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Simple Summary: This study examined the therapeutic potential of a combined therapy approach,
based on clinical approved drugs (5-FU, Cisplatin, cetuximab) and cyclin-dependent kinase inhibitors
(CDKi, dinaciclib, palbociclib, THZ1). We identified individual effects on head and neck squamous
cell carcinoma cells, including induction of apoptosis/necrosis, and senescence as well as reduced
invasiveness. Besides, we describe the relevance of the sequential timing of each combination
partner to achieve synergistic effects. Another interesting finding of our study is the upregulation of
immunologically relevant molecules on the tumor cell surface under certain CDKi-drug combinations.
Here, dinaciclib and palboclicb had highest impact on immunogenicity, which even exceeded effects
of the standard drugs. Finally, a therapeutic in vivo approach partially confirmed cell line-based
results. Here, effective tumor growth control was seen when cisplatin was combined with dinaciclib.
However, antitumoral effects were highly individual and nicely confirm the heterogeneity of this
tumor entity.

Abstract: Cyclin-dependent kinase inhibitors (CDKi´s) display cytotoxic activity against different
malignancies, including head and neck squamous cell carcinomas (HNSCC). By coordinating the
DNA damage response, these substances may be combined with cytostatics to enhance cytotoxicity.
Here, we investigated the influence of different CDKi´s (palbociclib, dinaciclib, THZ1) on two
HNSCC cell lines in monotherapy and combination therapy with clinically-approved drugs (5-FU,
Cisplatin, cetuximab). Apoptosis/necrosis, cell cycle, invasiveness, senescence, radiation-induced
γ-H2AX DNA double-strand breaks, and effects on the actin filament were studied. Furthermore, the
potential to increase tumor immunogenicity was assessed by analyzing Calreticulin translocation
and immune relevant surface markers. Finally, an in vivo mouse model was used to analyze the
effect of dinaciclib and Cisplatin combination therapy. Dinaciclib, palbociclib, and THZ1 displayed
anti-neoplastic activity after low-dose treatment, while the two latter substances slightly enhanced
radiosensitivity. Dinaciclib decelerated wound healing, decreased invasiveness, and induced MHC-I,
accompanied by high amounts of surface-bound Calreticulin. Numbers of early and late apoptotic
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cells increased initially (24 h), while necrosis dominated afterward. Antitumoral effects of the selective
CDKi palbociclib were weaker, but combinations with 5-FU potentiated effects of the monotherapy.
Additionally, CDKi and CDKi/chemotherapy combinations induced MHC I, indicative of enhanced
immunogenicity. The in vivo studies revealed a cell line-specific response with best tumor growth
control in the combination approach. Global acting CDKi’s should be further investigated as targeting
agents for HNSCC, either individually or in combination with selected drugs. The ability of dinaciclib
to increase the immunogenicity of tumor cells renders this substance a particularly interesting
candidate for immune-based oncological treatment regimens.

Keywords: targeted therapy; combination strategies; immunogenic cell death; xenograft model

1. Introduction

Mammalian cell cycle is controlled by cyclin dependent kinases (CDKs) [1]. In tu-
mors, CDKs are dysregulated and CDK/cyclin complexes frequently overexpressed [2–4].
Tumor cells bypass the CDK4/6-Rb axis because it is critical for cell cycle entry and cell
proliferation [5]. The knowledge about these mutations is a chance to identify molecular
targets for pharmacological interventions [6]. Indeed, several CDK inhibitors (CDKi’s) been
developed for cancer treatment. Additionally to the highly selective and FDA-approved
CDKi’s palbociclib, ribociclib, and abemaciclib, multi- and pan-CDKi’s are now entering
clinical trials. These include, among others, dinaciclib that targets CDK1, CDK2, CDK5,
and CDK9 [7,8], and THZ1, which is active against CDK7, CDK12, and CDK13 [9,10].

Advances in understanding of pathobiology and molecular characteristics have con-
tributed to the introduction of novel therapy approaches. Still, the treatment of solid tumors
remains challenging. Additionally to intrinsic resistance mechanisms, the development
or outgrowth of single subclones after therapy promotes immune escape and complicates
precision medicine.

