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Abstract

The search and validation of novel disease biomarkers requires the complementary power of professional study
planning and execution, modern profiling technologies and related bioinformatics tools for data analysis and
interpretation. Biomarkers have considerable impact on the care of patients and are urgently needed for advancing
diagnostics, prognostics and treatment of disease. This survey article highlights emerging bioinformatics methods
for biomarker discovery in clinical metabolomics, focusing on the problem of data preprocessing and
consolidation, the data-driven search, verification, prioritization and biological interpretation of putative metabolic
candidate biomarkers in disease. In particular, data mining tools suitable for the application to omic data gathered
from most frequently-used type of experimental designs, such as case-control or longitudinal biomarker cohort
studies, are reviewed and case examples of selected discovery steps are delineated in more detail. This review
demonstrates that clinical bioinformatics has evolved into an essential element of biomarker discovery, translating
new innovations and successes in profiling technologies and bioinformatics to clinical application.

Biomarkers, profiling technologies and
bioinformatics
By definition, biomarkers are “objectively measured indi-
cators of normal biological processes, pathogenic pro-
cesses or pharmacological responses to a therapeutic
intervention, and ... are intended to substitute for a clini-
cal endpoint (predict benefit or harm) based on epide-
miological, therapeutic, pathophysiological or other
scientific evidence (Biomarkers Definitions Working
Group, 2001)” and have a variety of functions [1]. From
the clinical perspective, biomarkers have a substantial
impact on the care of patients who are suspected to have
disease, or those who have or have no apparent disease.
According to this categorization, biomarkers can be clas-
sified into diagnostic, prognostic and screening biomar-
kers. The latter are of high interest because of their
ability to predict future events, but currently there are
few accepted biomarkers for disease screening [2-4].
Advances in omic profiling technologies allow the sys-

temic analysis and characterization of alterations in
genes, RNA, proteins and metabolites, and offer the

possibility of discovering novel biomarkers and pathways
activated in disease or associated with disease conditions
[5-7]. The proteome, as an example, is highly dynamic
due to the diversity and regulative structure of posttran-
slational modifications, and gives an in-depth insight
into disease; this is because protein biomarkers reflect
the state of a cell or cellular subsystem determined by
expression of a set of common genes. Many interesting
proteins related to human disease, however, are low-
abundance molecules and can be analyzed by modern
mass-spectrometry (MS) -based proteomics instrumen-
tations, even if these technologies are somewhat limited
due to their moderate sensitivity and the dynamic range
necessary for high-throughput analysis [8]. In metabolo-
mics, metabolite profiling platforms, using tandem mass
spectrometry (MS/MS) coupled with liquid chromato-
graphy (LC), allow the analysis of low-molecular weight
analytes in biological mixtures such as blood, urine or
tissue with high sensitivity and structural specificity, but
still preclude the analysis of large numbers of samples
[9,10]. More recently, whole spectrum analysis of the
human breath in liver disease or cancer using ion-
molecule reaction (IMR) or proton transfer reaction
(PTR) mass spectrometry represents a further layer of
potential applications in the field of biomarker discov-
ery, as a breath sample can be obtained non-invasively
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and its constituents directly reflect concentrations in the
blood [11,12].
In general, the search, verification, biological and bio-

chemical interpretation and independent validation of
disease biomarkers require new innovations in high-
throughput technologies, biostatistics and bioinfor-
matics, and thus make necessary the interdisciplinary
expertise and teamwork of clinicians, biologists, analyti-
cal- and biochemists, and bioinformaticians to carry out
all steps of a biomarker cohort study with professional
planning, implementation, and control. Generally in
human biomarker discovery studies, a variety of experi-
mental designs are used. These include case-control or
more complex cohort study designs such as crossover or
serial sampling designs. Retrospective case-control stu-
dies is the type of epidemiological study most frequently
used to identify biomarkers, by comparing patients who
have a specific medical condition (cases) with individuals
who do not have this condition but have other similar
phenotypic and patient specific characteristics (controls).
In contrast, longitudinal cohort studies allow patients to
serve as their own biological control, which reduces the
interindividual variability observed in multiple cohort
studies as well as the technology platform-based varia-
bility due to a moderate signal-to-noise ratio [13].
Bioinformatics plays a key role in the biomarker dis-

