, the recognition performance of the Basic
Model initially decreases steadily. As the amount of target
data continues to decrease, its performance drops sig-
nificantly. From 100% to 10% of the original target data,
the performance declines by 31.45. On the other hand,
for MSTLTR Model, when the amount of target data is
equally reduced, the decline of recognition performance
becomes more gentle. The performance only declines by
10.88 from 100% to 10% of the original target data. There-
fore, when the data in the target dataset is very rare, our
model shows greater generalization ability.

Error analysis
Finally, we will analyze the recognition performance of
our MSTLTR Model on each category in more detail.
From the metrics in Table 12 we can notice that compared
with the Basic Model without using transfer learning, our
MSTLTR Model has improved the performance of trig-
ger recognition in 18 out of 19 categories. This includes
categories such as “Remodeling”, “Synthesis”, “Transcrip-
tion”, “Protein catabolism” and “Phosphorylation”. They’re
the triggers that are short of labeling in the dataset,
whose annotation sizes are from 10 to 50. A detailed
list of types and sizes of trigger words of DataMLEE is
in Table 13. Among these triggers, “Transcription”, “Pro-
tein catabolism” and “Phosphorylation” overlap with the

label sets of the source domain datasets, while “Remod-
eling” and “Synthesis” do not overlap with any label set
at all. Therefore, to a certain extent, our model has the
effective transfer ability to improve the recognition ability
of rare trigger types “Remodeling” and “Synthesis”. How-
ever, the results of the trigger type “Dephosphorylation”
are all zeroes regardless of the models, whose recog-
nition performance has not been improved at all. The
main reason is that there are only 3 “Dephosphorylation”
instances in DataMLEE . Although “Dephosphorylation” is
an overlapped type between the target and source domain
datasets, it still lacks adequate training and test instances.
Therefore, despite the use of transfer learning of MSTLTR
Model, the recognition results of “Dephosphorylation” are
still zeroes under the situation. This is a limitation of our
transfer learning approach that it cannot transfer enough
knowledge from source domains for labelling the very rare
trigger types.

Conclusions
In this paper we develop a novel multi-source transfer
learning approach for wide coverage event trigger recog-
nition. We design a multiple channel structure based
on adversarial networks to set the transfer learning,
which can share knowledge between the source and tar-
get domains more comprehensively. Under the constraint
of an extra classifier, the multiple channels can extract
and transfer more diverse common features from the
related multi-source domains effectively. In the exper-
iments, our proposed transfer learning-based MSTLTR
system achieves significant trigger recognition improve-
ment. Moreover, performance is competitive compared
with other leading trigger recognition systems using the
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Table 12 Detailed results achieved by the proposed MSTLTR Model and the Basic Model on DataMLEE . The Basic Model is trained only
on the training and development sets of DataMLEE without transfer learning. MSTLTR Model is jointly trained on all available source
domain datasets and the training and development sets of the target dataset DataMLEE using proposed transfer learning approach. The
two models are tested on the test set of DataMLEE

Trigger type
Basic model MSTLTRmodel

P R F1 P R F1

Cell proliferation 83.33 81.40 82.35 85.37 81.40 83.33

Development 74.51 77.55 76.00 79.59 79.59 79.59

Blood vessel develop 98.64 93.87 96.20 99.66 93.87 96.68

Growth 88.89 85.71 87.27 91.23 92.86 92.04

Death 66.67 81.08 73.17 74.36 78.38 76.32

Breakdown 73.68 63.64 68.29 83.33 68.18 75.00

Remodeling 75.00 30.00 42.86 83.33 50.00 62.50

Synthesis 33.33 25.00 28.57 80.00 100.00 88.89

Gene expression 85.40 88.64 86.99 89.13 93.18 91.11

Transcription 50.00 16.67 25.00 100.00 50.00 66.67

Protein Catabolism 0.0 0.0 0.0 100.00 20.00 33.33

Phosphorylation 75.00 100.00 85.71 100.00 100.00 100.00

Dephosphorylation 0.0 0.0 0.0 0.0 0.0 0.0

Localization 76.81 79.70 78.23 86.61 82.71 84.62

Binding 82.69 75.44 78.90 83.64 80.70 82.14

Regulation 65.13 61.35 63.18 66.84 63.29 65.01

Positive regulation 80.56 82.86 81.69 82.91 83.17 83.04

Negative regulation 76.67 75.10 75.88 83.91 78.78 81.26

Planned process 66.67 57.14 61.54 73.78 61.73 67.22

TOTAL 79.47 77.23 78.34 83.96 79.89 81.88

sameMLEE corpus. Hence this study contributes to effec-
tive recognition of biomedical trigger words from text
across wide coverage. The effectiveness of this method
is more prominent when the amount of data in the
target area is scarce. For the future work, we plan
to apply the multi-source transfer learning approach
to more challenging biomedical text mining tasks such
as event extraction, where multiple source datasets
exist.