Head and neck cancers are paradigmatic for tumor heterogeneity. They can be found
in the oral cavity, pharynx, larynx, salivary glands, nasal cavity, and paranasal sinuses [11].
The predominant histological type of head and neck tumors is squamous cell carcinomas
(HNSCC) [11]. HNSCC is the 7th most common cancer worldwide [11–13]. Risk factors
include tobacco, alcohol, and human papillomavirus (HPV) infection. The latter drives
tumor formation in the oropharynx with distinct clinical, histopathological, and molecular
characteristics [14,15]. Around 58% of the patients present with loco-regionally advanced
disease at diagnosis and this patient cohort has a poor prognosis [11]. Hence, the imple-
mentation of targeted therapies in standard treatment schedules constitutes a promising
and urgently needed approach for improving treatment and outcome. In 2019, a multi-
center, multigroup, phase 2 trial reported promising activity outcomes in patients with
platinum-resistant or cetuximab-resistant HPV-unrelated HNSCC receiving palbociclib
and cetuximab [16]. Though combination strategies are promising, the sequential timing of
each combination partner remains debatable [17–19]. To move forward, we here employed
simultaneous and sequential combination strategies of clinically approved therapeutics
and CDKi’s for treating HNSCC with the aim to identify the best strategy.

2. Results
2.1. CDKi Treatment Impairs Viability and Exerts Synergistic Effects in Combination Therapy

UT-SCC-14 and UT-SCC-15 were used as in vitro cell culture models, since these cells
are representative for primary and recurrent HNSCC. Both cell lines were susceptible
to standard drugs and CDKi’s in clinically relevant doses (below 1 µM for CDKi’s and
≤90 µg/mL for cytostatic drug), as determined in preliminary experiments. For combina-
tion experiments, standard drugs 5-Fluorouracil (5-FU), Cisplatin, and cetuximab as well as
CDKi’s (dinaciclib, palbociclib, THZ1) were applied in doses below the IC50 (Figure 1A,B;
cetuximab is the only exceptions, here IC50 doses were used). The time course of treatment
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considered each cell lines’ doubling times and attempted to mimic the in vivo situation.
Therefore, cells received two treatment cycles of 72 h.
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Figure 1. Simultaneous and sequential treatment schedules. (A) Biomass quantification after monotherapy with 5-FU,
Cisplatin, and cetuximab (1 × 72 h). Doses used here were determined before using classical dose response curve analysis.
Read out was done by crystal violet staining and biomass in relation to untreated controls quantified. In (B) the Bliss
Independence model was used to calculate potential synergistic effects. The green color indicates a synergistic and red
color an antagonistic effect of the simultaneous combinations. (C–E) Sequential treatment: (C) dinaciclib [0.005 µM], (D)
palbociclib [1 µM], and (E) THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM] in comparison to 2 × 72 h CDKi monotherapy
(first bar of each graph). Drug doses were as follows: 5-FU [0.32 µg/mL]; Cisplatin [UT-SCC14: 0.5 µg/mL; UT-SCC-15:
0.05 µg/mL]; cetuximab [0.5 µg/mL]. Mann Whitney U-test (n = 3–4 independent experiments) # p < 0.05, ## p < 0.01 vs.
1st CDKi; Kruskal Wallis test (n = 3–4 independent experiments) * p < 0.05, ** p < 0.01 vs. monotherapy. The 1 × 72 h
monotherapy with 5-FU, Cisplatin or Cetuximab confirms that the potential enhancing effect of sequential combination
therapy is not due to the single administration of these substances but the effect of the 2 × 72 h CDKi monotherapy (in the
left bar) is actually enhanced.

In a first series, simultaneous combinations were applied (Figure 1B). Notably, dual
CDKi treatment was synergistic or additive in UT-SCC-14 and partially in UT-SCC-15 cells
as determined by biomass quantification. Here, combinations of dinaciclib with palbociclib
or THZ1 were synergistic (Figure 1B). CDKi/drug combinations were mainly antagonistic.
The only exception was seen for Cisplatin in conjunction with dinaciclib (UT-SCC-14) and
cetuximab with dinaciclib or THZ1 (UT-SCC-15).
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To test if the effect of a 2 × 72 h CDKi monotherapy can be boosted, sequential
combinations were performed (Figure 1C–E). The first bar of each graph shows CDKi
monotherapy, followed by the sequential combination treatments. CDKi were either given
before or after standard therapy. The sequential treatment with dinaciclib (Figure 1C)
revealed higher biomass reduction in both cell lines when standard therapy was given first.
There was a strong reduction for all three combinations in UT-SCC-14 and UT-SCC-15. The
sequential treatment with palbociclib yielded opposite results (Figure 1D). Here, palbociclib
pretreatment prior to Cisplatin or cetuximab was better than the other way around. The
order of 5-FU application had no leverage. For the sequential combination with THZ1
(Figure 1E), cell line-specific responses were seen. UT-SCC-14 cells’ viability was more
affected when 5-FU was given first and second THZ1. Comparable effects were seen after
THZ1/Cisplatin treatment in UT-SCC-15 cells. Still, the other combinations were only
effective when the standard drug was given before.