covery process, bridging the gap between initial discov-
ery phases such as experimental design, clinical study
execution, and bioanalytics, including sample prepara-
tion, separation and high-throughput profiling and inde-
pendent validation of identified candidate biomarkers.
Figure. 1 shows the typical workflow of a biomarker dis-
covery process in clinical metabolomics.
In this survey article, we review and discuss emerging

bioinformatic approaches for metabolomic biomarker
discovery in human disease, delineating how data
mining concepts are being selected and applied to the
problem of identifying, prioritizing, interpreting and
validating clinically useful metabolic biomarkers.

Quality controlled collection and integration of
biomedical data
Central to biomedical research is a Good Clinical Prac-
tice (GCP) compliant data collection of patient-related
records, which accommodates the quality controlled col-
lection and tracking of samples and additional study
material. This practice necessitates a carefully executed,
standardized integration of generated omic/epigenetic
data and clinical information including biochemistry,
pathology and follow-up. If required, it also must be
made complete with data from public repositories such
as Enzyme, KEGG, Gene Ontology, NCBI Taxonomy,
SwissProt or TrEMBL and literature (e.g PubMed) using
appropriate data warehouse solutions. In the past few

years in particular, the bioinformatics community has
made great progress in developing data warehouse appli-
cations in a biomedical context for improved manage-
ment and integration of the large volumes of data
generated by various disciplines in life sciences.
A data warehouse is a central collection or repository

that continuously and permanently stores all of the rele-
vant data and information for analysis. Coupled with
intelligent search, data mining and discovery tools, it
enables the collection and processing of these data to
turn them into new biomedical knowledge [14,15].
Technically, we need to distinguish between the back
room and front room entities, as these two parts are
usually separated physically and logically. While the
back room holds and manages the data, the front room
usually enables data accession and data mining. In com-
prehensive biomarker cohort studies, a data warehouse
is an essential bioinformatic tool for standardized collec-
tion and integration of biomedical data, as well as meta-
analysis of clinical, omic and literature data under the
constraints of well-phenotyped patients’ cohorts to dis-
cover and establish new biomarkers for early diagnosis
and treatment.

Fundamental statistic concepts, data mining
methods and meta-analysis
Once a biomarker cohort study has been set up, and
sample collection, preparation, separation and MS ana-
lysis have been carried out, an extensive technical
review of generated data is essential to ensure a high
degree of consistency, completeness and reproducibility
in the data.
Data preprocessing, as a preliminary data mining prac-

tice performed on the raw data, is necessary to trans-
form data into a format that will be more easily and
effectively processed for the purpose of targeted ana-
lyses. There are a number of methods used for data pre-
processing, including data transformation (e.g.
logarithmic scaling of data) and normalization, e.g. using
z-transformation, data sampling or outlier detection. In
particular, the problem of detecting and cleaning data-
sets from outliers is a crucial task in data preprocessing.
Thus, a careful handling of outliers is warranted to
avoid manipulation and distortion of statistical results,
which complicates a useful interpretation of biological
findings. Traditional statistical approaches propose
observations as outliers that are deemed unlikely with
respect to mean and standard deviation, assuming nor-
mal data distribution. A common model uses the inter-
quartile ranges and defines an outlier as observation
outside the interquartile range IQR = Q3 - Q1, where
Q1 and Q3 are the first and third quartiles. However,
alternative data mining methods try to overcome con-
cepts based on the assumption that data is normally
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distributed, by using distance-based approaches or
defining the outlier problem via a local neighborhood of
data points in a given data space, such as the local out-
lier factor (LOF) or the algorithm LOCI, using a local
correlation integral for detecting outliers [16-18]. These
methods show high value in treating the problem of
outlier detection, especially in multiple biomarker search
problems.
In recent years, various powerful data mining and sta-

