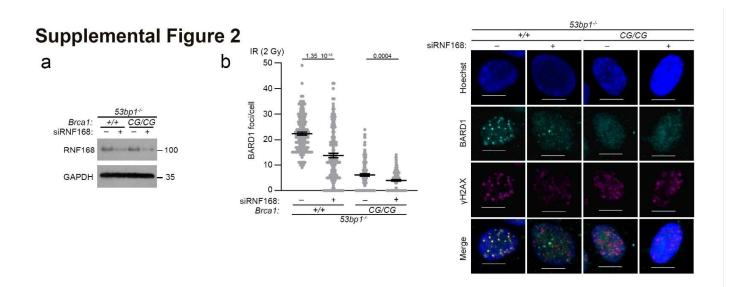

Supplementary Information

Supplemental Figure 1.

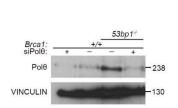


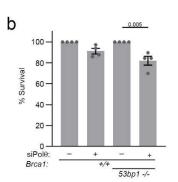
Supplementary Fig. 1. Brca1^{C61G/C61G} 53bp1^{-/-} cells support HR.

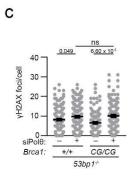
- **a**. BRCA1 N-terminal peptides identified by mass spectrometry, highlighted in yellow, from $Brca1^{+/+} 53bp1^{-/-}$ and $Brca1^{C61G/C61G} 53bp1^{-/-}$ mouse embryonic fibroblasts.
- **b**. Representative western blot analysis of BRCA1, BARD1 protein levels in MEFs. The expression of GAPDH was used as a loading control.
- **c**. BRCA1-BARD1 protein levels in $Brca1^{+/+} 53bp1^{-/-}$ and $Brca1^{C61G/C61G} 53bp1^{-/-}$ cells, relative to GAPDH loading controls and wild-type protein. n=2 biological replicates, data are mean \pm SEM.

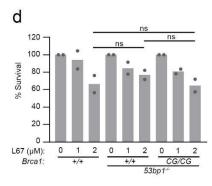
- **d**. Quantification of proximity-linked ligation assay foci (PLA) between BRCA1 and BARD1 in cells treated with 2 Gy irradiation and with NTC siRNA (¬) or siRNA targeting BRCA1 (+) and fixed 2 hours later. n≥200 cells from 5 biological replicates. Bars depict median ± SEM.
- **e**. Representative images of RAD51 foci in *Brca1^{+/+} 53bp1^{-/-} and <i>Brca1^{C61G/C61G} 53bp1^{-/-}* cells, 3 hours after exposure to 2 Gy irradiation, treated with siNTC or siRNA targeting BRCA1.
- f. Percentage of metaphases that show one or more radial chromosomes in MEFs of the genotypes shown, treated with NTC siRNA (–) or siRNA targeting BRCA1 (+). n=3 biological replicates, data are mean ± SEM.
- g. Quantification of RAD51 foci following 16 hours 5 μ M cisplatin exposure in EdU-positive MEFs of the genotypes shown, treated with NTC siRNA (-) or siRNA targeting BRCA1 (+). n>100 cells from 3 biological replicates. Data are mean \pm SEM.
- **h.** Representative western blot showing knockdown of BRCA1 in *Brca1*^{C61G/C61G} 53bp1^{-/-} cells.
- i. Colony survival following 16 hours of treatment with cisplatin, measured in $Brca1^{C616/C616} 53bp1^{-/-}$ cells treated with non-targeting control siRNA (NTC) or BRCA1 siRNA transfection, n=3 biological replicates, data are mean \pm SEM.
- **j.** Illustration of the HR assay (top). The table below shows the % of reads containing the 4 bp inclusion and the total number of reads.

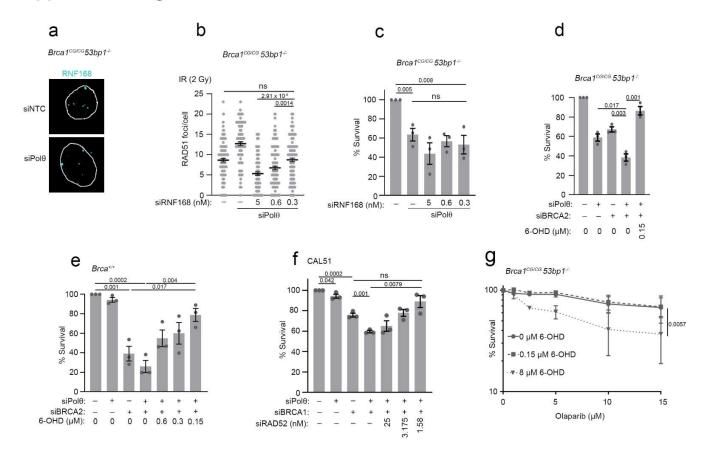
Statistical analysis in d, f, and g was performed using a two-tailed Student's t-Test, without adjustment for multiple comparisons. Statistical analysis in i was performed using a two-way ANOVA. Source data are provided as a Source Data file.


