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Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging viral pathogen that
causes the novel coronavirus disease of 2019 (COVID-19) andmay result in hypoxemic respiratory failure neces-
sitating invasive mechanical ventilation in the most severe cases.
Objective: This narrative review provides evidence-based recommendations for the treatment of COVID-19
related respiratory failure requiring invasive mechanical ventilation.
Discussion: In severe cases, COVID-19 leads to hypoxemic respiratory failure that may meet criteria for acute re-
spiratory distress syndrome (ARDS). The mainstay of treatment for ARDS includes a lung protective ventilation
strategy with low tidal volumes (4–8 mL/kg predicted body weight), adequate positive end-expiratory pressure
(PEEP), and maintaining a plateau pressure of <30 cmH2O.While further COVID-19 specific studies are needed,
current management should focus on supportive care, preventing further lung injury from mechanical ventila-
tion, and treating the underlying cause.
Conclusions: This reviewprovides evidence-based recommendations for the treatment of COVID-19 related respi-
ratory failure requiring invasive mechanical ventilation.

Published by Elsevier Inc.
1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is an emerging viral pathogen that causes mild illness in some while
others progress to respiratory failure requiring invasive mechanical
ventilation [1,2]. The disease caused by SARS-CoV-2 has been termed
thenovel coronavirus disease of 2019 (COVID-19) [3]. Though incidence
data are limited, a large case series of 1300 patientswith COVID-19 from
Italy found that 88% of critically ill patients requiredmechanical ventila-
tion [4]. Themortality of those placed onmechanical ventilation is 24.5%
to 28% in case series and may be even higher as many patients still re-
main in the hospital [4,5]. One study conducted prior to COVID-19 sug-
gests a lung protective strategy started in the emergency department
(ED) is associated with a reduction in hospital mortality, pulmonary
complications, and days requiringmechanical ventilation [6]. Therefore,
it is important for emergency medicine clinicians to be aware of the
management of mechanically ventilated patients, particularly as these
patients may be boarding in the ED for an extended period of time.
Sam Houston, TX 78234, USA
In the severest form, the characteristics of COVID-19 related respira-
tory failure may meet the definition of acute respiratory distress syn-
drome (ARDS) [7-10]. ARDS is defined by the Berlin criteria (Table 1)
[11] and exists on a spectrum as a heterogeneous syndrome caused by
multiple etiologies [12,13]. Practice guidelines from the Surviving Sepsis
Campaign and National Institutes of Health (NIH) on the management
of COVID-19 recommend a lung protective strategy with a high positive
end-expiratory pressure (PEEP) strategy and low tidal volumes (4–8
mL/kg predicted body weight) [14-16]. This review will discuss the
physiology underlying COVID-19 related ARDS, lung protective ventila-
tion strategies, individualized approaches tomechanical ventilation, ad-
ditional therapies, and a recommended approach to mechanical
ventilation for the emergency clinician.

2. Methods

This is a narrative review of invasive mechanical ventilation strate-
gies for COVID-19 related respiratory failure. Authors conducted a li-
terature review of PubMed and Google Scholar using keywords of
“ARDS” OR “Acute Respiratory Distress Syndrome” OR “COVID-19” OR
“SARS-CoV-2” OR “2019-nCoV” OR “hypoxemic respiratory failure” OR

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajem.2020.06.082&domain=pdf
https://doi.org/10.1016/j.ajem.2020.06.082
mailto:Brit.long@yahoo.com
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Table 1
The Berlin definition of the acute respiratory distress syndrome [11].

Clinical
Feature

Definition

Timing Develops within one week of clinical insult
Chest Imaging Bilateral opacities not otherwise explained by

pleural effusions, lobar collapse, or nodules
Origin of Edema Non-cardiogenic edema; edema not suspected

to be from an elevated left atrial pressure causing
hydrostatic edema; an echocardiogram may be
needed in unclear cases

Oxygenation Mild: PaO2/FiO2 of >200 mm Hg to <300 mm Hg
with PEEP or CPAP ≥5 cmH2O
Moderate: PaO2/FiO2 of >100 mm Hg to <200 mm Hg
with PEEP ≥5 cmH2O
Severe: PaO2/FiO2 < 100 mm Hg with PEEP ≥5 cmH2O

Abbreviations: FiO2, fraction of inspired oxygen; PaO2, partial pressure of arterial oxygen;
PEEP, positive end-expiratory pressure; CPAP, continuous positive airway pressure.

Table 2
Types of ventilator induced lung injury (VILI) [24].