tistical bioinformatics methods have been propagated
for identifying, prioritizing and classifying robust and
generalizable biomarkers with high discriminatory ability
[19-27]. Principal data mining tasks in biomarker dis-
covery, such as the identification of biomarker candi-
dates in experimental data (feature selection) and
classification, are “supervised” because study cohorts are
well phenotyped in carefully designed and controlled
clinical trials. Therefore, data vectors are determined by
a set of tuples, T = {(cj, a) | cj Î C, a Î A}, where cj is a
class label from the collection C of pre-classified cohorts
(normal, diseased, various stages of disease, treated, at
rest, during stress, etc.), and A = {a | a1, ... , an} is the
set of concentrations of low-molecular weight biomole-
cules such as nucleotides, amino and organic acids,
lipids, sugars, etc., if molecules are predefined and quan-
tified, or simple m/z values from generated raw mass
spectra. In this area, basic data mining concepts for the
search of biomarker candidates constitute filter- and
wrapper-based feature selection algorithms, and more

advanced paradigms like embedded or ensemble meth-
ods [27-31]. However, if class membership is (partly)
unknown, semi- or unsupervised techniques (cluster
analysis) are helpful tools for biomarker search and
interpretation. Note that many unsupervised feature
selection methods treat this task as a search problem.
Since the data space is exponential in the number of
examined features, the use of heuristic search proce-
dures are necessary where the search is combined with
a feature utility estimator to evaluate and assess the
relative merit of selected subsets of features. Supervised
clustering, for example, opens a new research field in
biomarker discovery to be employed when class labels
of all data are known, with the objective of finding class
pure clusters. Table 1 gives a survey of widely-used
supervised feature selection techniques, useful for the
identification of candidate biomarkers in data sets gath-
ered from well-phenotyped cohort studies, considering
both basic types of paired and unpaired test hypotheses
[32-40].
Recently, combined biomarkers constructed by mathe-

matical expressions such as quotients or products have
been utilized to significantly enhance their predictive
value, as demonstrated in newborn screening [41,42].
For example, a simple model for screening for phenyla-
nanine hydroxylase deficiency (PKU), a common conge-
nital error of metabolism, was proposed by the ratio
Phe/Tyr (Phe is phenylananine and Thy is tyrosine), to
describe the irreversible reaction A®B of a reactant A

Figure 1 Biomarker discovery process in human disease using an MS-based metabolite profiling platform.
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Table 1 Commonly used supervised data mining methods for the search and prioritization of biomarker
candidates in independent and dependent samples

Independent
samples

Method Basic principle and key features of the method Reference

Unpaired null hypothesis
testing (Two-sample t-test*,
Mann-Whitney-U test°)

- univariate filter method
- P value serves as evaluation measure for the
discriminatory ability of variables
- is an accepted statistical measure
- appropriate for two class problems only
- P value is sample size dependent

Lehmann, Springer Verlag, 2005 [32]

Principal component analysis
(PCA)#

- unsupervised projection method
- PCA calculates linear combinations of variables based
on the variance of the original data space
- appropriate for multiple class problems
- visualizable loading and score plots (scores can be
labeled according to class membership)
- no ranking and prioritization of features possible

Jolliffe, Springer Verlag, 2005 [33], Ringnér,
Nat Biotechnol, 2008 [34]

Information gain (IG) - univariate filter method
- IG calculates how well a given feature separates data
by pursuing reduction of entropy
- appropriate for multiple class problems
- quick and effective ranking of features
- IG scores permit prioritization of features

Hall and Holmes, IEEE Trans Knowl Data
Eng, 2003 [28]

ReliefF (RF) - multivariate filter method
- RF score relies on the concept that values of a
significant feature are correlated with the feature values
of an instance of the same class, and uncorrelated with
the feature values of an instance of the other class
- appropriate for multiple class problems
- RF scores permit prioritization of features

Robnik-Sikonja & Kononenko, Mach Learn,
2003 [35] Hall and Holmes, IEEE Trans
Knowl Data Eng, 2003 [28]