The aforementioned findings nicely confirm the heterogeneous response pattern
of HNSCC.

2.2. CDKi’s Induce Apoptotic and Necrotic Cell Death and Mediate Calreticulin Translocation

To investigate the effects of different treatments on the two cell lines, an apoptosis-
necrosis assay was performed on selected treatment schedules (Figure 2A,B). Cells were si-
multaneously treated with CDKi’s and drugs (5-FU, Cisplatin) for 24 and 72 h (Figure 2A,B).
Short-term dinaciclib monotherapy mainly induced early apoptotic and necrotic cell death.
The other monotherapies had minor or no impact on cell viability. After 72 h, overall cell
death was higher in treated cells, but with individual differences. Dinaciclib alone or in com-
bination induced necrosis, THZ1 and its combinations triggered apoptosis or a mixed form
of apoptosis and necrosis (Figure 2A,B). Additionally to the induced cell death, senescence
was studied, since this is a common response to CDK inhibition (Figure S1). These experi-
ments revealed senescence induction by specific CDKi’s (e.g., dinaciclib) or its combination
with standard drugs (e.g., 5-FU). However, senescence was not the dominating cellular
response here, suggesting a minor role. UT-SCC-14 cells clumped together, especially
under dinaciclib monotherapy and combination therapy, while UT-SCC-15 cell clusters
were disrupted. The combination of THZ1 and 5-FU had similar effects to dinaciclib.

Then, the ability to induce immunogenic cell death was measured after 72 h by de-
tecting calreticulin (CalR) on the tumor cells’ surface (Figure 2C). The proportion of CalR
positive cells and the mean fluorescence intensity signal (MFI) (Figure 2D) were recorded.
Dinaciclib induced CalR translocation in monotherapy and combination therapy signifi-
cantly. Notably, the combination of THZ1 and 5-FU likewise induced CalR translocation.
While these findings already hint towards immune stimulating properties, we additionally
checked for immunologically relevant markers (Figure 3A,B). The abundance of HLA-ABC
(MHC class I) and PD-1 on tumor cells was examined. A significant increase in MHC
class I was seen after dinaciclib monotherapy and combination therapy as well as upon
palbociclib treatment of UT-SCC-14 cells (Figure 3A). The MHC class I abundance changed
marginally in UT-SCC-15 cells irrespective of the treatment schedule used (Figure 3B). This
was, however, likely because of the high basal MHC class I abundance, which was about
80%. Still, dinaciclib and their combinations tended to upregulate MHC class I, finally
yielding ~100%. PD-1 was upregulated by certain treatments. This did, however, not reach
statistical significance (Figure 3A,B).
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Figure 2. Apoptosis/necrosis assay and detection of immunogenic cell death (ICD). For (A,B) apoptosis/necrosis assay,
cells were stained with Yo-Pro 1 iodide and PI. Cells that were positive for Yo-Pro 1 iodide were defined as early apoptotic,
cells that were positive for PI were defined as necrotic, and double positive cells were defined as late apoptotic. Apopto-
sis/necrosis assay was done after 24 h and 72 h. (A) Representative dots plots showing distribution of viable and dead
cells (either apoptotic or necrotic). (B) Quantitative analysis of apoptotic and necrotic cells subdivided into early apoptotic
(Yo-Pro1+/PI−), late apoptotic (Yo-Pro1+/PI+) and necrotic ((Yo-Pro1−/PI+). (C,D)) ICD was detected after 72 h treatment
by staining CalR on the cell surface. In both assays, 10,000 events were measured and the percentage of cells showing CalR
translocation and the mean fluorescence intensity (MFI) of CalR+ cells are provided. Drug doses were as follows: dinaciclib
[0.02 µM]; palbociclib [1 µM]; THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM]; 5-FU [90 µg/mL]; Cisplatin [0.1 µg/mL].
(B) Kruskal Wallis Test (n = 4–5 independent experiments); late apoptotic # p < 0.05 vs. control; necrotic * p < 0.05, ** p < 0.01
vs. control (D) 1way ANOVA (n = 3–4 independent experiments) * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control.