Injury Mechanism Minimization Strategy

Atelectrauma Lung injury caused by cyclic Ensure appropriate PEEP and
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“mechanical ventilation” OR “driving pressure” OR “ventilator-induced
lung injury” from 1994 to May 2020. Respiratory physiology studies
from 1969 to 1994 were also included. Authors evaluated case reports
and series, retrospective and prospective studies, systematic reviews
and meta-analyses, and other narrative reviews. Authors also reviewed
guidelines and supporting citations of included articles. Authors decided
which studies to include for the review by consensus. When available,
systematic reviews and meta-analyses were preferentially selected.
These were followed sequentially by randomized controlled trials, pro-
spective studies, retrospective studies, case reports, and other narrative
reviews when alternate data were not available. Case reports, case con-
trols, cohort studies, randomized clinical trials, meta-analyses and sys-
tematic reviews, and narrative reviews were included. Authors
decided on the inclusion of 119 studies and included a total of 20 sys-
tematic reviews and meta-analyses, 30 randomized controlled trials, 8
prospective studies, 12 retrospective studies, 3 basic science experi-
mental studies, 11 case reports or case series, 22 narrative reviews
and 13 expert consensus documents and guidelines.
(Recruitment/
derecruitment
injury)

opening and collapse of
atelectatic, but recruitable lung
units.

tidal volumes.

Barotrauma Lung injury (e.g.
pneumothorax,
pneumomediastinum, etc.)
caused by high
transpulmonary pressure
disrupting the alveolar
structures.

Minimize excessive airway
pressure and tidal volumes.

Biotrauma Mechanical lung injury causes
up-regulation and release of
cytokines with a subsequent
pulmonary and systemic
inflammatory response causing
multi-organ dysfunction.

Lung protective strategy
while treating the underlying
cause.
Consider immunomodulating
therapies (e.g.
corticosteroids).

Oxygen toxicity Injury caused by the inability of
cells to overcome oxygen free
radicals, and absorption
atelectasis.

Turn down FiO2 as soon as
possible to target an oxygen
saturation of 92–96%.

Patient
self-inflicted
lung injury
(P-SILI)

Intense inspiratory force by the
patient causing high
transpulmonary pressure
swings.

Increase sedation with or
without neuromuscular
blockade if persistent,
excessive, spontaneous
respiratory effort is present.

Shearing injury High shear forces at the
junction of the collapsed and
open lung units causing lung
injury.

Use appropriate PEEP to
maintain recruitment and
low tidal volumes.
Modes like airway pressure
release ventilation (APRV)
may reduce shear stress.

Volutrauma Non-homogenous lung injury
caused by alveolar
overdistension.

Ensure a low tidal volume of
4–8 mL/kg PBW.
3. Discussion

3.1. Pathophysiology of acute respiratory distress syndrome and COVID-19

Acute respiratory distress syndrome is a complex and hetero-
geneous syndrome [11,17]. Causes of ARDS include non-infectious
etiologies (e.g., trauma, pancreatitis), pulmonary infections, and
non-pulmonary infections [12,17]. However, the common theme is an
inflammatory response causing lung and systemic organ injury. A se-
vere, hyperinflammatory, cytokine-mediated lung injury has also been
implicated in COVID-19 [9,18]. Pro-inflammatory cytokines may inter-
fere with the normal adaptive response of hypoxic vasoconstriction
[19]. Damage to alveolar epithelium and endothelium leads to leakage
of protein-rich fluid and non-cardiogenic pulmonary edema [17]. Con-
sequently, the injured lung becomes at greater risk of atelectasis with
impairment of surfactant, alveolar edema and hemorrhage, reduced
lung compliance, increased ventilation-perfusion mismatching, and
right-to-left shunting [17,20]. All of these factors contribute to hypox-
emia. The histological characteristic of ARDS is diffuse alveolar damage,
though interestingly this finding is not observed in all patients meeting
the Berlin definition of ARDS [17]. This pattern of diffuse alveolar dam-
age has also been noted in an autopsy case series of COVID-19 patients
[19,21].

ARDS is a clinical diagnosis that relies on the 2012 Berlin definition
(Table 1) [11]. Notably, ARDS is defined as an acute process with bi-
lateral lung opacities on imaging not from cardiogenic edema and a
partial pressure of arterial oxygen to the fraction of inspired oxygen
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(PaO2/FiO2) ratio of <300mmHg on a positive end-expiratory pressure
(PEEP) of at least 5 cmH2O. ARDS is further categorized intomild, mod-
erate, or severe, depending on the degree of impairment. Patients with
COVID-19 requiring mechanical ventilation frequently meet the defini-
tion of ARDS [7,8].