Supplementary Fig. 2. Impact of RNF168 depletion on BARD1 localisation.


- **a.** Western blot analysis of RNF168 protein levels following non-targeting control (–) or RNF168 (+) targeting siRNA treatment.
- **b.** Quantification of BARD1 foci 3 hours after 2 Gy IR exposure in EdU-positive MEFs of the genotypes shown and which were treated with NTC siRNA or RNF168 siRNA. n=150 cells from 3 biological replicates. Data are mean \pm SEM. Images (right) show representative images of BARD1 foci in the genotypes shown with and without RNF168 depletion. The scale bar is 10 μ m.


All statistical analysis in this figure was performed using a two-tailed Student's t-Test, without adjustment for multiple comparisons. Source data are provided as a Source Data file.


Supplemental Figure 3.

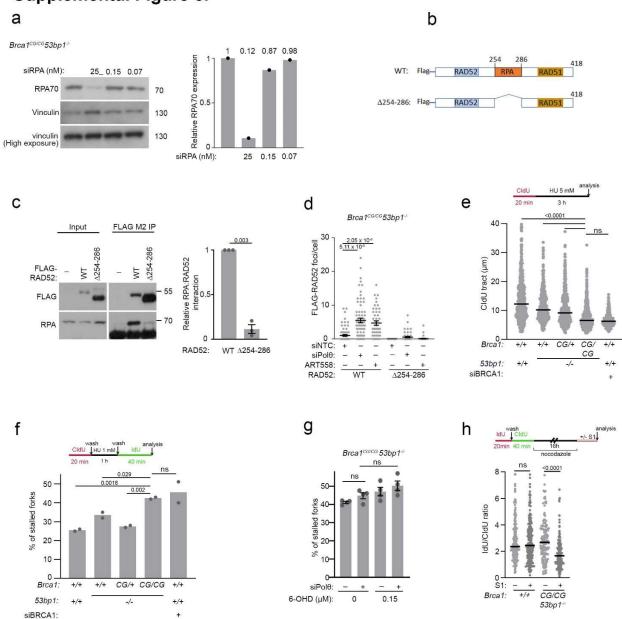


Supplementary Fig. 3. Assessment of Polθ siRNA and Ligase I/III inhibitor sensitivity.

- a. Western blot of Pol θ in genotypes shown, treated with control (–) siRNA or siRNA to Pol θ (+).
- **b.** Colony survival in MEFs of the genotypes shown treated with control (-) or Pol θ (-) siRNA normalised to untreated genotype matched controls. n=4 biological repeats. Data are mean \pm SEM.
- c. γ H2AX foci, in asynchronous cells of the genotypes shown (all are $53bp1^{-/-}$), treated with non-targeting control (NTC) (–) or Pol θ (+) siRNA. n=120 cells per condition from 3 biological replicates. Data are mean \pm SEM.
- **d.** Colony survival in MEFs of the genotypes shown treated with the Ligase I/III inhibitor, L67, normalised to untreated genotype matched controls. n=2 biological replicates. Data are mean ± SD.

All statistical analysis in this figure was performed using a two-tailed Student's t-Test, without adjustment for multiple comparisons. Source data are provided as a Source Data file.

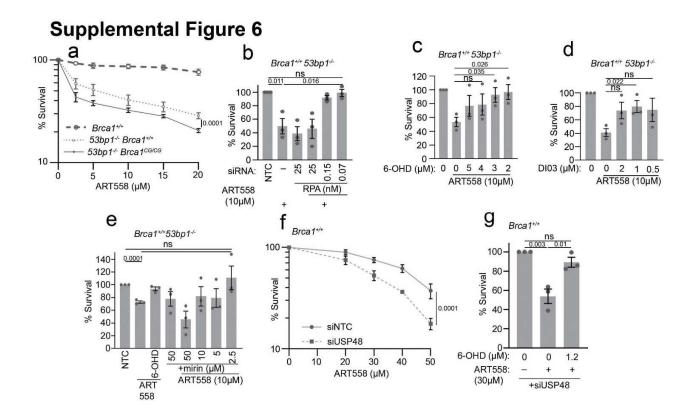
Supplemental Figure 4.



