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The recent developments of social networks and recommender systems have
dramatically increased the amount of social information shared in human
communities, challenging the human ability to process it. As a result,
sharing aggregated forms of social information is becoming increasingly
popular. However, it is unknown whether sharing aggregated information
improves people’s judgments more than sharing the full available infor-
mation. Here, we compare the performance of groups in estimation tasks
when social information is fully shared versus when it is first averaged
and then shared. We find that improvements in estimation accuracy are com-
parable in both cases. However, our results reveal important differences in
subjects’ behaviour: (i) subjects follow the social information more when
receiving an average than when receiving all estimates, and this effect
increases with the number of estimates underlying the average; (ii) subjects
follow the social information more when it is higher than their personal
estimate than when it is lower. This effect is stronger when receiving all
estimates than when receiving an average. We introduce a model that
sheds light on these effects, and confirms their importance for explaining
improvements in estimation accuracy in all treatments.
1. Introduction
Social information is a crucial component of human and animal decision-
making [1,2]. Most of people’s everyday choices, whether picking a movie or
a restaurant, finding the best school for their children or gathering information
before voting in an election, are influenced by the experiences and opinions of
others [3]. From a broader perspective, social learning strategies, which consist
in exploiting social information selectively, continue to play a central role in the
emergence and evolution of cultures and their startling diversity [4,5]. Under-
standing the impact of social information on judgment and decision-making
is thus crucial for comprehending individual and collective behaviour in
human and animal groups [3,6].

Information technology has altered howpeople relate to information and how
individuals interact with and influence each other. People are more connected
to each other than ever before: social networks, blogs and websites, and the
massive diffusion of smartphones have made information and virtual others
instantaneously available, anywhere and at any time [7].Moreover, online recom-
mender systems and social networks have considerably extended people’s
exposure to others’ opinions and recommendations [8–10]. For instance, when
selecting a restaurant, a travel destination or a hotel, the first thing one often
does is look at others’ ratings and reviews. This permanent exchange of social
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information, generally mediated by digital interfaces, is likely
to amplify in the coming years, with new generations being
born and raised with smartphones and the Internet. This
brings about new challenges, such as how to process so
much information and make efficient judgments, especially
given people’s limited time and cognitive resources [11–13].
One issue of particular importance is how to best exchange
social information in human groups in a way that improves
individual and collective judgments: while aggregated social
information is easy to process, providing individuals access
to all the available information may give them more ground
to make better judgments. From a pure information theoretic
perspective, having more or better quality information
should indeed lead to better decisions, althoughmore complex
information may also challenge human cognitive limits.

Here, we address this important issue through the prism
of estimation tasks, a highly suitable paradigm for quantita-
tive studies on social influenceability [14–21]. We performed
experiments in which subjects in groups of 12 members were
asked to estimate a series of quantities both before and after
receiving social information. Social information consisted of a
varying number of estimates τ from other group members
(τ = 1, 3, 5, 7, 9 or 11). Three treatments were tested: subjects
either received (i) all τ estimates in ascending order (‘Sorted’
treatment), (ii) all τ estimates in a random order (‘Unsorted’
treatment), or (iii) the geometric mean of the τ estimates
(‘Aggregated’ treatment). Crucially, in the Aggregated treat-
ment, and contrary to previous studies [20,21], subjects were
made aware of the number of estimates used to calculate
the geometric mean. Previous studies have analysed the
patterns of social influenceability and the conditions under
which social influence can improve estimation accuracy
[14–18,20–24]. However, to the best of our knowledge, a
direct and systematic comparison of the effects of averaged
versus full social information on collective judgments in esti-
mation tasks, with a focus on the number of estimates
shared, has been lacking.

Our results show that subjects are more sensitive to social
influence when receiving the geometric mean of the shared
estimates than when receiving all shared estimates. Moreover,
the sensitivity to social influence depends on the distance
between their personal estimate and the geometric mean of
the shared estimates. We then build and calibrate an agent-
based model exploiting these findings, and use it to analyse
the impact of the number of shared estimates τ on social influ-
enceability and estimation accuracy. We find that, in the
Sorted and Aggregated treatments, sensitivity to social influ-
ence increases with τ and then saturates. We also show that
improvements in individual accuracy increase with τ before
saturating, and are comparable in all treatments.
2. Experimental design
A total of 216 subjects (138 females, 70 males, 8 unreported;
mean age ± s.d.: 26 ± 4, 17 unreported), distributed over 18
groups of 12 individuals, took part in the experiment. All indi-
viduals signed an informed consent form prior to participating.
The experiment was approved by the Institutional Review
Board of the Max Planck Institute for Human Development
(ARC 2018/08). Each individual was confronted with 42
estimation questions on a tactile tablet (see electronic sup-
plementary material, figure S1). Questions ranged from
estimating the number of marbles in a jar, to the population
of Tokyo, to the number of stars in theMilkyWay (see electronic
supplementarymaterial for a list of all questions). Each question
was asked twice: first, subjects provided their personal estimate
Ep. Next, theywere given the estimate(s) of one or several group
member(s) as social information and were then asked to pro-
vide a second estimate Es (figure 1). The social information
never contained a participant’s own estimate.