Lung compliance in COVID-19 related respiratory failure is variable
[7,22]. It is important to note that respiratory system compliance of
<40 mL/cm H2O was also originally considered in the Berlin definition
of ARDS but was excluded after further evaluation [11]. Studies of
ARDS in non-COVID-19 patients have also demonstrated a range of
lung compliances and underlying causes [12,13], that are similar to cur-
rently published COVID-19 related ARDS patients [10]. This suggests
that the treatments of ARDS developed over several decades remain ap-
plicable to the range of lung pathology observed in COVID-19 related re-
spiratory failure [10,23]. Moreover, deviation from a lung protective
ventilation strategy with a high VT and low PEEP has historically been
shown to cause lung injury in animal models [24-27].

Once ARDS is diagnosed, the treatment focuses on addressing the
underlying cause while preventing ventilator induced lung injury
(VILI) [24]. There are multiple sources of lung injury (Table 2).
Volutrauma occurs from excess volume or pressure leading to
overdistension (i.e. stretching) of at-risk alveoli [17,24]. Lung injury
caused by overdistension may be noted grossly by barotrauma (e.g.
pneumothorax, pneumomediastinum) or occur silently on the alveolar
level [24]. In ARDS, the functional lung volume is reduced due to alveo-
lar injury, edema, and atelectasis [17]. The reduction in aerated lung
space is the underpinning for the low VT of lung protective ventilation
(LPV). The delivered VT generates a pressurewithin the lung. The gener-
ated pressure will vary depending on the size of the VT and an individ-
ual’s respiratory system compliance [28]. The plateau pressure (PPlat)
estimates alveolar pressure, with a high PPlat suggesting alveolar
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overdistension [24,28]. Though a specific safe pressure threshold is un-
known, it is recommended tomaintain a PPlat < 30 cmH2O and a driving
pressure (PPlat – PEEP)<15 cmH2O [6,12,29]. The PPlat ismeasuredwith
a 0.5-second pause at the end of inspiration in a passive patient when
inspiratory flow reaches zero (Fig. 1) [12]. It is important the patient is
passive (i.e. without any spontaneous respiratory effort) during the in-
spiratory hold, as any patient effort (e.g. expiratory or inspiratory effort)
will distort the PPlat measurement. Additional injury may come in the
form of atelectrauma—repetitive opening and closing of alveoli leading
to alveolar injury and denaturing of surfactant [17,24]. Atelectrauma
has been shown to increase inflammatory markers in animal models
[12,17,25-27]. Atelectrauma is minimized by using appropriate PEEP
to maintain alveolar aeration (i.e. recruitment) throughout the respira-
tory cycle [24].

3.2. A lung protective strategy

In COVID-19 related respiratory failure, care is focused on maintain-
ing oxygenation while preventing VILI with lung protective ventilation
(LPV). The mainstays of LPV are low VT, sufficient PEEP to maintain
lung recruitment, and low airway pressures [17,30-34]. Though ARDS
is a heterogeneous syndrome, the following is recommended for all
ARDS patients: (1) VT of 4 to 8 mL/kg predicted body weight (PBW)
and (2) targeting a PPlat < 30 cm H2O (Tables 3 and 4) [15,34,35].
Emerging data from several American tertiary care centers support
this approach in patients with COVID-19 requiring invasive mechanical
ventilation [10].

The ARDSnet ARMA trial showed amortality benefit in patients with
ARDS using a low (6 mL/kg PBW), as compared to a high (12 mL/kg
PBW), VT ventilation strategy, PEEP set by the lower PEEP/FiO2 table
(Table 4) and a goal PPlat less than 30 cm H2O (Table 3) [12]. Though
Fig. 1.Anexample of a plateau pressure, checked after an end inspiratory pausewhen inspirator
a set 420mL (6mL/kgPBW) tidal volume. Thedriving pressure is 15 cmH2O (plateau pressure o
the respiratory system (CRS) by CRS = Tidal Volume/Driving Pressure. In this patient the CRS is
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an initial improvement in oxygenation with a larger, 12 mL/kg VT may
be seen, this trial showed the initial improvement in oxygenation with
a larger VT is at the expense of a later increase in mortality [12]. Early
initiation of LPV initiated in the ED is associated with improved mortal-
ity and patient outcomes [6]. The traditional LPV approach uses a
PEEP/FiO2 table to determine the set PEEP based on the degree of hyp-
oxemia and FiO2 requirement (Table 4) [12]. Currently, the Surviving
Sepsis Campaign and NIH recommend a higher PEEP strategy over
lower PEEP strategy for patients with ARDS due to COVID-19; however,
this is a weak recommendation based on low-quality evidence
[14-16,36]. This prescriptive setting of PEEP has been criticized in
COVID-19 because it lacks sufficient individualization to the variable
response to PEEP [37].