Supplementa Fig. 4. RNF168 depletion does not suppress the toxicity of Pol θ depletion, low concentration RAD52 inhibition suppresses the toxicity of Pol θ depletion in BRCA2 and BRCA1 depleted cells and has no impact on Olaparib sensitivity.

- **a**. Representative images of RNF168 foci in $Brca1^{C61G/C61G}$ 53 $bp1^{-/-}$ cells, 72 hours after treatment with siNTC or siRNA targeting Pol θ .
- **b.** Quantification of RAD51 foci 4 hours post 2 Gy IR exposure, in EdU-positive $Brca1^{C61G/C61G} 53bp1^{-/-}$ cells treated with siRNA targeting Pol θ (+), or control siRNA (-) with or without siRNA targeting RNF168. n=100 cells from 2 biological replicates. Data are mean \pm SEM.
- c. Colony survival in $Brca1^{C61G/C61G} 53bp1^{-/-}$ cells treated with siNTC or Pol θ siRNA, with or without siRNA targeting RNF168. n=3 biological replicates, data are mean \pm SEM.
- **d**. Colony survival in $Brca1^{C61G/C61G} 53bp1^{-/-}$ cells treated with siNTC (–) or Pol θ siRNA, with or without BRCA2 siRNA and the RAD52 inhibitor, 6-OHD. n=3 biological replicates, data are mean \pm SEM.
- **e**. Colony survival of wild-type MEFs treated with siNTC (-) or Pol θ siRNA, with or without BRCA2 siRNA and the RAD52 inhibitor, 6-OHD. n=3 biological replicates, data are mean \pm SEM.
- **f**. Colony survival of CAL51 cells treated with BRCA1 siRNA and Pol θ siRNA with decreasing amounts of RAD52 siRNA. n=3, data are mean \pm SEM.
- **g.** Colony survival of $Brca1^{C61G/C61G} 53bp1^{-/-}$ cells treated with the concentrations shown of RAD52 inhibitor 6-OHD and increasing doses of olaparib. n=2 biological replicates, data are mean \pm SEM.

Statistical analysis in b-f was performed using a two-tailed Student's t-Test, without adjustment for multiple comparisons. Statistical analysis in g was performed using a two-way ANOVA. Source data are provided as a Source Data file.

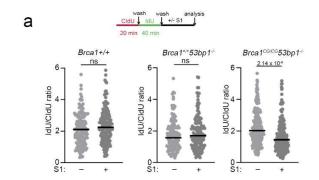


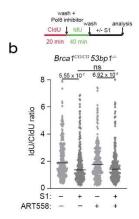
Supplementary Figure 5. Assessment of replication features for correlation with the Pol0:RAD52 relationship.

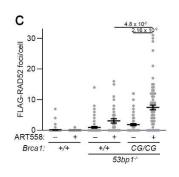
- **a**. Western blot analysis of RPA70 protein levels following non-targeting control (–) or RPA70 targeting siRNA treatment with indicated concentrations.
- b. Schematic of RAD52 constructs, illustrating the regions of RAD52 that interact with RAD51 and RPA.
- **c.** Immunoprecipitation of FLAG-RAD52 mutants and immunoblot for FLAG-RAD52 and RPA. Graph (right) shows quantification from 3 independent experiments. Data are mean ± SEM.
- **d**. FLAG-RAD52 foci generated by wild-type FLAG-RAD52 and FLAG-RAD52 missing amino acids 254–286 in asynchronous $Brca1^{C61G/C61G}$ 53 $bp1^{-/-}$ cells treated with siRNA to Pol θ or with ART558 (10 μ M). $n \ge 45$ cells per condition, from 2 biological replicates. Data are mean \pm SEM.
- **e**. Top, schematic of fork stability assay. CldU tract length from cells with the illustrated genotypes treated with hydroxyurea (5 mM, 3 h). n>200 fibres from 3 biological replicates. Bars=median.
- **f**. % fibres with first-label terminations from cells with the illustrated genotypes. n>800 fibres from 2 biological replicates. Data are mean ± SEM.
- g. % fibres with first label terminations from $Brca1^{C61G/C61G}53bp1^{-/-}$ cells treated with Pol θ siRNA, and/or RAD52 inhibitor, 6-OHD. n>250 fibres from 4 biological replicates. Data are mean \pm SEM.
- **h**. S1 nuclease assay in G2/M in wild-type and *Brca1*^{C61G/C61G} 53bp1^{-/-} cells, illustrated in the cartoon above, for ssDNA gaps formed in nascent DNA in the previous S phase. n>140 from 1 biological replicate. Bar=median.