Methods
In this section, we introduce our proposed multi-source
transfer learning approach. Our solution for trigger recog-
nition is mainly based on a Bidirectional LSTM-CRF
model (BiLSTM-CRF) [39], which uses a Long Short
TermMemory (LSTM) neural network [40] to extract fea-
tures to train a Conditional Random Field (CRF) [41].
We embed a transfer learning approach to allow for joint
training with multi-source datasets to improve the recog-
nition performance effectively.

Our proposed transfer learning approach is inspired
by the private-common feature method, where the fea-
tures are divided into two parts: private features and
common features. The private features are task specific
ones extracted from target dataset. The common fea-
tures are task invariant ones, which are extracted via
adversarial networks trained on both the target and the
source datasets. Through the common features, the use-
ful knowledge can be transferred from one specific source
domain to the target domain. In order to extend the trans-
fer learning method of using one source data set to using
multiple source datasets, and at the same time, try not
to lose useful common feature information, we divide the
common features into two parts: global and local common
features. The global common features are extracted via an
adversarial network trained on both the target and all the
source datasets. Meanwhile, the local common features
are extracted from paired adversarial networks based on
pairs of the target and each source datasets. All the global
common, local common and private features will pass



Chen BMCGenomics           (2021) 22:31 Page 13 of 18

Table 13 List of types and sizes of trigger words in DataMLEE

Trigger type Size in DataMLEE

Anatomical Cell proliferation 125

Development 300

Blood vessel develop 845

Growth 163

Death 93

Breakdown 67

Remodeling 32

Molecular Synthesis 17

Gene expression 342

Transcription 24

Protein catabolism 23

Phosphorylation 29

Dephosphorylation 3

General Localization 415

Binding 158

Regulation 540

Positive regulation 966

Negative regulation 683

Planned Planned process 582

through a fusion layer. There, the private features are aug-
mented by the global common, local common features
generated through transfer learning. The architecture of
our model is shown in Fig. 2, which has a hierarchical
structure.

Model architecture
Figure 2 shows a sketch of our proposed Multi-Source
Transfer Learning-based Trigger Recognizer (MSTLTR)
framework. The model has six main modules: an embed-
ding layer for word representation, a private feature chan-
nel based on a BiLSTM network, a global common feature
channel based on an adversarial network, multiple local
common feature channels based on paired adversarial net-
works and an extra classifier, a feature fusion layer, and a
task prediction layer for trigger word recognition. For a
given input sentence s = {word1,word2, . . .wordn}k from
domain k , the aim of trigger recognition is to output a
tag sequence

{
y1, y2, . . . yn

}
k , where wordi is a word (or

token) in the sentence and yi denotes its corresponding
type label. The value of yi belongs to the label set, which
is a biomedical event type or negative if it does not indi-
cate any event. k is the domain number: when k = 0,
the input sentence comes from the target domain; when
k = 1, 2, . . . ,K , the input sentence comes from one of

the source domains. All the main modules are explained
below.

Embedding layer: word representation
In order to express both syntactic and semantic infor-
mation in input sentences, word embedding, charac-
ter embedding, part-of-speech (POS) embedding, named
entity type embedding and dependency tree-based
word embedding vectors are utilized to represent each
word.

1 Word embedding vector Ew: It maps each word in an
input sentence to a word embedding vector Ew,
which contains semantic information from its linear
contexts. We use pre-trained word embedding
vectors learned from PubMed articles using the
word2vec model [42].

2 Character embedding vector Ec: We use an extra
LSTM network to extract the orthographic
information from the sequence of characters of each
word. The LSTM network is initialized randomly and
trained to output a character-level embedding vector
Ec.

3 POS embedding vector Ep: We use the POS feature
to extend the word representation. It maps the POS
tag of each word in an input sentence to a POS
embedding vector, which extracts syntactic
information. We use the Gdep parsing tool [43] to
extract POS tags for words in each sentence. Gdep is
a dependency analysis tool for biomedical text, which
can extract syntax annotation with high precision.

4 Named entity type embedding vector Ee: It maps
named entity type of each word in an input sentence
to a embedding vector to extract domain-dependent
information. The named entities are provided by the
task data. In some cases, a certain named entity
might span through multiple words. For the sake of
simplicity of generating word embedding vector, we
assign every word spanned by that named entity the
same entity type.

5 Dependency tree-based word embedding vector Ed :
In order to extend features from linear contexts to
non-linear syntactic contexts, each word from an
input sentence is mapped to a dependency tree-based
word embedding vector, which contains rich
functional and syntactic information. In this paper,
we use pre-trained dependent-based word
embedding vectors learned from English Wikipedia
using the skip-gram model [44].