3.3. An individualized approach

3.3.1. Description of PEEP and recruitment maneuvers in ARDS
The tenants of ARDS management and LPV are low Vt and cautious

use of PEEP [17]. ARDS is a heterogeneous disease with a variety of po-
tentially recruitable, PEEP-responsive lung units [38]. This heterogene-
ity means a single prescribed VT and PEEP impacts each lung unit
differently depending on the local level of functional impairment (e.g.
edema, atelectasis). An inherent tradeoff with any PEEP application is
the need to balance improving oxygenation with potentially inducing
VILI [39,40]. PEEP can be beneficial by recruiting and aerating collapsed
lung units, improving gas exchange, and minimizing atelectrauma.
However, it can also be harmful by over-distending the lung, increasing
pulmonary vascular resistance, worsening ventilation and perfusion
matching, and inducing hemodynamic instability by decreasing cardio-
vascular preload. Finding the optimal PEEPmay not rest on one variable
[22]. The elusive goal to find the optimal PEEP is not new [41] and
y flowhas reached zero. The plateau pressure is 30 cmH2O, in a volume controlmodewith
f 30 cmH2O - PEEP of 15 cmH2O). The driving pressure is related to the static compliance of
low at 28 mL/cm H2O.



Table 3
The conventional lung protective ventilation strategy [12].

Variable Setting

Tidal Volume 6 mL/kg PBW (Range: 4–8 mL/kg PBW)
Plateau pressure Less than 30 cm H2O
Respiratory rate Up to 35 breaths per minute, goal of pH 7.30–7.45 but

may allow permissive hypercapnia with a pH >7.15
Positive End
Expiratory Pressure

Initiate at ≥5 cm H2O
Titrate according to ARDSnet lower PEEP/higher FiO2

table
Oxygenation target Titrate FiO2 to:
PaO2 55–80 mmHg
SpO2 88–95%

Abbreviations: PBW (predicted body weight), PEEP (positive end-expiratory pressure).

Fig. 2. A representation of the relationship between compliance of the respiratory system
(CRS) and PEEP. If increasing PEEP improves recruitment, by aeration of previously non-
aerated lung, then compliance will improve until the lungs are overdistended and
compliance worsens.
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strives to maximize the beneficial effects of PEEP while minimizing any
potential harmful effects.

One method of PEEP adjustment was described in the ARDSnet trial
in the form of a high and low PEEP/FiO2 table based on levels of hypox-
emia [12] (Table 4). A mortality benefit has not been detected with the
high PEEP/FiO2 compared to the low PEEP/FiO2 table [42-45]. Despite
lack of proven superiority, current recommendations support a high
PEEP strategy for moderate to severe ARDS (PaO2/FiO2 < 200 mm Hg)
which is consistent with current COVID-19 recommendations [14-
16,34,36,46]. The PEEP tables are unable to take into account the extent
of individual lung injury and recruitability. For instance, a low PEEP in
potentially recruitable lungs does not allow for the beneficial effects of
PEEP while a high PEEP strategy with low lung recruitability can lead
to over-distention and increased lung injury [47]. Marini and Gattinoni
[37] suggest that different COVID-19 ARDS phenotypes require varied
management strategies. These two “H” and “L” phenotypes are based
on lung CT imaging, compliance, and response to PEEP [22,37,48,49].
However, these phenotypes for COVID-19 have not been validated in
other studies and should not form the foundation of therapy. ARDS phe-
notypes have been previously described [50] and may provide insight
into a personalized approach. Personalized ventilator strategies com-
pared to a uniform approach may be helpful; however, caution must
be used with personalization because if incorrectly assessed, mortality
may increase [51].

There remains controversy surrounding the use of recruitment ma-
neuvers. A recruitment maneuver is a prolonged inspiratory hold on
higher levels of CPAP, such as 35–40 cm H2O for 30–40 s [16,52]. Evi-
dence from a systematic review and meta-analysis showed improved
oxygenation without an increased risk of barotrauma [52]. However,
other studies show recruitmentmaneuvers with PEEP titration increase
mortality compared to a standard PEEP/FIO2 table [53]. In COVID-19, if
hypoxemia exists despite optimization of ventilator settings, recruit-
ment maneuvers may be considered while monitoring for harmful ef-
fects such as oxygen desaturation, hypotension, or barotrauma [15,16].

3.3.2. Driving pressure
Driving pressure can be calculated easily at the bedside by obtaining

the PPlat during an end-inspiratory pause in a passive patient in a
volume-targeted mode of ventilation. It is calculated by PPlat - PEEP.
Table 4
PEEP/FiO2 titration strategies [12].