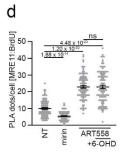
Statistical analysis in c, d, f, and g was performed using a two-tailed Student's t-Test, without adjustment for multiple comparisons. Statistical analysis in e and h was performed using a Mann Whitney test. Source data are provided as a Source Data file.

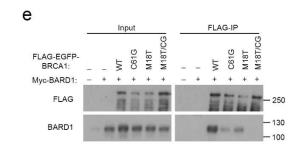
We assessed stalled replication forks, the stability of which are reduced in $Brca1^{C616/C616} 53bp1^{-/-}$ cells (Supplemental Fig. 5e). While neither Pol θ siRNA nor 0.15 μ M 6-OHD, influenced stalled fork instability in HU-treated $Brca1^{C616/C616} 53bp1^{-/-}$ cells, their combination improved fork protection (Fig. 4h). These data suggest that while not affecting the amount of nascent DNA lost, Pol θ depletion biases degradation towards a RAD52-mediated mechanism. Pol θ and RAD52 also participate in the recovery of stalled forks 11,83,51,52,52,54 . We noted that the reduced restart of HU-stalled forks in Pol θ depleted $Brca1^{C616/C616} 53bp1^{-/-}$ cells was worsened by RAD52 inhibitor addition (Supplemental Fig. 5f & g), consistent with a recent report of a synthetic reduction in fork restart⁵⁴. We next examined the exposure of the nucleotide analogue BrdU in cells labelled for 48 hours in non-denatured, native DNA fibres, indicating ssDNA. ssDNA lengths increased following treatment with Pol θ siRNA and were MRE11-dependent, as previously reported^{16,17} and were also suppressed by RAD52 inhibitor (Fig. 4i). However, since ssDNA lengths were increased after 0.15 μ M 6-OHD RAD52 inhibitor treatment alone, which has no influence of cell survival (not shown), we conclude that gross ssDNA is unlikely to be the underlying structure for RAD52: Pol θ synthetic lethality in $Brca1^{C616/C616} 53bp1^{-/-}$ cells. In summary, fork instability, poor fork restart and increased gross ssDNA do not correlate with the RAD52:Pol θ viability relationship, suggesting they are unlikely to be reflective of where Pol θ is most required.

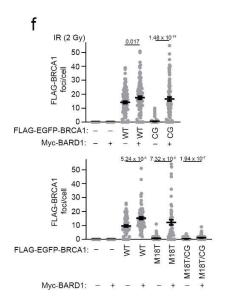


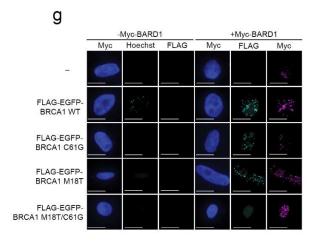

Supplementary Fig. 6. Synthetic lethality between 53BP1 loss and Polθ inhibition is suppressed by RAD52 inhibition.

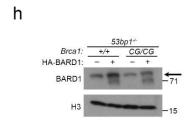

- **a.** Colony survival in wild-type (WT), $53bp1^{-/-}$ and $Brca1^{C61G/C61G}53bp1^{-/-}$ cells treated with increasing doses of ART558 for 72 hours. n=6 biological repeats. Data are mean \pm SEM.
- **b.** Colony survival of $53bp1^{-/2}$ cells (with WT BRCA1), treated with 10 μ M Pol θ inhibitor ART558 and decreasing concentrations of RPA siRNA. n=4 biological repeats. Data are mean \pm SEM.
- c. Colony survival in $53bp1^{-/-}$ cells treated with 10 μ M ART558 and decreasing doses of RAD52 inhibitor 6-OHD. n=3 biological repeats. Data are mean \pm SEM.
- **d.** Colony survival in $53bp1^{-/-}$ cells treated with 10 μ M ART558 and decreasing doses of RAD52 inhibitor DI03. n=3 biological repeats. Data are mean \pm SEM.
- **e**. Colony survival of $53bp1^{-/-}$ cells, treated with 10 μ M Pol θ inhibitor ART558, 0.15 μ M 6-OHD and the MRE11 inhibitor mirin. n=3 biological repeats. Data are mean \pm SEM.
- **f.** Colony survival of wild-type cells treated with non-targeting control (NTC) or USP48 siRNA and increasing concentrations of the Pol θ inhibitor ART558. n=3 biological repeats. Data are mean \pm SEM.
- g. Colony survival of wild-type cells, treated with NTC siRNA (–) or USP48 siRNA and 30 μ M Pol θ inhibitor ART558 with either vehicle or 1.2 μ M RAD52 inhibitor 6-OHD. n=3 biological repeats. Data are mean \pm SEM.