Social information was displayed to the subjects in three
ways: (i) the ‘Sorted treatment’, where τ estimates (τ = 1, 3, 5,
7, 9, 11) were displayed in ascending order; (ii) the ‘Unsorted
treatment’, where the τ estimates were displayed in random
order; and (iii) the ‘Aggregated treatment’, where only the
geometric mean of the τ estimates was displayed. Note that
in the Sorted and Unsorted treatments, the τ pieces of social
information were shown simultaneously. In all treatments,
the shared estimateswere selected randomly, and in the Aggre-
gated treatment subjects were informed about the number of
estimates τ used to compute the geometric mean. Participants
in each group only experienced one of the three display
treatments (i.e. a between-subject design). This was done to
avoid the ‘leakage’ of strategies and/or information across
treatments. For instance, being exposed to the dispersion of
estimates in the Sorted or Unsorted treatment may impact a
person’s subsequent decisions on the integration of social infor-
mation in the Aggregated treatment. The number τ of estimates
shared did, however, vary within groups. Overall, there were
18 conditions (3 treatments times 6 values of τ), and 504
estimates per condition (42 questions times 12 subjects), both
before and after social information sharing.

The 42 questions were randomly assigned to seven blocks
of six questions. Across groups, the order of the blocks and
the questions within a block were randomized. A block
always contained each number of estimates to be shared (1, 3,
5, 7, 9 and 11) once. All subjects thus experienced each level
of τ the same amount of times. The randomization was con-
strained so that across all of the 18 groups, each unique
questionwas asked once at each unique combination of display
(three levels) and number of estimates shared (six levels). All
tablets were controlled by a central server, and participants
could only proceed to the next question once all individuals
had provided their second estimate. A 30-s countdown timer
was shown on the screen to motivate subjects to answer
within this time window, although they were allowed to take
more time. Subjects received a flat fee of €15 for participation
and a bonus payment of €1 to €5 depending on their perform-
ance (see electronic supplementary material for detailed
payment information).
3. Results
3.1. Distribution of estimates
Because of the human logarithmic internal representation of
numbers [25], it is more appropriate to consider logarithms
of estimates than the estimates themselves in estimation
tasks [20,26]. This logarithmic representation also motivated
us in presenting the geometric—rather than the arithmetic—
mean of τ estimates to the subjects in the Aggregated treat-
ment. Moreover, to make estimates of different quantities
comparable, it is necessary to normalize them by the true
value of their respective quantities [20,21]. We therefore use
the quantity X = log(E/T ) as our variable of interest, where
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Figure 1. Overview of the experimental procedure. First, all 12 participants independently provide their personal estimate to a given question (Ep1… Ep12). Then,
social information is exchanged. In this specific example, participant 1’s personal estimate is Ep1 = 5000, and receives as social information the personal estimates of
participants 2, 5 and 11 (Ep2, Ep5 and Ep11). In the Sorted treatment (black), participant 1 is shown these τ = 3 estimates in increasing order (and in the Unsorted
treatment (not shown) in random order). In the Aggregated treatment (red), participant 1 is shown the geometric mean of the τ = 3 estimates. Finally, each
participant provides a second estimate (as shown for participant 1, Es1).
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E is the actual estimate of a quantity and T the corresponding
true value. X represents the deviation from the truth in
orders of magnitude. For simplicity, we will, from now on,
refer to X as ‘estimates’, with Xp being personal estimates
and Xs being second estimates (i.e. after receiving the social
information). Figure 2 shows the distributions of Xp (closed
dots) and Xs (open dots) in each treatment and number of
shared estimates τ. Distributions of personal estimates Xp for
individual questions are shown in electronic supplementary
material, figure S2.

We find, in agreement with other studies [20,26], that the
distributions of estimates peak close to X = 0 (i.e. near E = T,
that is the true value; see below), a phenomenon known as
the ‘wisdom of crowds’ [27], and that these distributions
narrow after social information sharing (i.e. lower dispersion
of the second estimates driven by social influence; see elec-
tronic supplementary material, figure S3). Previous studies
showed that the distribution of estimates for a given quantity
is often close to a Laplace distribution [26,28], of probability
density function P(X ) = (1/(2w)) exp(−|X− c|/w).

The solid lines in figure 2 simulate distributions of personal
estimates Xp, where the Xp are drawn, for each question, from
Laplace distributions, the centre c and width w of which are,
respectively, the median and dispersion (average absolute
deviation from the median) of the experimental personal esti-
mates for that question. Electronic supplementary material,
figure S4, shows the distribution of Xp for all conditions com-
bined, supporting the Laplace distributions assumption. The
dashed lines in figure 2 are predictions of the model—
presented below—for the distributions of second estimates
Xs. Note that since for the questions asked in this experiment,
actual estimates Ep,s cannot be lower than 1, the Xp,s are simu-
lated with the restriction that Xp,s >−log(T ), which imposes a
sharper decay on the left side of the distribution.
3.2. Sensitivity to social influence
We define, in all treatments, the sensitivity to social influence S
of a subject answering a specific question, as the (barycentric)
weight they give to the average M = log(G) of the social infor-
mation received for this question, where G is the geometric
mean of the shared estimates (see Statistical methods).
With this definition, the second estimate is hence given by
Xs = (1− S)Xp + S M. Note that contrary to the Aggregated
treatment where M is provided to the subjects, the subjects
in the Sorted and Unsorted treatments do not have a direct
access to M (except for τ = 1). However, the knowledge of
Xs and Xp allows us to uniquely define S even in these
cases. In fact, in the Sorted and Unsorted treatments, the par-
ticipants tend to focus their attention on the central tendency
of the social information when receiving multiple estimates.
This is supported by previous findings [22,29,30], and is con-
sistent with the use of heuristic strategies under time and
cognitive constraints [11–13].
3.2.1. Distribution of S
Figure 3 shows the distributions of S in all treatments and
number of shared estimates τ. The experimental distributions
(solid lines) consist of a peak at S = 0 (i.e. subjects keeping
their initial estimate) and a part that we approximate in the
model as a Gaussian distribution, consistent with previous
studies [20,26]. We formalize this by assuming that subjects
keep their initial estimate (S = 0) with probability P0, or
draw an S from a (close to) Gaussian distribution of mean
mg and standard deviation σg with probability Pg = 1− P0