Lower PEEP/FiO2 Combination
FiO2 0.3 0.4 0.4 0.5 0.5 0.6
PEEP (cm H2O) 5 5 8 8 10 10

Higher PEEP/FiO2 Combination
FiO2 0.3 0.3 0.4 0.4 0.5 0.5
PEEP (cm H2O) 5–12 14 14 16 16 18

Abbreviations: PEEP (positive end-expiratory pressure), FiO2 (fraction of inspired oxygen).
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The driving pressure reflects the static compliance of the respiratory
system (CRS) by the equation of CRS= VT /(PPlat - PEEP). As the equation
suggests, a change in VT or a change in pressure will affect the compli-
ance of the respiratory system. It is possible that a change in PEEP may
decrease the pressure associated with a VT (i.e. improve the CRS) if it is
able to recruit previously non-aerated lung (Fig. 2) [29,54]. Similarly,
it is also possible that an increase in PEEP couldworsen CRS if an increase
in pressure does not improve recruitment and instead causes
overdistension (Fig. 2), leading to lung injury and worsening dead
space or causing hemodynamic compromise [55]. The driving pressure
may offer a better quantification of functional lung size as compared
to PBW for a set VT because PBW is proportional to total lung size and
not the reduced, functional lung size in ARDS [51,55].

Amato et. al. performed a retrospective review [29] of the ARDSnet
trial data and showed that driving pressure was the ventilation variable
that best stratified mortality risk in ARDS. Higher mortality was noted
with a higher PPlat only when higher driving pressures were present.
Similarly, protective effects of PEEP were noted only when associated
with decreased driving pressures [29]. The association of higher driving
pressures and highermortality rate formechanically ventilated patients
with ARDS was also identified in a subsequent meta-analysis. Despite
the strong association with mortality in retrospective studies [29,56],
the routine use of driving pressure in ARDS has not demonstrated a
mortality benefit in prospective randomized controlled trials [53,56].
One study using recruitment maneuvers followed by PEEP titration to
the best CRS demonstrated an increase in mortality when compared to
PEEP set by the low PEEP/FiO2 table [53]. This study suggests the com-
bination of recruitmentmaneuvers and PEEP titration to best CRS should
not be used together to set PEEP. Therefore, the driving pressure should
be used as a complement—not a replacement—to the evidence-based
VT, PPlat, and PEEP recommendations.

When ventilating an ED patient in a volume targeted mode, clini-
cians should re-evaluate the ventilator settings if the driving pressure
is above 15 cmH20 [29]. Thefirst option todecrease thedrivingpressure
0.7 0.7 0.7 0.8 0.9 0.9 0.9 1.0
10 12 14 14 14 16 18 18–24

0.5 0.6 0.7 0.8 0.8 0.9 1.0
20 20 20 20 22 22 22–24
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is to decrease the VT. Once a VT of ≤4–6 mL/kg PBW has been achieved,
the next step is to adjust the PEEP and follow the change in driving pres-
sure. At a fixed VT, the PEEP that leads to the smallest driving pressure is
the ideal PEEP for improving respiratory system compliance (Fig. 2).
This is accomplished by incrementally adjusting PEEP, to the range of
the targeted PEEP from the PEEP/FiO2 table (Table 4), while monitoring
the driving pressure. The goal of assessing driving pressure is to detect
the individual heterogeneity of PEEP responsiveness seen in COVID-19
related ARDS. Driving pressure may aid in identifying those who may
benefit, or be harmed, from a higher or lower PEEP than prescribed in
the PEEP/FIO2 tables.

3.3.3. Transpulmonary pressure
Regional lung overdistention is a key factor in VILI, but it can be

difficult to measure directly [24]. Overdistention occurs because of
the high-pressure differences across the lung tissue, referred to as
the transpulmonary pressure. The PPlat is the average alveolar pres-
sure and often serves as a surrogate for inflation pressure and
overdistention. In some instances, a high alveolar pressure (i.e.
PPlat >30 cm H2O) may not reflect an injurious high transpulmonary
pressure because of the counter-pressure (i.e. pleural pressure) pro-
vided by the chest wall and abdominal contents. As an example, a
trumpet player with a very high alveolar pressure does not encoun-
ter elevated transpulmonary pressures because of the elevated pleu-
ral pressures generated to play the instrument [24,57]. Similarly, a
stiff chest wall or rigid abdominal compartment may cause a high
PPlat despite a safe, normal transpulmonary pressure [24]. One
method of estimating pleural pressure is by using a balloon manom-
eter to measure the esophageal pressures as a surrogate for pleural
pressure. However, this complex strategy is not recommended in
the emergency department as it is cumbersome and has not been
shown to be beneficial when compared to empiric PEEP set by the
PEEP/FiO2 tables (Table 4) [58,59].
3.4. Additional therapies in ARDS