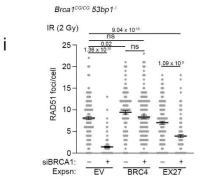

Statistical analysis in b-e and g was performed using a two-tailed Student's t-Test, without adjustment for multiple comparisons. Statistical analysis in a and f was performed using a two-way ANOVA. Source data are provided as a Source Data file.


Supplemental Figure 7









Supplementary Fig.7 BARD1 influence on C61G-BRCA1 foci formation and BRCA2 fragment RPA fusions on RAD51 foci formation in BRCA1-depleted cells.

- **a**. S1 nuclease assay, illustrated in the cartoon above, for ssDNA gaps in nascent DNA in the genotypes shown. n>320 fibers per condition from 3 replicates. Bar=median.
- **b**. S1 nuclease assay of $Brca1^{C61G/C61G}$ 53 $bp1^{-/-}$ cells with and without 10 μ M ART558 treatment. n>220 fibres per condition from 3 replicates. Bar=median.
- **c.** FLAG-RAD52 foci in asynchronous cells with the genotypes shown treated with Pol θ inhibitor ART558.
- **d.** Quantification of proximity-linked ligation assay foci (PLA) between MRE11 and BrdU. Cells were treated with the indicated inhibitors for 72 h and with 10 μ M BrdU 48 h before fixation. n=100 cells from 2 biological replicates, bars depict mean \pm SEM.
- **e**. Representative blot of FLAG-immunoprecipitation of human FLAG-EGFP-tagged BRCA1 variants from U2OS cells expressing exogenous human myc-BARD1.
- **f.** Quantification of FLAG-EGFP-tagged BRCA1 variant foci in Edu-positive cells with and without co-expression of human myc-BARD1 following a 2-hour recovery from 2 Gy IR. n=120 from 3 biological repeats (upper panel) and n=60 from 2 biological repeats (lower panel). Data are mean ± SEM.
- g. Representative images of FLAG-EGFP-tagged BRCA1 foci and mc-tagged BARD1 foci from U2OS cells following a 2-hour recovery from 2 Gy IR. Scale bars represent 10 μ m.
- h. Expression levels of BARD1 in the MEF genotypes shown with (+) and without (–) co-expression of murine BARD1. i. RAD51 foci in Edu-positive *Brca1*^{C61G/C61G} 53bp1^{-/-} cells treated with non-targeting control (NTC), or BRCA1 siRNA and infected with empty pMSCV-IRES-EGFP (EV) retrovirus or those expressing RPA-70-BRCA2-BRC4 (BRC4) or RPA-70-BRCA2-Exon27 (Ex27). n=3 biological replicates, data are mean ± SEM.

All statistical analysis in this figure was performed using a two-tailed Student's t-Test, without adjustment for multiple comparisons. Source data are provided as a Source Data file.

Supplementary Table 1- Antibodies.