(index g referring to ‘Gaussian’). This imposes

hSi ¼ P0 � 0þ Pg mg ¼ Pg mg, i.e. Pg ¼ hSi
mg

, (3:1)
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with 〈S〉 denoting the mean of S for a given treatment and
value of τ.

We fit a hurdle model (i.e. a Dirac peak for 0 values and a
Gaussian distribution for non-zero values; see Statistical
methods) to the experimental distributions to estimate the
values of Pg, mg and σg per condition. As a consistency
check, electronic supplementary material, figure S5a, shows
that the fit-predicted values of the density at S = 0 match
the experimental values well.

Note that in the above-mentioned studies, where subjects
received the average of a few previous estimates as social infor-
mation, a small peak at S = 1 (i.e. subjects adopting the social
information) was observed (about 4% of the data). In the
Sorted and Unsorted treatments of our study, an S of exactly
1 is unlikely when τ > 1 because subjects cannot easily calculate
the exact geometric mean of several estimates. The percentage
of S = 1 was indeed 0 in these conditions, except at τ = 3 in the
Sorted treatment (2 instances, 0.4% of the data). In the Aggre-
gated treatment, S = 1 is in principle possible when τ > 1, but
also in these conditions there were no instances of S = 1. Only
at τ = 1 did we observe this with a probability of at most 2%.
We, therefore, decided not to include a separate peak at S = 1
in the model presented below, but to absorb the very few
instances of S = 1 in the Gaussian part of the distribution.
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Note that some of the values of the distribution at S = 1 in
figure 3 appear different from 0, especially in the Aggregated
treatment. This is, however, a result of the binning (bin size
of 0.1, meaning that values of S between 0.95 and 1.05 were
included for S = 1). Figure 4 shows how the fitted Pg, mg and
σg vary with τ and treatment.

These quantities are found to either saturate or remain
constant (which amounts to an immediate saturation). A sat-
uration is expected at large values of τ, in particular since the
probability Pg must remain between 0 and 1. In the Aggre-
gated treatment, for instance, it would be surprising if
subjects’ behaviour would change dramatically when receiv-
ing the average of 110 estimates compared to the average of
100 estimates. Likewise, in the Sorted and Unsorted treat-
ments, we expect a saturation due to cognitive limitations.
There must be some limit in the number of estimates that
the subjects can properly process, beyond which they
would start using heuristics such as sampling only a few esti-
mates around the central value (geometric mean) of the social
information. Beyond this point, the number of shared esti-
mates should also not matter anymore. We thus fit the data
with an exponential saturation (the simplest saturation
form) and assume that the three quantities saturate at the
same rate ε (see details in Statistical methods). Theoretically,
one could fit a separate saturation rate for each parameter
but this would make the model unnecessarily complicated.
Indeed, this saturation assumption yields a very good fit
with the experimental results.

Interestingly, the saturation happens at relatively low
values of τ (τ = 3–5). In the Sorted treatment, Pg is indepen-
dent of τ, while mg and σg increase with τ. In the Unsorted
treatment, Pg and mg barely depend on τ, while σg increases
with τ, although less strongly than in the Sorted treatment.
In the Aggregated treatment, Pg and mg strongly increase
with τ, with substantially higher values than in both other
treatments. Subjects thus compromise substantially more
with the social information when receiving an average than
when receiving multiple estimates, and increasingly so
when the average is based on more estimates. σg is also
found to increase with τ in the Aggregated treatment, but at
a milder rate than in both other treatments, and with lower
values on average. Note that at τ = 1, one may expect all treat-
ments to have the same results, since in all three cases
subjects receive a single random estimate. However, at τ = 1,
mg and σg were significantly lower in the Sorted treatment
than in both other treatments. In each treatment, subjects
experienced each level of τ seven times, which may have
affected their behaviour at τ = 1 in different ways. It is poss-
ible that repeatedly receiving multiple sorted estimates (in
the Sorted treatment) negatively affected subjects’ trust in
the social information when experiencing τ = 1, making
them compromise less (i.e. lower values of mg).
3.2.2. Impact of D = M− Xp on sensitivity to social influence
Previous studies [20,26] have shown that the average weight
given to the social information 〈S〉 grows linearly with |D|,
where D =M −Xp is the distance between the personal
estimate Xp and the social information M:

hSi(D) ¼ aþ bjD j: (3:2)

We call this the distance effect. In these studies, subjects
were presented the average M of an unknown number of esti-
mates from other group members. At variance, in our
experiment, subjects were presented all pieces of social infor-
mation in the Sorted and Unsorted treatments, and were
aware of the number of estimates underlying M in the Aggre-
gated treatment. In both cases, we thus expect α and β to
depend on τ:

hSi(t, D) ¼ a(t)þ b(t) jD j: (3:3)

Figure 5 shows the distance effect in all treatments
and number of shared estimates τ. In the Sorted treatment,
the bottom of the cusp is, however, not at D = 0, but at
D =D0 < 0, suggesting that subjects follow the social infor-
mation the least when its geometric mean is slightly lower
than their personal estimate. This effect is substantially less
marked in the Aggregated treatment, and entirely absent in
the Unsorted treatment.