Private feature channel: BiLSTM network
The private feature channel ChPF contains a BiLSTM
network layer, which extracts private features from
the specific domain of the input sentence. This layer
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Fig. 2 Our proposed Multi-Source Transfer Learning-based Trigger Recognizer (MSTLTR) framework

takes a concatenation of the outputs of the previous
embedding layer as input, xi =

[
Ewi ;Eci ;E

p
i ;Eei ;Edi

]
.

Because of the ability to learn long-distance dependencies
in a sequence through memory cells, an LSTM is a pow-
erful tool for sequence labeling tasks [40]. Suppose that
an input to the LSTM layer is a sequence of embedding
outputs {x1, x2, . . . , xT }. It produces an output sequence of
{h1, h2, . . . , hT }. The following implementation strategy is
employed during training [39], where both sequences have
the same length T :

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) (4)

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf ) (5)

ct = ftct−1 + ittanh(Wxcxt + Whchl−1 + bc) (6)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (7)

ht = ottanh(ct) (8)

where σ and tanh denote the logistic sigmoid function
and the hyperbolic tangent activation function, respec-
tively. All W s and bs are weights and biases of LSTM,
which are the trainable parameters

(
θp

)
of ChPF . More

details about memory cells can be referred to in [39].
In sequence labelling tasks, it’s better to be able to
process both past and future context dependencies in
the sequence. Therefore, Bidirectional LSTM (BiLSTM)
[39, 45], another version of LSTM, is commonly
employed. In BiLSTM, the forward LSTM captures fea-
tures from the left side (past) and the backward LSTM
captures features from the right side (future) for each
word. So, each word effectively encodes information
about the whole sentence. The output of the private fea-
ture channel, private features Fp, is obtained by concate-
nating the outputs of the forward and backward LSTMs
Fp = [

hFt ; hBt
]
.
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Global common feature channel: adversarial network
The global common feature channel ChGF is built on an
adversarial network [21]. The adversarial network con-
tains components of a feature extractor and a domain
discriminator DC. The feature extractor is the same BiL-
STM network used in the private feature channel. And it
produces global common features, Fg = [

hFt ; hBt
]
. DC is

a domain classifier that takes the global common features
of an input sentence and trained to identify which dataset
the input sentence belongs to. Formally, the DC function
can be expressed as follows:

DC
(
Fg

) = softmax
(
WDCFg + bDC

)
(9)

whereWDC and bDC are weights and biases, which can be
denoted as trainable parameters θDC . Fg , the global com-
mon features extracted through ChGF , is the input of the
DC function.
We employ a multi-class version of adversarial network

in ChGF [24]. The adversarial loss in ChGF is defined as
LgAdv. It trains the ChGF to prevent domain specific fea-
tures into the global common features among multiple
domains. The objective of ChGF that entails the optimiza-
tion of LgAdv can be expressed as follows:

JgAdv = min
θg

max
θDC

LgAdv = E

⎡

⎣
K∑

k=0

Tk∑

i=1
dik log

[
D

(
Fg

(
xik

))]
⎤

⎦

(10)

where θg denotes the trainable parameters of BiLSTM
of ChGF . Tk is the number of training instances of the
domain k, and xik is the ith sentence from domain k. dik
denotes the corresponding ground-truth label indicating
the domain of the current input. In the training phase,
there is minimax optimization, and the DC is driven to
reach a point where the domains cannot be differenti-
ated based on the extracted Fg . After training, since DC
cannot identify the domain of the input sentence, the
Fg then do not carry domain related information among
the target and all the source datasets. Hence, the Fg is
domain-invariant and output through ChGF .

Local common feature channel: paired adversarial networks
and extra classifier
The local common feature channel (ChLF) is designed
with an architecture consisting of a set of paired adver-
sarial networks and an extra classifier. In addition to the
private features obtained from the target domain, the
common features are obtained through transfer learn-
ing in ChGF . However, when there is more than one
source domain from different recognition tasks available,
we should be able to getmore common features thanChGF
provides. Some useful sharable features could be ignored
by ChGF . Therefore, ChLF is proposed using multi-source
transfer learning to address the problem to provide a

more comprehensive shared feature representation. The
hypothesis is the case that the more abundant features
are provided from the source domains through transfer
learning, the better the recognition performance will be in
the target domain. ChLF has multiple sub-channels, and
each sub-channel ChLFj has a similar adversarial network
to ChGF .
The key difference is that each sub-channel ChLFj is a

paired adversarial network. Its DCj component is built
based on the domain pair composed of the target domain
and one of the source domains j. Hence, one local com-
mon feature sub-channel only extracts the common fea-
tures between the target domain and a certain source
domain. The local common feature vector is denoted as
Flj . The paired-adversarial loss in each ChLFj is defined
as Lpair−Advj to prevent domain specific features into the
local common features from this channel. Hence, the
Lpair−Advj trains each ChLFj to produce the local com-
mon features such that eachDCj cannot reliably recognize
which domain the sentence comes from. The objective
that entails the optimization of the loss Lpair−Advj can be
expressed as follows:

Jpair−Advj = min
θlj

max
θDCj

Lpair−Advj
(
Sj,T

)

= E

⎡

⎣
2∑

k=1

Tk∑

i=1
dik log

[
D

(
Flj

(
xik

))]
⎤

⎦
(11)

where θlj and θDCj denote the trainable parameters of
BiLSTM and discriminator of each ChLFj . In the paired
domain discrimination mode, the number of domains is 2,
the target domain and the source domain j. After training,
each Flj then is output through ChLFj , respectively.
Moreover, to prevent local common features from inter-

fering with each other, an extra classifier C is designed
to identify from which source domain the generated Flj
comes. The classifier C induces constraint. The objective
of C entails the minimization of the loss can be expressed
as follows:

JC = min
θC

= E

⎡

⎣
K∑

j=1

Tj∑

i=1
dij log

[
C

(
Flj

(
xij

))]
⎤

⎦ (12)

where θC denotes the trainable parameters of classifier
C, and dij denotes the corresponding ground-truth label
indicating the channel of the current input.
Then the total objective of the local common feature

channel, JlAdv, is defined as follows:

JlAdv = 1
K

K∑

j=1
Jpair−Advj − βJC (13)
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where K is the number of ChLFjs, and at the same time
it also is the number of source domains. And hyper-
parameter β controls the effects of C on feature extrac-
tion.

Feature fusion layer
The features used to predict trigger word labels are
provided through multiple feature channels, including
one private feature channel, one global common feature
channel and several local common feature sub-channels.
Before label prediction, all these features will be fused
properly in this layer. The concatenation of the output
of each feature channel, Fcon = [

Fp; Fg ; Fl1 ; Fl2 ; . . . ; FlK
]
,

is mapped through a linear and fully-connected network
layer to obtain the final feature vector F through a hyper-
bolic tangent activation function.

F = tanh (WFFFcon + bFF) (14)

where WFF and bFF are trainable parameters of feature
fusion layer, denoted as θFF .

Task prediction layer: trigger word recognizer
On the top of the feature fusion layer, a final trigger recog-
nizer is built through a CRF layer generating a sequence
of labels for corresponding words. The CRF layer can

learn the strong dependencies across output labels and
come into the most likely sequence of predicted tags [46].
Whenever given a feature vector F of the input sentence
with a label sequence y = (y1, y2, . . . , yn), the objec-
tive of the recognition task (RT) loss function LRT to be
maximized can be defined as follows:

JRT = max
θcrf

[
f (F , y) − log

∑
exp

(
f
(
F , ŷ

))]
(15)

where θcrf is the trainable parameters of CRF layer, ŷ is
the predicted label sequence according to y, and f is the
defined score function.

Model training
The overall objective function of our model can be com-
puted as the follows:

J = JRT + α1JgAdv + α2JlAdv (16)

where α1 and α2 are hyper-parameters to control the
transferring of the global and local common features.
In the training phase, at each iteration, we first select a

batch of training instances from the target or one of the
source domain in turn, which is used to update the param-
eters of the model. For each batch of training instances,
there are three optimizers need training. The first one is to

Fig. 3 The Basic Model framework
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calculate JRT with the parameters of θp, θFF and θcrf . The
second one is to calculate JgAdv with the parameters of θg
and θDC . The third one is to calculate JlAdv with the param-
eters of θlj , θDCj , and θC . Finally, J are optimized through
above three steps, and all the parameters are updated
with backpropagation. We repeat the above optimizing
iterations until convergence of the target domain.

Basic model
If we remove the transfer learning modules of the global
and local common feature channels from the MSTLTR
model, we will get a Basic Model. The Basic Model doesn’t
use any transferred common features, which provides a
baseline performance for comparison. The architecture
of the Basic Model is shown in Fig. 3. After the word
embedding layer, because there are no common features
provided by the global and local common feature channels
from source domain data, only the private feature chan-
nel is valid. In the feature fusion layer, a fully connected
network only receives these private features and transmits
them to the prediction layer for trigger word recognition.
Therefore, removing the optimization of JgAdv and JlAdv,
the overall objective function of the Basic Model can be
computed as the follows:

J = JRT (17)

In the training phase, only JRT with the parameters of
θp, θFF and θcrf need to be optimized until convergence on
the target domain.
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