Antibody (clone)	Host	Supplier	Cat. number	Lot number	Technique	Conc	RRID
β-actin	Rabbit	Abcam	Ab8227	GR3215935-1	WB	1:3000	AB_2305186
Human BARD1	Rabbit	Abcam Gift from R.Baer	ab226854	GR3197067-8	WB	1:2000	N/A
Murine BARD1	Rabbit	(McCarthy et al., 2003)	N/A	N/A	WB/IF	1:1000	N/A
Human BRCA1 (D-9)	Mouse	Santa Cruz	Sc6954	C2519	IF	1:500	AB_626761
Human BRCA1 (MS110)	Mouse	MERCK Millipore	OP94	3091924	WB	1:500	AB_213438
Murine BRCA1 (56E)	Rabbit	Gift from R.Baer	N/A	N/A	IF	1:1000	N/A
Murine BRCA1 (C40)*	Rabbit	Dundee cell Products	Custom design		IP		N/A
Murine BRCA1 (287.17)	Mouse	Santa Cruz	sc-135732	D2121	IF	1:50	AB_2243740
Murine BRCA1	Rabbit	Affinity Bioscience	AF6288	14f1430	WB	1:1000	AB_2835138
Polymerase theta	Rabbit	MyBiosource	MBS9612322	85i9616	WB	1:500	
CldU (BrdU)	Rat	Abcam	Ab6326	GR3173537-9	Fibres/IF	1:2000	AB_305426
Flag (M2)	Mouse	SigmaAldrich	F1804	SLBT7654	WB	1:1000	AB_262044
IdU (BrdU)	Mouse	BD Biosciences	347580	8151735	Fibres/PLA	1:500/ 1:200	AB_400326
γH2AX	Rabbit	Abcam	Ab2893	GR3242597-1	IF	1:2000	AB_303388
PALB2	Rabbit	Bethyl	A301.246A		WB	1:2000	AB_890607
RNF168	Sheep	Novus Biologicals	AF7217		IF/WB	1:1000	AB_10971653
RAD51 (Ab-1)	Rabbit	Calbiochem	PC130	3135376	PLA	1:100	AB_2238184
				3668125	IF	1:1000	
Mre11	Rabbit	Novus Biologicals	NB100-142	V-1	PLA	1:200	AB_10077796
RAD52	Sheep	Gift from Fena Ochs/Claudia Lukas	University of Copenhagen.		WB	1:1000	N/A
RPA70	Mouse	Abcam	Ab176467	GR3249141-1	WB	1:1000	N/A
Tubulin	Mouse	Santa Cruz	sc-5286	H0613	WB	1:5000	AB_628411
Vinculin [EPR8185]	Rabbit	Abcam	Ab129002	GR221671-50	WB	1:2000	AB_11144129
Donkey α Mouse AlexaFluor 488	Donkey	Life technologies	A21202	1975519	IF/fibres	1:5000	AB_141607
Donkey α Rabbit AlexaFluor 488	Donkey	Life technologies	A21206	1874771	IF	1:500	AB_2535792
Donkey α Mouse AlexaFluor 555	Donkey	Life technologies	A31570	1774719	IF/fibres	1:500	AB_2536180
Donkey α Rabbit AlexaFluor 555	Donkey	Life technologies	A31572	1945911	IF	1:500	AB_162543
Donkey α Rat AlexaFluor 555	Donkey	Life technologies	A21434	1987272	fibres	1:500	AB_2535855
	Donkey		A21208	2480078	IF/fibres	1:500	AB_2535794
Donkey α Rat AlexaFluor 488		Life technologies				4 4000	
Rabbit α Mouse HRP	Rabbit	Dako	P0161	20062080	WB	1:1000 0	AB_2687969
Swine α Rabbit HRP	Swine	Dako	P0217	20047666	WB	1:1000 0	AB_2728719

^{*}Antibody generation. Murine BRCA1 residues 1-300 bearing a Histidine tag and expressed in bacteria was used as an immunogen in Rabbits (Dundee cell products). The antibody is available on request to the corresponding authors subject to completion of a standard MTA.