The fitting parameters are D0, α (the bottom of the cusp),
and the (possibly different) slopes β− for D <D0 and β+ for
D >D0. We estimate them by minimizing squared errors
with the following function:

hSi(t, D) ¼ a(t)þ b+(t) jD�D0(t)j, (3:4)

where β± = β− when D <D0 and β± = β+ when D >D0 (see
Statistical methods for details of the fitting procedure).
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Figure 6 shows D0, α, β− and β+ against τ in all treatments.
Since we do not observe any clear dependence of D0, β− and
β+ on τ, we will consider them constant with τ in the model
presented below, and equal to their average value over all
values of τ. Note that in all treatments, β− and β+ are of the
same order as the slope obtained in [20,26].

The parameter α, however, underlies the exponential
saturation of Pg (figure 4a). For the sake of consistency, α
therefore needs to be fitted with the same saturation form
as used in figure 4, and with the same rate ε. Consistent
with figure 4, α is found to slowly increase with τ in the
Sorted treatment, while it increases rapidly in the Aggregated
treatment, with substantially higher values. In the Unsorted
treatment, α is found to slightly decrease with τ, with similar
values as in the Sorted treatment.

We will therefore use, in our model, the following general
equation for 〈S〉:

hSi(t, D) ¼ a1 � (1� 1)(t�1) (a1 � a1)þ b+ jD�D0j, (3:5)

where α∞ is the saturation value of α and α1 its value at τ = 1.

3.3. Model of social information integration
To analyse the effects of the number of shared estimates τ and
the display treatment on sensitivity to social influence and
estimation accuracy, we introduce an agent-based model.

The model is inspired by a model developed in [20,26],
where subjects received as social information the average of
an unknown number of estimates from other group members.
For a given display treatment, value of τ, and quantity to
estimate, the model proceeds in three steps:

1. Personal estimates: first, personal estimates Xp are drawn,
for all agents in groups of size N, from a Laplace distri-
bution, the centre and width of which are, respectively,
the median mp and dispersion σp = 〈|Xp −mp|〉 of the
experimental personal estimates of the quantity.
2. Social information: next, each agent receives as social
information the average M of τ personal estimates from
randomly selected other group members. Each agent
keeps its personal estimate (S = 0) with probability P0 or
draws an S from a Gaussian distribution of mean mg

and standard deviation σg with probability Pg:

Pg(t, D) ¼ hSi(t, D)
mg(t)

¼ a(t)þ b+ jD�D0j
� �

mg(t)
: (3:6)

P0 is given by P0 = 1− Pg.
3. Second estimates: finally, once Pg and P0 are determined for

each agent, and an S is drawn accordingly, each agent’s
second estimate Xs is calculated as the weighted average
of its personal estimate Xp and the mean M of the social
information (by definition of S):

Xs ¼ (1� S)Xp þ SM: (3:7)

The parameter values are based on the fits in figures 4b,c
and 6, and are provided in table 1. Each run of the model
mimicked our experiment. The results of the model simu-
lations shown in the figures are averages over 10 000 runs.
We next test the model on measures that were not used in
its design and calibration.

3.4. Impact of τ on sensitivity to social influence
Figure 7a shows the average sensitivity to social influence 〈S〉
as a function of τ in all treatments. Again, the symbol 〈•〉
denotes an average over all the relevant data.

As a consistency check of the relation 〈S〉 = Pg mg

(equation (3.1)), figure 7b shows Pg mg against τ, where Pg

and mg take the values estimated in figure 4a,b. The fits in
this graph were obtained by multiplying the analytical
expressions of Pg and mg (see equation (5.3) in the Statistical
methods), using the parameter values estimated in figure 4a,b.
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The fits are in good agreement with the data, and show that
〈S〉 increases slowly with τ in the Sorted treatment, and
sharply in the Aggregated treatment. Subjects thus give sub-
stantially more weight to the social information when
receiving averages than when receiving all pieces of social
information, and increasingly so as the average is based on
more estimates. In both treatments and as expected, 〈S〉
saturates at intermediate values of τ. In the Unsorted treat-
ment, a very small decrease is observed before saturation.
These patterns are consistent with the patterns of Pg

(figure 4a), mg (figure 4b) and α (figure 6 second row) against
τ. Note that these fits are not inputs of the model, which pre-
dicts a slightly milder increase with τ in the Sorted and
Aggregated treatments, and a slightly faster decrease with τ



Table 1. Parameter values used in the model for each treatment.