Cancers 2021, 13, 2396 6 of 20
Cancers 2021, 13, x 6 of 20 
 

 

 

Figure 3. Phenotyping and cell cycle analysis. Phenotyping of (A) UT-SCC-14 and (B) UT-SCC-15 cells using multi-color 

flow cytometry. Therefore, cells were stained after 48 h treatment with test substances using the following antibodies: anti-

HLA-ABC antibody (MHC I) and anti-CD279 (PD-1). Drug doses were as follows: IFN-γ [50 ng/mL]; dinaciclib [0.02 µM]; 

palbociclib [1 µM]; THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM]; 5-FU [90 µg/mL]; Cisplatin [0.1 µg/mL]. 1 way 

ANOVA (n ≥ 3 independent experiments) * p < 0.05, ** p < 0.01, vs. control. (C–E) Cell cycle analysis. Ethanol-fixed cells 

were stained with PI. (C) Representative histograms showing distribution of cell cycle phases in control cells and upon 

therapy. (D,E) Quantitative cell cycle analysis showing amounts of cells in G1, S, and G2 phase. Drug doses were as fol-

lows: dinaciclib [0.005 µM]; palbociclib [1 µM]; THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM]; 5-FU [90 µg/mL]; Cis-

platin [0.1 µg/mL]. 1way ANOVA (n = 3 independent experiments) * p < 0.05, ** p < 0.01 vs. control. 

2.4. CDKi’s Have Minor Impact on Double-Strand Breaks and Radiosensitivity  

Treatment-induced double-strand breaks (DSBs) were determined by fluorescence 

microscopy using γ-H2AX (Figure 4). H2AX is phosphorylated by kinases after DNA dou-

ble-strand breaks on serine 139. CDKi monotherapy or combination therapy itself had mi-

nor impacts on γ-H2AX foci, which were hardly detectable (Figure 4). To test if the applied 

regimens may enhance radiosensitivity, we then checked for irradiation-induced DSBs 

using 2 Gy (Figure 4B). Indeed, numbers of γ-H2AX-positive cells increased, with highest 

amounts in cells treated with palbociclib. With regard to the combinations, γ-H2AX foci 

were primarily seen in palbociclib-or THZ1- based combinations with 5-FU. By contrast, 

such radiosensitizing effects were not seen in combinations with dinaciclib and may thus 

constitute a specific consequence of palbociclib or THZ1 treatment.  

Figure 3. Phenotyping and cell cycle analysis. Phenotyping of (A) UT-SCC-14 and (B) UT-SCC-15 cells using multi-color
flow cytometry. Therefore, cells were stained after 48 h treatment with test substances using the following antibodies:
anti-HLA-ABC antibody (MHC I) and anti-CD279 (PD-1). Drug doses were as follows: IFN-γ [50 ng/mL]; dinaciclib
[0.02 µM]; palbociclib [1 µM]; THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM]; 5-FU [90 µg/mL]; Cisplatin [0.1 µg/mL].
1 way ANOVA (n ≥ 3 independent experiments) * p < 0.05, ** p < 0.01, vs. control. (C–E) Cell cycle analysis. Ethanol-fixed
cells were stained with PI. (C) Representative histograms showing distribution of cell cycle phases in control cells and upon
therapy. (D,E) Quantitative cell cycle analysis showing amounts of cells in G1, S, and G2 phase. Drug doses were as follows:
dinaciclib [0.005 µM]; palbociclib [1 µM]; THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM]; 5-FU [90 µg/mL]; Cisplatin
[0.1 µg/mL]. 1way ANOVA (n = 3 independent experiments) * p < 0.05, ** p < 0.01 vs. control.

2.3. CDKi Induce Cell Cyclce Arrest

Due to the mode of action of CDKi’s, cell cycle analysis was done on residual tumor
cells (typically below 50%; Figure 3C–E). Representative histograms for all treatments are
given in Figure S4. The number of residual cells after dinaciclib treatment was low. In
these, tumor cells’ cycle distribution was quite similar to controls. In UT-SCC-14 cells, a
lucid G1 arrest was only seen after combined THZ1 and 5-FU therapy (p < 0.05 vs. control),
while the remaining treatments had a minor impact on the cell cycle. UT-SCC-15 cells had
significant changes after palbociclib and 5-FU monotherapy, but not in the combinations.