Associative voting (AV) - multivariate filter method
- AV uses a rule-based evaluation criterion by a special
form of association rules; considers interaction among
features
- appropriate for two class problems only
- AV scores permit prioritization of features
- restriction of the rule search space necessary

Osl et al., Bioinformatics, 2008 [36]

Unpaired Biomarker Identifier
(uBI)

- univariate filter method
- statistical evaluation score by combining a
discriminance measure with a biological effect term
- appropriate for two class problems only
- quick and effective ranking of features
- uBI scores permit prioritization of features
- uBI scores closely related to pBI scores

Baumgartner et al., Bioinformatics,
2010 [13]

Guilt-by-association feature
selection (GBA-FS)

- multivariate subset selection method
- GBA-FS uses a hierarchical clustering with correlation
as distance measure; the most relevant features of each
cluster are assessed by their discriminatory power, as
measured for example by two-sample t-test
- accounts for redundancy between features
- appropriate for two class problems only

Shin et al., J Biomed Inform, 2007 [37]

Support vector machine-
recursive feature elimination
(SVM-REF)

- embedded selection method
- SVM-REF uses optimized weights of SVM classifier to
rank features
- appropriate for two class problems only

Guyon et al., Mach Learn, 2002 [38]

Random forest models (RFM) - embedded selection method
- RFM uses bagging and random subspace methods to
construct a collection of decision trees aiming at
identifying a complete set of significant features
- appropriate for multiple class problems

Enot et al., PNAS, 2006 [39]

Aggregating feature selection
(AFS)

- ensemble selection method
- aggregating multiple feature selection results to a
consensus ranking, e.g. using the concept of weighted
voting or by counting the most frequently selected
features to derive the consensus feature subset
- appropriate for multiple class problems

Saeys et al., Lecture Notes in Artificial
Intelligence, 2008 [30]
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into a product B, caused by an impaired enzyme activity
[43]. In this manner, models of single and combined
predictors, as built upon a priori knowledge of abnormal
pathways like those shown above, exhibit high potential
to develop screening models with high discriminatory
ability. Ultimately, the process of identifying clinically
relevant biomarkers is an ambitious data-mining task,
bringing together various computational concepts of fea-
ture ranking, subset selection and feature construction
by attribute combination.
The identification of a set of relevant, but not redun-

dant, predictors is important for building prognostic and
diagnostic models. Ding and Peng, for example, pre-
sented a minimum redundancy feature selection
approach on microarray data, demonstrating signifi-
cantly better classification accuracy on selected mini-
mized redundant gene sets than those obtained through
standard feature ranking methods [44]. Most commonly,
individual features are ranked in terms of a quality cri-
terion, out of which the top k features are selected.
However, most feature-ranking methods do not suffi-
ciently account for interactions and correlations between

the features, and therefore redundancy is likely to be
encountered in the selected features. Recently, Osl et al.,
presented a new algorithm, termed Redundancy Demot-
ing (RD), that takes an arbitrary feature ranking as
input, and improves the predictive value of a selected
feature subset by identifying and demoting redundant
features in a postprocessing modality [45]. The authors
define redundant features as those that are correlated
with other features, but are not relevant in the sense
that they do not improve the discriminatory ability of a
selected feature set. This means that although correlated
biomarkers exhibit potential reactions and interactions
among biomolecules in a biological pathway, they do
not provide a substantial increase in predictive value if
they are redundant. On the other hand, if they are not
redundant, they may be good candidates to further
enhance the predictive value of selected multiple
biomarkers.
For building predictive models on biological data, a

wide spectrum of machine learning methods is available:
These include discriminant analysis methods like linear
discriminant analysis or logistic regression analysis,

Table 1 Commonly used supervised data mining methods for the search and prioritization of biomarker
candidates in independent and dependent samples (Continued)

Stacked feature ranking (SFR) - ensemble selection method
- stacked learning architecture to construct a consensus
feature ranking by combining multiple feature selection
methods
- appropriate for multiple class problems
- feature selection by optimizing the discriminatory
ability (AUC)

Netzer et al., Bioinformatics, 2009 [31]