parameter description Sorted Unsorted Aggregated

ε saturation rate 0.27 0.21 0.39

mg1 value of mg at τ = 1 0.32 0.41 0.41

mg1 saturation value of mg 0.45 0.38 0.55

σg1 value of σg at τ = 1 0.27 0.33 0.32

sg1 saturation value of σg 0.42 0.43 0.37

α1 value of α at τ = 1 0.12 0.20 0.22

α∞ saturation value of α 0.17 0.16 0.36

D0 bottom of the cusp relationship −0.67 0.04 −0.12
β− left slope of the cusp relationship 0.14 0.04 0.09

β+ right slope of the cusp relationship 0.11 0.16 0.13
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Figure 7. Dependence of (a) the average sensitivity to social influence 〈S〉 and (b) Pg mg on the number of shared estimates τ, in the Sorted (black), Unsorted
(blue) and Aggregated (red) treatments. Solid lines and empty circles in (a) are model simulations and dashed lines in (b) are fits produced by multiplying the
analytical expression of Pg and mg (equation (5.3)), using the parameter values estimated in figure 4a,b. Error bars in (a) were computed using a bootstrap pro-
cedure described in the Statistical methods, and roughly represent 1 s.e. Error bars in (b) were computed by multiplying Pg ¼ Pgexp + DPg and
mg ¼ mgexp + Dmg , where Pgexp and mgexp are the values estimated in figure 4a,b, and DPg and Dmg the corresponding errors. The fitted saturation value
〈S〉∞ is shown in each treatment in (b).
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in the Unsorted treatment (figure 7a). Note that consistency
with equation (3.5) also requires that 〈S〉∞ = α∞ + 〈β±|D−
D0|〉D. Electronic supplementary material, figure S5b, com-
pares the saturation value of 〈S〉∞ fitted in figure 7b
against the quantity α∞ + 〈β±|D−D0|〉D in all treatments,
where β−, β+ and D0 have been given the average values
found in figure 6, and α∞ the saturation value fitted in the
same figure. The three points are, as expected, close to
the diagonal line.

Figure 8 shows that subjects follow the social information
more (i.e. 〈S〉 is higher) when the average social information
is higher than their personal estimate (D > 0) than when it is
lower (D < 0). Though the strength of the effect slightly differs
between treatments, it is present in all conditions. This result is
a combined effect of the above findings thatD0 < 0 and β+ > β−.
In the next section, we will show that this effect has an impact
on estimation accuracy after social information sharing.
3.5. Impact of τ on estimation accuracy
Following [20], we define (i) collective accuracy as |Mediani,q
(Xi,q)|, where i runs over individuals and q over quantities,
and (ii) individual accuracy as Mediani,q (|(Xi,q)|). Values
closer to 0 (the log-normalized transformation of the truth
is 0) indicate better accuracy for both measures. Collective
accuracy measures how close the median estimate of all
group members is to the truth, and individual accuracy
measures how close, on average, individual estimates are to
the truth. Collective and individual accuracies are different,
but related, aspects of accuracy. An improvement in collective
accuracy amounts to a shift of the median estimate towards
the truth, which is perforce accompanied by an improvement
in individual accuracy, as individual estimates also get,
on average, closer to the truth. However, there can be an
improvement in individual accuracy without an improve-
ment in collective accuracy if estimates converge after social
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information sharing, but without a shift of the median of the
X, as was found in [20].

Figure 9 shows collective and individual accuracies against
τ in each treatment before and after social information sharing.
Collective accuracy improves, albeit marginally, in the Sorted
and Unsorted treatments. This improvement is due to the
higher use of social information when D > 0 than when D < 0
(figure 8). Because of a human tendency to underestimate
quantities [20,31–33], weighing social information that is
higher than one’s personal estimate (i.e. D > 0) shifts individ-
uals’ estimates toward higher values after social information
sharing, thus improving collective (and also individual)
accuracy. In the Aggregated treatment, we find no such
improvement in collective accuracy in the experimental data.
However, the model predicts a slight improvement (due to
D0 & 0 and bþ * b�). In all treatments, individual accuracy
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substantially improves after social information sharing. In the
Aggregated treatment (which did not show any collective
improvement), individual improvement is at par with both
other treatments. This is due to the higher levels of social infor-
mation use in the Aggregated treatment than in both other
treatments (figure 7). Higher levels of social information use
indeed result in a further narrowing of the distribution of esti-
mates after social information exchange, thus bringing second
estimates closer to the truth (see also figure 2). Moreover, the
improvement in individual accuracy increases with the
number of shared estimates τ, and starts saturating at inter-
mediate values of τ. This increase and saturation follow the
increase and saturation of 〈S〉 with τ (figure 7).

Note that the dependence of collective and individual
accuracy on τ in figure 9 is limited, in the data as well as in
the model. The model, however, correctly predicts the range
of values taken by individual and collective accuracy across
all τ, before and after social influence.

3.6. Impact of D on estimation accuracy
Figure 10 shows individual accuracy when separating
the data into instances where subjects received social infor-
mation of which the average was lower than their personal
estimate (D < 0), and where it was higher than their personal
estimate (D > 0).

Interestingly, before social information sharing, individ-
ual accuracy was much higher (i.e. closer to 0) in the D < 0
case than in the D > 0 case. This is linked to the above-
mentioned underestimation bias: when subjects receive
social information that is lower than their personal estimate,
their personal estimates are, on average, above the median
of personal estimates and, therefore, relatively close to the
truth. Vice versa, subjects who received social information
higher than their personal estimate were, on average, below
the median estimate and, therefore, farther from the truth.