3.4.1. Prone positioning
Prone positioning has been utilized for many years to improve oxy-

genation and outcomes in ARDS [60,61]. This position, commonly re-
ferred to as “proning,” utilizes gravitational effects to conform the
shape of the lung to the chest cavity and ultimately reduce the pleural
pressure gradient from non-dependent to dependent regions [62]. In
addition to a more favorable and equitable distribution of aeration,
proning increases end-expiratory lung volume, improves ventilation-
perfusion matching, increases secretion clearance, and alters chest
wall mechanics, leading to regional changes and improvements in over-
all lung ventilation [61,63-65]. Prone positioning has been shown in
several studies to protect against VILI [62,66-69] and also has a mortal-
ity benefit [60,70,71]. Proning should be considered in patients with
ARDS and a PaO2/FiO2 ratio < 150 despite optimized ventilator settings
[60]. This is consistent with the current COVID-19 recommendations
where patients with moderate to severe ARDS may be proned for 12
to 16 h at a time [16]. Proning on mechanical ventilation is beneficial
when started early, after 12–24 h of stabilization on the ventilator
[60]. Unless there is a significant delay in the transfer, proning in the
mechanically ventilated patient can generally wait for admission to
the intensive care unit (ICU). If proning is started in the ED, neck and
shoulder mobility should be assessed to ensure the patient can tolerate
a prone position. Additionally, the teammustwear appropriate PPE [15]
andmust be trained tomonitor for pressure points and avoid accidental
extubation, which can lead to loss of recruitment and potential expo-
sure to the team. Due to the inherent risks and challenges, a collabora-
tive approach with a practiced team is recommended prior to
attempting prone positioning in the emergency department for theme-
chanically ventilated patient.
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3.4.2. Inhaled pulmonary vasodilators
Inhaled pulmonary vasodilators predominantly distribute to venti-

lated alveoli causing localized vasodilation, thereby improving
ventilation-perfusion matching [72-74]. While no mortality benefit
has been demonstrated [75-77], inhaled nitric oxide and inhaled prosta-
cyclins (e.g. epoprostenol) are used as rescue agents to reduce hypoxia-
mediated vasoconstriction and improve oxygenation in severe ARDS
[72,75,78,79]. The ease of delivery, inexpensive cost, and infrequent ad-
verse events have made prostacyclins a more favorable choice [73], as
inhaled nitric oxide [80] has been associated with increased renal im-
pairment [81]. These decisions must be made within the local practice
environment accounting for availability and ventilator circuit type.
Also, there may be an increased risk of aerosolization with inhaled pul-
monary vasodilators that should be taken into consideration. The Sur-
viving Sepsis Campaign guidelines for COVID-19 recommend against
the use of routine use of inhaled nitric oxide but suggest that a trial of
inhaled pulmonary vasodilators may be used as a rescue therapy
while monitoring for rapid improvement in oxygenation [16].

3.4.3. Neuromuscular blocking agents (NMBA)
Long-acting neuromuscular blocking agents (e.g. vecuronium and

cisatracurium) used in moderate-to-severe ARDS have been shown to
minimize patient-ventilator dyssynchrony, decrease work of breathing
[82], improve oxygenation [83], reduce inflammatory biomarkers [84],
and potentially increase the number of ventilator-free days and days
outside the ICU [85]. The routine use of neuromuscular blockade in
ARDS has been called into question after a 2019 multicenter random-
ized control trial evaluating the use of early paralytics and high PEEP
in patients with moderate-to-severe ARDS found no difference in 90-
day mortality when compared to usual therapy [86]. The evidence on
neuromuscular use in COVID-19 induced ARDS is limited, and the
long-term outcomes are unclear. In mechanically ventilated COVID-19
patients withmoderate-to-severe ARDS, the Surviving Sepsis Campaign
guidelines suggest using intermittent NMBAboluses instead of a contin-
uous infusion to better facilitate lung protective ventilation [16]. The use
of continuous NMBA infusions for up to 48 h should be reserved for pa-
tients with persistently high PPlat, poor oxygenation, and ventilator
dyssynchrony [16].