Wrapper approach - evaluating the merit of a feature subset by accuracy
estimates using a classifier
- produces subsets of very few features that are
dominated by stronger and uncorrelated attributes
- increased computational runtime; necessitates heuristic
search methods like forward selection, backward
elimination, or more sophisticated methods such as
genetic algorithms

Hall and Holmes, IEEE Trans Knowl Data
Eng, 2003 [28]

Dependent
samples

Paired null hypothesis testing
(Paired t-test*, Wilcoxon
signed-rank test°)

- univariate filter method
- P value serves as evaluation measure for the
discriminatory ability of variables
- is an accepted statistical measure
- appropriate for two class problems only
- P value is sample size dependent
- two dependent samples

Lehmann, Springer Verlag, 2005 [32]

Repeated measure analysis - univariate and multivariate approaches
- mixed model analysis (GLMM, General Linear Mixed
Model)
- time series (multiple time points) analysis

Crowder & Hand, Analysis of repeated
measures, 1990 [40]

Paired Biomarker Identifier
(pBI)

- univariate filter method
- pBI uses a statistical evaluation score by combining a
discriminance measure with a biological effect term
- appropriate for two class problems only
- pBI scores permit prioritization of features
- pBI scores closely related to uBI scores

Baumgartner et al., Bioinformatics,
2010 [13]

* data normal distributed, ° data non-normal distributed. # PCA is an unsupervised method also used for data containing class information. All algorithms are run
on continuous data as data generated in metabolomics are usually of metric nature. Data can represent absolute metabolite concentrations (given as intensity
counts or more specific in μmol/L if internal standards are available) or simple m/z values from raw or preprocessed mass spectra.
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decision trees, the k-nearest neighbor classifier (k-NN),
an instance-based learning algorithm, the Bayes classi-
fier, a probabilistic method based on applying the Bayes’
theorem, support vector machines, a method that uses a
kernel technique to apply linear classification techniques
to nonlinear classification problems or artificial neural
networks [46-53]. A more detailed review of these meth-
ods, however, is beyond the scope of this article.
As an advanced and more sophisticated layer of data

analysis, meta-analysis is used with the objective of
improving single experiment results and identifying
common clinical and biological relevant patterns [54,55].
Meta-analysis of data may contain different steps:
(i) scoring disease-relevance of candidate biomarkers by
integrated analysis of the different clinical and experi-
mental data (which may arise from multiple clinical stu-
dies), (ii) building statistical models on preselected
candidates, derived by coupling methods such as feature
selection and logistic regression analysis that result in
the highest discriminatory ability with respect to the tar-
geted patient cohorts or populations, (iii) performing
correlation analysis to analyze ‘omics’ data under
constraints defined by the patient data, (vi) examining
various performance characteristics of biomarker candi-
dates e.g. through decision-analytic outcome modeling.
Receiver-operating-characteristics (ROC) analyses of
related discriminatory models with specific sensitivities
and specificities are used as input parameters for deci-
sion models, calculating expected epidemiologic and
economic consequences for individuals and public
health of the evolving health-care technologies under
assessment.

Generalizability and validation of biomarkers
Objective measures to assess the predictive value and
generalizable power of selected candidate biomarkers
are sensitivity, specificity, the product of sensitivity and
specificity, or the area under the ROC curve (AUC).
These measures are useful and valid only if they are
determined on independent samples (e.g. cases versus
controls). In serial sampling studies, alternative mea-
sures are needed to assess the predictive value of bio-
markers in a similar manner. Very recently, a new
objective measure for expressing the discriminatory abil-
ity (DA) in dependent samples was developed by our
group [13]. The discriminance measure DA is defined as
the percent change of analyte levels in a cohort in one
direction versus baseline, and acts as a feature analo-
gously to the product of sensitivity and specificity when
addressing an unpaired test problem. Thus, a DA value
of 0.5 in paired testing corresponds exactly to a product
or AUC of 0.5 in unpaired testing, demonstrating no
discrimination, while a DA of 0.75 or 1.00 indicates
good or perfect discrimination.