When D < 0, individual accuracy remains unchanged (or
improves marginally) in all treatments after social infor-
mation sharing. When D > 0, however, individual accuracy
improves substantially after social information sharing, and
this effect is the main driver of the overall improvement in
individual accuracy observed in figure 9. Electronic sup-
plementary material, figure S6, shows the equivalent graphs
for collective accuracy. Collective accuracy before social infor-
mation sharing is also higher when D < 0 than when D > 0.
Collective accuracy decays when D < 0, while it improves
when D > 0, resulting in the overall mild improvement
observed in figure 9. Despite the high level of noise (18 con-
ditions plus dichotomy D < 0 versus D > 0), the model
reproduces the experimental patterns fairly well.

3.7. Impact of S on estimation accuracy
For each condition, figure 11 shows individual accuracy when
separating the data into cases where sensitivity to social
influence S was lower than the median value of S in that con-
dition, and cases where S was higher than the median value
of S. In one instance (unsorted treatment at τ = 9), the median
of S equalled 0, hampering an easy separation. In this case,
we replaced the median by S = 0.001 (resulting in 50.8%
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(49.2%) of the data having an S lower (higher) than this
value). This value, and the experimental values of the
median of S in all other conditions, were used to separate
the data in the model. In cases with relatively low values of
S (i.e. below the median), individual accuracy before social
information sharing was higher than in cases with above-
median values of S. This can be understood by considering
that the lowest values of S occur in situations in which the
personal estimates are relatively close to the average social
information (i.e. D∼ 0, see figure 5), which is also in general
relatively close to the truth. However, because in those cases
subjects did not (or barely) update their initial estimate, they
did not improve in individual accuracy after social infor-
mation sharing. By contrast, in cases with relatively high
values of S (i.e. above the median), subjects were able to
improve in individual accuracy by using social information,
their accuracy being at par with the below-median cases
after social information sharing. In other words, information
circulates from most to least informed individuals, thus eve-
ning accuracy across the whole group after social information
sharing. These results are in line with previous findings
[20,26], and are well predicted by the model. Electronic
supplementary material, figure S7, shows similar, albeit less
pronounced, results for collective accuracy.

Note that in [20], the authors showed that there were indi-
vidual differences in social information use across questions,
with some individuals consistently disregarding the social
information, and others consistently following it. They
showed that the tendency to disregard social information
correlated with confidence and concomitantly with accuracy
before social information sharing. However, this average
advantage of confident individuals disappeared after social
information sharing, consistently with the present results.
3.8. Impact of group size on estimation accuracy
Finally, we use themodel to generate predictions when sharing
more estimates for larger group sizes. Electronic supplemen-
tary material, figure S8, shows how the number of estimates
shared shapes improvements in collective and individual
accuracy for groups of N = 50 individuals in all treatments.

In line with figure 9, improvements in individual accuracy
are predicted to be substantially larger than improvements in
collective accuracy. Moreover, the model predicts that individ-
ual accuracy improves more in the aggregated treatment than
in both other treatments. This was, however, not observed in
our empirical data with a group size of 12 (figure 9).
4. Discussion
The ever-increasing amount of information available online
raises the question of whether exchanging aggregated forms
of social information improves people’s judgments more
than making the complete information available. In the pre-
sent work, we have compared the performance of groups in
estimation tasks, when subjects received either all the avail-
able social information (τ estimates from other group
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members) or an aggregated version of it (the geometric mean
of τ estimates from other group members).

We found that subjects follow social information substan-
tially more when receiving the average estimate of other
group members (Aggregated treatment), than when receiving
a series of their individual estimates (Sorted and Unsorted
treatments). Previous studies demonstrated that people are
sensitive to the dispersion of estimates, and weigh social infor-
mation more when the dispersion is low, a mechanism called
the ‘similarity effect’ [22,30]. Possibly, observing the dispersion
of the estimates in the Sorted andUnsorted treatments reduced
the weight given to the social information as compared to the
Aggregated treatment. In theAggregated treatment,we further
found that subjects’ sensitivity to social influence increased
sharply with the number of shared estimates τ. This may reflect
people’s statistical intuition that the reliability of averages gen-
erally increases with the number of samples they are based on
[34,35]. This tendency was observed to a much lesser extent in
the Sorted treatment, and not at all in the Unsorted treatment.