3.4.4. Medications
The role of corticosteroids in the early and late stages of ARDS is con-

troversial and widely debated. Two meta-analyses demonstrated re-
duced mortality, increased ventilator-free days, and accelerated
resolution of disease when steroids were started several days after the
onset of ARDS [87,88]. A more recent trial examining dexamethasone
in patients with ARDS and a PaO2/FiO2 ratio of <200 mmHg despite op-
timal ventilator settings suggested an improvement in outcomes [89].
However, a different meta-analysis did not support their use in either
the acute or later fibroproliferative phases of the disease [90]. The cur-
rent evidence of steroids use in COVID-19 induced ARDS is still emerg-
ing. A non-peer reviewed study of 26 patients with severe COVID-19
reported a decreased requirement for supplemental oxygenation and
improvement on radiological chest imaging among patients who re-
ceived corticosteroids [91]. There is a randomized control trial in Chong-
qing, China actively enrolling patients looking at the effect of
glucocorticoids in COVID-19 patients with severe disease, which may
provide further data [92]. Two more recent retrospective studies, albeit
with small sample sizes and poor data controllability, reported that low-
dose corticosteroid therapy may not delay viral clearance in COVID-19
patients [93,94]. Based on several Cochrane reviews on the use of ste-
roids in viral pneumonia and a retrospective cohort study of patients
with COVID-19 pneumonia [95], the Surviving Sepsis Campaign guide-
lines suggest the use of corticosteroids in critically ill patients with
COVID-19 induced ARDS [16], while the NIH guidelines [15] make no
recommendations based on limited evidence. Given the small improve-
ments in mortality and faster resolution of septic shock observed from



Fig. 3.A recommended initial approach to COVID-19 relatedhypoxemic respiratory failure
in the Emergency Department. Abbreviations: HFNC (high flow nasal cannula), NIPPV
(non-invasive positive pressure ventilation), PBW (predicted body weight), VT (tidal
volume), P/F (PaO2/FiO2 ratio), IV (intravenous)
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recent systematic reviews [96,97], they advise against the use of sys-
temic corticosteroids of COVID-19 patientswithout ARDS unless the pa-
tient is in septic shock [16]. In patients with COVID-19, meeting criteria
for ARDS, steroids should be considered in consultation with the admit-
ting critical care team.

3.4.5. Venovenous extracorporeal membrane oxygenation
Venovenous extracorporeal membrane oxygenation (vvECMO) is a

form of pulmonary bypass that uses an external membrane to allow
for oxygen diffusion into the blood and the diffusion of carbon dioxide
out of the blood. Over the last decade, several trials have shown in-
creaseduse andpotential benefits of vvECMO in severeARDSwhen con-
ventional ARDS management failed [98,99]. In COVID-19 patients, the
Extracorporeal Life Support Organization (ELSO) guidelines state that
indications for vvECMOshould not differ from their usual recommenda-
tions or other existing guidelines [100,101]. The Surviving Sepsis Cam-
paign guidelines for COVID-19 and ELSO recommend transfer to an
ECMO experienced center for patients with severe ARDS and refractory
hypoxemia despite maximal ARDS therapies [16].

3.5. An initial approach to COVID-19 hypoxemic respiratory failure

It is difficult to identify the optimal management of COVID-19 hyp-
oxemic respiratory failure. Herein, we provide a rational approach
based on the currently available evidence and lessons learned over the
last few decades (Fig. 3). An initial approach to manage hypoxemia in-
cludes a trial of simple oxygen devices, high-flow nasal cannula
(HFNC), or non-invasive positive pressure ventilation (NIPPV) if HFNC
is not available [16]. A trial of HFNC or non-invasive positive pressure
(NIPPV) is reasonable if intubation is not immediately indicated, if con-
ventional oxygen devices fail tomaintain an oxygen saturation of >90%,
or if increased respiratory effort persists. HFNC has shown particular
success in prior studies of hypoxemic respiratory failure and should be
considered as a first-line treatment when simple oxygen devices fail
to correct the hypoxemia [14-16,102]. Non-invasive positive pressure
(NIPPV) delivering PEEP in the form of continuous positive airway pres-
sure (CPAP)may also have advantages, particularly with a helmet inter-
face [103]. Bilevel positive pressure settings, delivering an additional
inspiratory pressure, risk delivering injurious VT [102] and should be
avoided unless otherwise indicated (e.g. an exacerbation of obstructive
lung disease) [104]. The addition of awake, self-prone positioning or re-
positioningmay improve oxygenation in patients with COVID-19 [105],
but long-term effects of this practice are unclear. Personal protective
equipment and airborne precautions must be utilized when using de-
vices that can cause aerosolization [15]. The risks of aerosolization
may not be increased with HFNC as compared to low flow oxygen de-
vices [106]; if HFNC is used, a surgical mask to cover the device on the
patient’s face is recommended.

When HFNC or NIPPV is started, patients must be reassessed fre-
quently—waiting until failure is associated with worse outcomes
[102,107,108]. Patients on HFNC who remain tachypneic, have signifi-
cant work of breathing, have rapidly escalating oxygen requirements,
or remain hypoxic despitemaximal flow (i.e. 60 L/min) and FiO2 should
be intubated. The severity of hypoxemia, underlying illness, and clinical
trajectory of these patients are important components of the decision to
intubate. NIPPV failure rates for acute hypoxemic respiratory failure are
higher in patients with pneumonia, sepsis, severe hypoxemia (PaO2/
FiO2 < 150–200mmHg) [109,110], and persistently large tidal volumes
(>9.5mL/kg PBW) [111]. In those with persistently high respiratory ef-
fort, one must consider the possibility of self-inflicted lung injury. It is
theorized that patients with a high respiratory effort are generating
very highVT andhigh transpulmonary pressure,which could potentially
lead to a self-inflicted lung injury [37,112]. Patients with persistently
high respiratory efforts despite non-invasive support measures may
benefit from early intubation, sedation, and control of VT and airway
pressure.
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Once invasive mechanical ventilation has started, LPV with low VT