Using both related discrimination measures, i.e. the
product of sensitivity and specificity, and DA, a clinically
useful prioritization of biomarkers - for example, into
classes of weak, moderate and strong predictors - is pos-
sible independently of the study design (e.g. case-control
versus serial sampling study). Very recently, Lewis et al.
and Baumgartner et al. published a prospective longitudi-
nal biomarker cohort study that was carried out to iden-
tify, categorize, and profile kinetic patterns of early
metabolic biomarkers of planned (PMI) and spontaneous
(SMI) myocardial infarction [56,13]. Figure. 2 depicts a
kinetic map of selected circulating metabolites from a
human model of PMI that faithfully reproduces SMI [57].
Promising metabolites were selected and prioritized into
classes of different predictive value by using the so-called
pBI scoring model, developed for longitudinal biomarker
cohort studies where each patient serves as his/her own
control [13]. In the given example, each circulating meta-
bolite is able to be categorized at each time point of ana-
lysis in order to qualitatively and quantitatively assess the
dynamic expression pattern of metabolic biomarkers after
myocardial injury. Using this approach, a set of promising
putative biomarker candidates could be identified as early
as 10 minutes after the event.
In general, identified biomarker candidates need to be

validated using larger sample sets, covering a broad

Figure 2 Kinetic map of metabolites on PMI data at 10, 60,
120, and 240 minutes after myocardial injury, using the pBI
scoring model for prioritization of selected metabolites into
groups of weak, moderate and strong predictors. Values
indicate absolute pBI scores. The thresholds for prioritization are
denoted below in the list of analytes. Red color increments indicate
decreasing levels, blue increasing levels. In this study, a series of
metabolites in pathways associated with myocardial infarction could
be identified, some of which change as early as 10 minutes after
injury, a time frame where no currently available clinical biomarkers
are present [13,56].
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cross section of patients or populations. However, if no
independent cohort for validation is available, especially
if further samples are costly, hazardous or impossible to
collect, cross validation is an accepted statistical strategy
to assess generalizability on a single derivation cohort at
this discovery stage. Usually, stratified 10-fold cross-
validation is applied, which is the statistical practice of
partitioning a sample of data into ten subsets, where
each subset is used for testing and the remainder for
training, yielding an averaged overall error estimate. For
very small samples, leave-one-out cross validation using
one observation for testing and n-1 observations for
training is proposed to generalize findings. Alternatively,
bootstrapping or permutation modalities can be used as
powerful approaches for statistical validation [58-60].
As an example, Figure. 3 shows the predictive value

of multiple metabolites in newborn screening data on a
single derivation cohort with and without stratified
10-fold cross validation. The data set contains concen-
trations of 43 analytes, i.e. amino acids and acyl-carni-
tines, separated into 63 cases (medium-chain acyl-CoA
dehydrogenase deficiency, MCADD) and 1241 healthy
controls [61]. This result clearly demonstrates the
strong disagreement in discriminatory ability between
non- and cross-validated analyte subsets, and confirms
the necessity of this computational modality for pre-

selecting robust and generalizable candidate biomar-
kers, eliminating the potential bottleneck of taking too
many candidates to the validation phase. Meta-analysis
is a next logical step to further strengthen such results.
However, after these crucial discovery steps, prospec-
tive trials are ultimately needed to validate the clinical
benefit of assessing expression patterns of selected bio-
marker candidates before they can go into clinical
routine.