Previous research demonstrated that subjects follow the
social information more when it is farther from their initial
estimate [20,26] (distance effect). Another way to interpret
this is that subjects feel most confident in their personal esti-
mate when the social information is close to it, reminiscent of
a confirmation bias [36]. In [20,26], the social information con-
sisted of the average of an unknown number of estimates from
other group members. By contrast, subjects in our experiment
received either a series of individual estimates from other
group members (Sorted and Unsorted treatments), or were
aware of the number of estimates used to compute the aver-
age (Aggregated treatment). This led to some important
differences: in the Sorted and Aggregated treatments, subjects
felt most confident in their initial estimate when that estimate
was slightly above the geometric mean of the social infor-
mation (D0 < 0), rather than equal to it (D0 = 0). This effect
was weaker in the Aggregated treatment and absent in the
Unsorted treatment. We also found an asymmetry in the dis-
tance effect in the Unsorted treatment, where subjects’
sensitivity to social influence increased significantly faster
when the geometric mean of the social information grew
larger than their personal estimate, than when it grew lower
(β+ > β−). This was not the case in the Sorted treatment, and
barely in the Aggregated treatment. Both of these effects
imply that subjects give more weight to the social information
when it is higher than their initial estimate (D > 0) than when it
is lower (D < 0). A similar asymmetry in social information use
has been reported in [22,33]. Due to this asymmetry effect, sub-
jects’ second estimates shifted toward higher values, thus
partly counteracting the underestimation bias [37–40], and
improving collective and individual accuracy. Improvements
in collective accuracy were mild in all conditions, whereas
improvements in individual accuracy were much stronger.
Note that improvements in individual accuracy in the
Aggregated treatment were as high as in the other treatments
despite the fact that improvements in collective accuracy
were lowest in that treatment. This happened because improve-
ments in individual accuracy are primarily driven by the
level of social information use, which was substantially
larger in the Aggregated treatment than in both other treat-
ments. Indeed, a higher sensitivity to social influence leads to
a narrowing of the distribution of estimates after social infor-
mation sharing, and thus to second estimates getting (on
average) closer to the truth.
We have built an agent-based model exploiting the empiri-
cal Laplace-like distributions of personal estimates and the
distributions of sensitivities to social influence, as well as the
distance effect. The model quantitatively reproduces the distri-
butions of second estimates (figure 2), the dependence of the
average sensitivity to social influence on the number of
shared estimates (figures 7 and 8), and the improvements in
collective and individual accuracy after social information
sharing in all conditions (figure 9). The model also predicted
correctly the difference in improvements in accuracy when
the data were separated according to the social information
received (D < 0 or D > 0; figure 10 and electronic supplemen-
tary material, figure S6) and according to people’s sensitivity
to social influence (figure 11 and electronic supplementary
material, figure S7).

We used the model to generate predictions for larger group
sizes and number of shared estimates. The model predicts that
improvements in individual accuracy dominate those in collec-
tive accuracy, and are higher in the Aggregated treatment than
in both other treatments. Moreover, improvements saturate
with little marginal benefits beyond 20 shared estimates,
even in the Aggregated treatment. These predictions are, how-
ever, based on a model built and calibrated for sharing 1–11
estimates. It is possible that changes occur when more esti-
mates are shared, because people may use different
strategies. We discuss these possibilities in more detail:

— In the Sorted treatment, one can reasonably expect people
to keep on focusing on (and following) the central tendency
of estimates when receiving more than 11 estimates. This is
increasingly likely as more estimates are shared, since sub-
jects would lack the time and cognitive capacity to assess
(or even look at) all estimates. One may, however, expect
that beyond a certain number of shared estimates, subjects
would experience some sort of cognitive overload [41–43],
andwould not even be able to ‘find’ the central tendency of
the social information. Since our model does not take into
account cognitive overload, it may therefore not accurately
describe how subjects integrate such large amounts of
social information. If cognitive overload would arise at
higher levels of τ than tested here, we would predict
improvements in collective and individual accuracy to
deteriorate compared to a cognitive overload free situation.

— In the Unsorted treatment, we can draw similar con-
clusions. We would, however, expect the cognitive
saturation to happen faster as subjects are faced with
unsorted estimates which are more difficult to process.

— In the Aggregated treatment, there is no cognitive limit to
the number of estimates of which subjects receive the
average. Our model may therefore be accurate at any
group size. We, however, cannot exclude the possibility
that the saturation ‘breaks’ at larger values of τ, with
social influenceability increasing again. Indeed, while it
is reasonable not to expect much difference in subjects’
behaviour when receiving the average of 10 or 15 esti-
mates, it is less clear whether such stability would
remain true between 10 and one million estimates.

In summary, we find that, in groups of 12 individuals,
improvements in accuracy are similar when sharing all esti-
mates or their geometric mean. We do, however, find that
individuals use different strategies in these treatments to
improve their estimates. Building a model based on our
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empirical results, and using this to generate predictions for
larger group sizes, suggests that sharing averages would
outperform sharing the full information in improving esti-
mation accuracy at larger group sizes. Further research is,
however, required to evaluate this prediction. Another
avenue for future research would also be to investigate how
other ways of displaying the social information fare compared
to showing all estimates or their average. For instance,
people may be able to better exploit the social information
when observing graphical distributions, or other formats of
aggregates. Finally, participants in our study were all under-
graduate students, with homogeneous ages and levels of
education. Future studies could investigate how sensitivity to
social influence correlates with factors such as age, sex, culture,
level of education or personality type. A partial attempt has
been done in [20], where the authors showed that there was a
negligible impact of sex on sensitivity to social influence,
and that Japanese students tended to use slightly more social
information than French students.
8:20210231
5. Statistical methods
5.1. Sensitivity to social influence S
5.1.1. Formal definition
We can write a subject’s second estimate Xs as the weighted
arithmetic mean of their personal estimate Xp and the
social information M: Xs = (1− S) Xp + S M. S can thus be
expressed as S = (Xs−Xp)/(M−Xp). S = 0 implies that sub-
jects keep their personal estimate (Xs =Xp), that is, they
disregard the social information. S = 1 implies that their
second estimate equals the geometric mean (Xs =M). In the
Aggregated treatment, this implies that they perfectly
follow the social information, and in the Sorted and Unsorted
treatments, that they precisely adopt the central tendency of
the social information (i.e. the geometric mean), which is
highly unlikely to happen at τ > 1.