Supplementary Table 2 - siRNA sequences

Target	siRNA Sequences	Supplier
NTC (Renilla	Sense: CUUACGCUGAGUACUUCGA[dT][dT]	Sigma
Luciferase)	Antisense: [Phos]UCGAAGUACUCAGCGUAA G[dT][dT]	Aldrich
mBRCA1	Sense: GGAUUUAUCUGCCGUCCAA [dT][dT]	Sigma
	Antisense: [Phos] UUGGACGGCAGAUAAAUCC[[dT][dT]	Aldrich
	Sense: GAACAGAGCAACUUGAAAC [dTdT]	
	Antisense: [Phos] AUUGUCUGUAUAGUCCACAGG [dT][dT]	
mRNF168	Sense: CCUUGGCUUCUCCUUUGAGUU [dT][dT]	Sigma
	Antisense: [Phos] AACUCAAAGGAGAAGCCAAGG [dT][dT]	Aldrich
mRAD52	Sense: UUGAAGGUCAUCGGGUAAUUA [dT][dT]	Sigma
	Antisense: [Phos]UAAUUACCCGAUGACCUUCAA [dT][dT]	Aldrich
	Sense: ACUAUCUGAGGUCACUAAAUA [dT][dT]	
	Antisense: [Phos] UAUUUAGUGACCUCAGAUAGU [dT][dT]	
	Sense: CCCACAUGACUCGAACAUUAA [dT][dT]	
	Antisense: [Phos] UUAAUGUUCGAGUCAUGUGGG [dT][dT]	
	Sense: CAGACUUAGAGGACAUCAUUA [dT][dT]	
	Antisense: [Phos] UAAUGAUGUCCUCUAAGUCUG [dT][dT]	
	Sense: GCAGAGACUCUGAACCUCAUA [dT][dT]	
	Antisense: [Phos] UAUGAGGUUCAGAGUCUCUGC [dT][dT]	
nPolθ	Sense: CCAGACUAAGAGUUCUCAUAA [dT][dT]	Sigma
	Antisense:[Phos] UUAUGAGAACUCUUAGUCUGG [dT][dT]	Aldrich
	Sense: CCAGGAAUCAAAGACGACAAU [dT][dT]	
	Antisense:[Phos] AUUGUCGUCUUUGAUUCCUGG [dT][dT]	
	Sense: CACGGAAGAAAGCGUUGUUUA [dT][dT]	
	Antisense:[Phos] UAAACAACGCUUUCUUCCGUG [dT][dT]	
mRADX	Sense: CAUAGAGGCCAGCCGUAUA [dT][dT]	Sigma
	Antisense:[Phos] UAUACGGCUGGCCUCUAUG [dT][dT]	Aldrich
	Sense: GAAAGUAUUCCACGGAAAUUU [dT][dT]	7.1.0.1.01.1
	Antisense:[Phos] AAAUUUCCGUGGAAUACUUUC [dT][dT]	
	Sense: GGGAUAAUUACUGCUAUAAAG [dT][dT]	
	Antisense:[Phos] CUUUAUAGCAGUAAUUAUCCC [dT][dT]	
mBRCA2	Sense: CGGCGUUUCUAAAGAGUGCAU [dT][dT]	Sigma
IIDICAZ	Antisense: [Phos] AUGCACUCUUUAGAAACGCCG [dT][dT]	Aldrich
nRPA32	Sense: AGUAAACCAGGACUGGAUUUC [dT][dT]	Sigma
IIIII AJZ	Antisense: [Phos] GAAAUCCAGUCCUGGUUUACU [dT][dT]	Aldrich
mRPA70	Sense: GCCCUGAAGAUCGCUAACAAA [dT][dT]	Aldrich
IIII A70	Antisense: [Phos] UUUGUUAGCGAUCUUCAGGGC [dT][dT]	
nUSP48	Sense: AUUCCUUUGUGGGCUUGACUA[dT][dT]	
11031 40	Antisense: [Phos] UAGUCAAGCCACAAAGGAAU[dT][dT]	
	Sense: AUUCUGGCCACUACAUCGCAC[dT][dT]	
	Antisense: [Phos]GUGCGAUGUAGUGGCCAGAAU[dT][dT]	
DDCA1	Sense: GCUCCUCACUCUUCAGU[dT][dT]	Sigma
nBRCA1		Aldrich
	Antisense: [Phos] ACUGAAGAGUGAGAGGAGC [dT][dT]	Alunch
	Sense: AAGCUCCUCUCACUCUUCAGU [dT][dT]	Sigma
	Antisense: [Phos]ACUGAAGAGUGAGAGGAGCUU [dT][dT]	Aldrich
hPolQ	Sense: CGUCGUCUCAUUCAAGUGUUA [dT][dT]	
	Antisense: [Phos]UAACACUUGAAUGAGACGACG [dT][dT]	
	Sense: CCUUAAGACUGUAGGUACU[dT][dT]	
	Antisense: [Phos]AGUACCUACAGUCUUAAGG [dT][dT]	
nRad52	Sense: CCACCAGAAACCACAAGCAAA [dT][dT]	Sigma
	Antisense: [Phos]UUUGCUUGUGGUUUCUGGUGG [dT][dT]	Aldrich
	Sense: CGGGUAAUUAAUCUGGCCAAU [dT][dT]	
	Antisense: [Phos]AUUGGCCAGAUUAAUUACCCG [dT][dT]	