Analysis after biomarker identification
One challenging research area in bioinformatics is the
biological and biochemical interpretation of identified
putative marker candidates by means of mining the
most likely pathways. In metabolomics, various explorer
tools such as cPath, Pathway Hunter Tool (public) or
Ingenuity Pathway Analysis and MetaCore (commercial)
are available to visualize, map and reconstruct a spec-
trum of possible pathways between relevant metabolites
identified by feature selection [62,63]. Most tools extract
metabolic information from metabolic network data-
bases like KEGG and provide algorithms which allow
(i) querying of thousands of endogenous analytes from
those databases, (ii) displaying biochemical pathways
with their involved metabolite and enzymes, and
(iii) reconstructing and visualizing the most likely path-
ways related to the identified key metabolites [24,64,65].
These tools also provide an interactive analysis of
biochemical pathways and entities such as metabolites,
enzymes or reactions and allow a quick and direct
functional annotation of experimental findings. As an
example, Figure. 4 shows the most likely pathway in the
KEGG database, addressing altered concentration levels
of arginine (Arg) and ornithine (Orn), respectively, in
patients afflicted with severe metabolic syndrome and
cardiovascular disease (MS+) versus healthy controls.
Both candidate metabolites, which are closely associated
with the D-Arg & D-Orn metabolism in the urea cycle,
were identified by feature selection from targeted MS
profiling data [24,66,67].
Direct hyperlinks to databases such as OMIM, Swiss-

Prot or Prosite reveal supplementary information about
these entities that can help researchers learn more
about the underlying biochemical and biological
mechanisms. It is obvious that emerging bioinformatics
tools for exploring metabolic pathways and networks,
thus allowing for mapping expression profiles of genes
or proteins simultaneously onto these pathways, are of
high importance for the biological interpretation of bio-
markers from a systems biology viewpoint [68-70]. Such
tools thus contribute to a better understanding of how
genes, proteins and metabolites act and interact in such
networks, and consequently how human diseases mani-
fest themselves.

Figure 3 AUC analysis on the entire metabolite set (bars in the
left), and on a set of the top ten ranked metabolites using
four common feature selection methods, i.e. two sample t-test
(P-value), the unpaired Biomarker Identifier (uBI), ReliefF, and
Information gain (IG) on MCADD data (bars in the right). Red
bars represent the predictive value expressed by the AUC of
selected analyte sets, determined on a single derivation cohort with
cross validation and blue bars without cross-validation. Interestingly,
using the entire metabolite set (43 analytes) for distinguishing
between the two groups, the discriminatory ability dropped from
AUC = 1.0 (without cross validation) to AUC = 0.51 after 10-fold
cross validation, thus indicating no discrimination between the
cohorts. On the selected subset, the AUC dropped by 15% to 25%
after cross validation, demonstrating weak predictive value and thus
low generalizability of the selected subset in this experiment.
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Conclusions and final remarks
In this article we have discussed the complementary
power of modern profiling technologies and bioinfor-
matics for metabolomic biomarker discovery in human
disease. The discovery and interpretation of new bio-
markers, however, depends on a comprehensive view of
genomics, transcriptomics, proteomics and metabolo-
mics [71]. In particular, proteomics and metabolomics
offer excellent insights into disease, because function,
structure or turnover of proteins, typically regulated via
post-translational modifications, as well as metabolites,
which act as end products of cellular processes, define
the phenotypic heterogeneity of disease [72-74]. There-
fore, great interest in the discovery of new biomarkers
originates from their wide range of clinical applications,
fundamental impact on pharmaceutical industry, and
the current public health burden. Biomarkers, once qua-
lified for clinical use, can aid in diagnosis and prediction
of life-threatening events, confirm drug’s pharmacologi-
cal or biological action mechanisms, or serve as early
and objective indicators of treatment efficiency in
patients [75-78]. Theranostics, an emerging field in per-
sonalized medicine, utilizes molecular biomarkers to
select patients for treatments that are expected to bene-
fit them and are unlikely to produce side effects, and
provides an early indication of treatment efficacy in
individual patients. Therefore, theranostic tests, which
lead to rapid and more accurate diagnosis and allow for
a more efficient use of drugs, and thus improved patient
management, are increasingly used in cancer, cardiovas-
cular and infectious diseases, or prediction of drug toxi-
city [79,80].

In summary, clinical bioinformatics has evolved into
an essential tool in translational research, transforming
fundamental bioinformatics research to clinical applica-
tion by exploiting novel profiling technologies, biological
databases, data mining and biostatistics methods for
speeding up biomarker and drug discovery. These useful
innovations will ultimately improve individualized clini-
cal management of patient health and will also reduce
costs of drug development.
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