5.1.2. Restrictions
Note that when M≈Xp, S can reach arbitrarily large values.
For instance, if Xp = 5 and M = 5.001, then Xs = 5.01 gives
S = 10 and Xs = 5.1 gives S = 100. Such large values of S do
not properly reflect the actual adjustment from Xp to Xs,
but grossly overestimate the level of social influence. Such
outlying values can heavily affect measures based on S, in
particular its average. To avoid this problem, we restricted
S to the interval [−1.05, 2.05] which excluded 4.32% of the
data (these values were chosen rather than the more intuitive
[−1, 2] for plotting purposes; figure 3). An additional 0.45%
was excluded due to undefined values (which happened
when Xp = M = Xs).

5.1.3. Fitting of the distribution
The following distribution was used to fit the distribution of
S (using the ‘nls’ function in R) and thus extract values of Pg,
mg and σg in all conditions:

f(S) ¼ (1� Pg) d(S)þ Pg w(S, mg, sg) (5:1)

and

w(S, mg, sg) ¼ 1ffiffiffiffiffiffi
2p

p
sg

exp � (S�mg)
2

2s2
g

" #
, (5:2)
where Pg is fixed by equation (3.1), δ is the Dirac distribution
centred on 0 and w is the Gaussian distribution of mean mg

and standard deviation σg.

5.1.4. Fitting of the saturation
To fit the saturation observed in Pg, mg and σg (figure 4), and
extract their values in all conditions, we use exponential
saturation functions where all three quantities saturate at
the same rate ε:

Y(t) ¼ Y1 � (1� 1)t�1 (Y1 � Y1), (5:3)

where Y = Pg, mg or σg, Y∞ is the saturation value, Y1 is the
value of Y at τ = 1, and 0 < ε < 1 is the saturation rate. The
parameters Pg1, Pg1 , mg1, mg1 , σg1, sg1 and ε were fitted
simultaneously and their values are reported in table 1.

For consistency, α was fitted using the same functional
form at the same rate ε (figure 6).

5.2. Computation of the error bars
The error bars indicate the variability of our results depend-
ing on the NQ = 42 questions presented to the subjects. We
call x0 the actual measurement of a quantity appearing in
the figures by considering all NQ questions asked. We then
generate the results of Nexp = 1000 new effective experiments.
For each effective experiment indexed by n = 1,…, Nexp, we
randomly draw NQ

0 =NQ questions among the NQ questions
asked (so that some questions can appear several times, and
others may not appear) and recompute the quantity of inter-
est which now takes the value xn. The upper error bar b+ for
x0 is defined so that C = 68.3% (by analogy with the usual
standard error for a normal distribution) of the xn greater
than x0 are between x0 and x0 + b+. Similarly, the lower
error bar b− is defined so that C = 68.3% of the xn lower
than x0 are between x0− b− and x0. The introduction of
these upper and lower confidence intervals is adapted to
the case when the distribution of the xn is unknown and
potentially not symmetric.

5.3. Fitting procedure used in figure 5
In our experiment, each combination of treatment and
number of shared estimates contains 504 estimates. When
binning data, one has to trade off the number of bins (thus
displaying more detailed patterns) and the size of the bins
(thus avoiding too much noise). In figure 4, the noise
within each condition was relatively high when using a bin
size below 1. However, bins of size 1 were hiding the details
of the relationship between 〈S〉 and D, especially the location
of the bottom of the cusp. To circumvent this problem, we use
a procedure that is well adapted to such situations. First,
remark that a specific binning leaves one free to choose on
which values the bins are centred. For instance, a set of 5
bins centred on −2, −1, 0, 1, and 2 is as valid as a set of 5
bins centred on −2.5, −1.5, −0.5, 0.5 and 1.5, as the same
data are used in both cases. Both sets of points produced
are replicates of the same data, and therefore correct. But
we now have 10 points instead of 5.

In each panel of figure 4, we used such a moving centre
starting the first bin at −2, and the last one at +2, produc-
ing histograms (of bin size 1) in steps of 0.1 for the bin
centre. This replicated the data nine times, thus having
overall 10 replicates and 50 points, instead of 5. We then



royalsocietypublishing.org/journal/rsif
J.R.Soc.Inte

14
removed the values beyond D = 2, thus keeping 41 points
(D =−2 to D = 2).

Next, we fitted these points using the following function:

hSifit ¼ aþ b+ jD�D0j,
where α, β−, β+ and D0 are the fitting parameters. The nls
function in R (used for the fits in the other graphs in the
paper) had trouble converging because the absolute value
function is not continuously differentiable.

Therefore, we wrote a program to directly perform
the minimization of least squares. Let 〈S〉exp be the experi-
mental values of 〈S〉 at each of the 41 values of D, and
Q ¼ P

i vi (hSiiexp � hSiifit)2 the weighted sum (ω is the
fraction of data at each point), over all experimental
points (indexed by i), of squared distances between 〈S〉exp
and 〈S〉fit. Equating to 0 the partial derivatives of Q with
respect to α, β− and β+ gave us analytical expressions of
these parameters as functions of D0. We then varied D0

between −1.5 and 1.5 in steps of 0.01, and selected the
parameter values with the lowest (weighted) sum of
squared distances.
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