and appropriate PEEP should be started (Fig. 3 and Table 4). This strat-
egy has been successfully used in a case series of COVID-19 patients
[10] and is recommended by The Surviving Sepsis Campaign and NIH
guidelines [14-16]. Ventilator modes vary between institution and de-
vice. A simple and effective strategy for the emergency department is
to choose a volume targeted mode of ventilation (e.g. volume control).
This allows for a safe, prescribed VT to be delivered. A pressure targeted
mode (e.g. pressure control) is also an option but the delivered VT is less
strict and will vary depending on the patient’s lung compliance, resis-
tance, and the set inspiratory time. There is nooutcomeevidence to sup-
port the superiority of a pressure-controlled or volume-controlled
mode of ventilation in ARDS [113]. Airway pressure release ventilation
(APRV) has been used in ARDS [114] but themode is complex, not avail-
able on every ventilator, and can lead to significant adverse events if
used improperly [115]. For these reasons, APRV is not the initial pre-
ferred strategy in the ED, but this may vary by institution or local prac-
tice. Choosing a volume-controlled mode that allows a set VT is
recommended. When the volume is set, the PPlat should be monitored
by an end-inspiratory pause to ensure it remains < 30 cm H2O. Simi-
larly, the driving pressure should be targeted < 15 cm H2O. If the
PPlat or driving pressure are above these targets, decrease the VT by
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1 mL/kg to a minimum of 4 mL/kg. The respiratory rate may need to be
increasedup to 35/min tomaintain an appropriateminute ventilation. A
pH target of 7.30–7.45 is recommended, but if necessary, permissive hy-
percapnia may be instituted, tolerating a pH > 7.15 [12].

Ideally, sedation should be kept as light as possible with a Richmond
Agitation Sedation Scale of 0 (alert and calm) to −1 (drowsy but
awakens to voice for >10 s); a lighter sedation strategy started in
the ED is associated with improved outcomes [116]. Ventilator
dyssynchrony is common [117] and places patients at risk for lung in-
jury. A potential treatment for ventilator dyssynchrony is liberating
the VT up to 8 mL/kg, if the PPlat and driving pressure are at safe levels,
or adjusting the inspiratory flow pattern. If the PPlat or driving pressure
is elevated or dyssynchrony persists, deep sedation with or without
NMBAs may be needed.

Adjust the FiO2 to target an oxygen saturation of 92–96% [16]. The
change from the original ARDS trial target of 88–95% [12] reflects a
2020 multicenter, randomized trial demonstrating a lack of benefit
and potential of harm with a conservative (88–92%) vs. liberal (>96%)
oxygenation strategy in ARDS [118]. The response to PEEP will be vari-
able for all patients [38]. The PEEP/FiO2 tables (Table 4) provide guid-
ance and have been used successfully in ARDS [12]. After intubation,
start with a PEEP of 8–10 cm H20 and choose the range of PEEP by the
high or low PEEP/FiO2 table (Table 4) [6]. Adjust the PEEP every
15 min by 2–3 cm H2O, while monitoring the PPlat, driving pressure,
blood pressure, and pulse oximetry after each adjustment. A PPlat <30
cmH20 anddriving pressure<15 cmH20 should be targeted. If pressures
are above these levels, patients are at risk for VILI.

A conservative fluid resuscitation strategy should be used in patients
with ARDS, as this may improve lung function [14,16,119]. Adjunctive
therapies such as pulmonary vasodilators, corticosteroids, and proning
should be considered on a case by case basis with input from the admit-
ting critical care team. If the patient is unable to be oxygenated or ven-
tilateddespite optimized ventilator settings, consultationwith an ECMO
center should be considered.

4. Conclusion

In severe cases, COVID-19 leads to hypoxemic respiratory failure
that may meet criteria for ARDS. While further COVID-19 specific stud-
ies are needed, the mainstay of treatment for COVID-19 related ARDS
remains the early implementation, in the ED, of a lung protective venti-
lation strategy with low tidal volumes, adequate PEEP, and maintaining
a plateau pressure of <30 cmH2O. Adjunctive therapies such as cortico-
steroids, proning, NMBAs, pulmonary vasodilators, and ECMO in refrac-
tory cases should be considered on a case by case basis with input from
the admitting critical care team.
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