Supplementary Table 3 – primer, template, and gRNA sequences

Gene	Point mutation (human)	Point mutation (murine)	Sequences (5'-3-)	Supplier
BARD1	L44R	L38R	Forward: GCTTGCCCGCCGGGAGAAGCTGCTG	Sigma
			Reverse: ACTGGGCATCCTGAGCCAACACAG	Aldrich
	F133A/D135A/	F125A/D127A/A1	Forward: CATTTTTATTGAATTCTTCTTCCTTTCTTCAGCACCAGCTAAA	Sigma
	A136E	28E	CTTGCCCTAGATG TGTTGTCTTTTGAAT	Aldrich
	(AAE)	(AAE)	Reverse: ATTCAAAAGACAACACATCTAGGGCAAGTTTAGCTGGTGCT	
			GAAGAAAGGAAGAATTCAATAAAAATG	
	A460T	A448T	Forward: CGGTGTCCATCCAGTATGGTCTTTAACATTTGGGT	Sigma
			Reverse: ACCCAAATGTTAAAGACCATACTGGATGGACACCG	Aldrich
	D712A	D700A	Forward: GATGGTCTGAGTCACAGCACTGTCTGGCTTGGG	Sigma
			Reverse: CCCAAGCCAGACAGTGCTGTGACTCAGACCATC	Aldrich
BRCA1	M18T	-	Forward: CAAAATGTCATTAATGCTTTGCAGAAAATCTTAGAGTG	Sigma Aldrich
Rosa 26 F			AGAAAACTGGCCCTTGCCATT	Sigma Aldrich
Roas26 R			CAGCCTCGATTTGTGGTGTATG	Sigma Aldrich
Rosa26			GGGGGAGTCGTTTTACCCGCCGCCGGCCGGGCCTCGTCGTCTGATTGGC	Genscrip
HR assay			TCTCGGGGCCCAGAAAACTGGCCCTT GCCATTGGCTCGTGTTCGTGCAA	t
template			GTTGAGTCCATCCGCCGGCCAGCGGGGGGGGGGGGGGGG	
			GTTC CGGCCCTCCCCTCGGCCCCGCGCGCAGAGTCTGGCCGCGCGCCC	
			CTGCGCAACGTGGCAGGAAGCGCGCGCTG GGGGCGGGGACGGGCAGT	
			AGGGCTGAGCGGCGGGGGGGGGGGGAGCACGTTTCCGACTTGAGT	
			TGCCTCAA GAGGGGCGTGCTGAGCCAGACCTCCATCGCGCACTCCGGG	
			GAGTGGAGGGAAGGAGCGAGGGCTCAGTTGGGCT GTTTTGGAGGCAG	
			GAAGCACTTGCTCTCCCAAAGTCGCTCTGAGTTGTTATCAGTAAGGGAGC	
			TGCAGTGGAGTAG GCGGGGAGAAGGCCGCACCCTTCTCCGGAGGGGG	
			GAGGGGAGTGTTGCAATACCTTTCTGGGAGTTCTCTGCTGC CTCCTGGC	
			TTCTGAGGACCGCCCTGGGCCTGGGAGAATCCCTTCCCCCCTCTTCCCTCG	
			TGATCTGCAACTCCAGTCTTTCTAGAAGtactGCGGGAGTCTTCTGGGCA	
			GGCTTAAAGGCTAACCTGGTGTGTGGGCGTTGTCCTGCAGGGG AATTG	
			AACAGGTGTAAAATTGGAGGGACAAGACTTCCCACAGATTTTCGGTTTT	
			GTCGGGAAGTTTTTTAATAGGGG CAAATAAGGAAAATGGGAGGATAG	
			GTAGTCATCTGGGGTTTTATGCAGCAAAACTACAGGTTATTATTGCTTGT	
			GAT CCGCCTCGGAGTATTTTCCATCGAGGTAGATTAAAGACATGCTCAC	
			CCGAGTTTTATACTCTCCTGCTTGAGATCC TTACTACAGTATGAAATTAC	
			AGTGTCGCGAGTTAGACTATGTAAGCAGAATTTTAATCATTTTTAAAGA	
			GCCCAGTAC TTCATATCCATTTCTCCCGCTCCTTCTGCAGCCTTATCAAAA	
			GGTATTTTAGAACACTCATTTTAGCCCCATTTTCATT TATTATACTGGCTT	
			ATCCAACCCCTAGACAGAGCATTGGCATTTTCCCTTTCCTGATCTTAGAA	
			GTCTGATGACTCATGAAACCAGACA	
Rosa26 gRNA			ACTCCAGTCTTTCTAGAAGA	

Supplementary Table 4 - Details of chemical reagents, DNA damaging agents and inhibitors

Inhibitor	Company	Catalogue Number	Target	Concentration
Olaparib	Selleckchem	S1060	PARP	1-20 μΜ
BrdU	Sigma-Aldrich	B5002	Thymidine analogue	5-100 nM
Cisplatin	Sigma-Aldrich	PHR1624	DNA-crosslinker	1-5 μΜ
CldU	Sigma-Aldrich	C6891	Thymidine analogue	250 μΜ
EdU	Thermofisher	A10044	Thymidine analogue	10 μΜ
IdU	Sigma-Aldrich	17125	Thymidine analogue	25 μΜ
Hydroxyurea	Sigma-Aldrich	H8627	Ribonucleoside reductase	1-10 mM
Colcemid	Gibco	15212012	Microtubule poison	0.05 μg/ml
6-OH-DL-DOPA	Sigma	H2380	RAD52/APE1	0.15-5 μΜ
DI03	Sigma	SML2496	RAD52	0.5-10 μΜ
Novobiocin	Selleckchem	NSC2382	Polymerase Theta	50-200 μΜ
ART558	Artios	n/a	Polymerase Theta	2.5-20 μΜ
L67	Sigma-Aldrich	SML1797	DNA Ligase I/III	1-2 μΜ