2.4. CDKi’s Have Minor Impact on Double-Strand Breaks and Radiosensitivity

Treatment-induced double-strand breaks (DSBs) were determined by fluorescence
microscopy using γ-H2AX (Figure 4). H2AX is phosphorylated by kinases after DNA
double-strand breaks on serine 139. CDKi monotherapy or combination therapy itself had
minor impacts on γ-H2AX foci, which were hardly detectable (Figure 4). To test if the
applied regimens may enhance radiosensitivity, we then checked for irradiation-induced
DSBs using 2 Gy (Figure 4B). Indeed, numbers of γ-H2AX-positive cells increased, with
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highest amounts in cells treated with palbociclib. With regard to the combinations, γ-
H2AX foci were primarily seen in palbociclib-or THZ1- based combinations with 5-FU. By
contrast, such radiosensitizing effects were not seen in combinations with dinaciclib and
may thus constitute a specific consequence of palbociclib or THZ1 treatment.
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Figure 4. γ-H2AX staining of UT-SCC-14 cells. In order to detect a potential radiosensitizing effect of
the test substances, cells were treated 24 h with selected monotherapy and combination therapies
and then irradiated with 2 Gy using an IBL637. (A,B) We had three control groups. The first was
completely untreated, the second was treated with the test substances but not irradiated, and the
third was only irradiated but not treated with the test substances. Drug doses were as follows:
dinaciclib [0.005 µM]; palbociclib [1 µM]; THZ1 [0.02 µM]; 5-FU [0.32 µg/mL]; γ-H2AX staining was
performed 6 h after irradiation. Cell nuclei were stained with DAPI. Images were taken on a Zeiss
LSM-780 Confocal Laser Microscope.

2.5. CDKi’s Remodel the Actin Filament

Live cell monitoring via impedance measurements is particularly suitable for studying
alterations in the cell monolayer, in the adhesion properties, and in the membrane integrity
in real time. While the impedance increased over time in untreated control cells, dinaciclib
treatment massively reduced impedance (Figure 5A,B). For palbociclib treated UT-SCC-14
cells, the measured impedance slightly decreased after 48 h, while THZ1 monotherapy
slightly increased impedance (Figure 5A). Notably, the combination of THZ1 and 5-FU
caused a delayed impedance breakdown in both cell lines. Here, impedance increased
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within the first 20 h. Thereafter, the impedance stagnated for approximately 3 h, and then
decreased for the next 48 h until no impedance was detectable. Dinaciclib in conjunction
with cytostatics (Cisplatin, 5-FU) induced a complete and irreversible breakdown.
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Figure 5. Impedance measurement and cytoskeletal staining. (A,C) UT-SCC-14 and (B,D) UT-SCC-15 cells. Cells were
seeded in a 96-well ECIS array plate with 20 interdigitated electrodes/well and treated with selected test substances to
investigate the impact of the treatment schedules. Drug doses were as follows: dinaciclib [0.02 µM]; palbociclib [1 µM];
THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM]; 5-FU [90 µg/mL]; Cisplatin [0.1 µg/mL]. Impedance was monitored
in real-time. The analysis of cell-cell contacts was performed by 4000 kHz using ECIS Software. Then, actin staining was
performed with phalloidin green. Cell nuclei were stained with DAPI. Analysis was performed with a Zeiss LSM-780
Confocal Laser Microscope. Original magnification 200×.

To confirm the impedance data, actin fibers were stained 72 h after treatment
(Figure 5C,D). Untreated UT-SCC-14 cells form a typical monolayer with a cortically
formed cytoskeleton and less stress fibers within the cells. Dinaciclib itself caused massive
cell detachment and consequently cell death. Nearly all UT-SCC-14 cells were detached
after dinaciclib treatment, while some UT-SCC-15 cells remained attached and spread.
Cytostatics (Cisplatin, 5-FU) intensified actin abundance in both cell lines.

THZ1 strengthened the formation of stress fibers in both cell lines that increases
cellular stiffness and changes the motility properties [20]. This finding adds to the higher
impedance under THZ1 treatment compared to the untreated control. THZ1 in combination
with 5-FU caused higher cytotoxic effects, so most cells were detached.

2.6. Influence on Mitochondria, Lysosomes, the Endoplasmatic Reticulum and Vacuole Formation

CDKi-based treatments induced cytoplasmic vacuole formation. Hence, we checked
the influence of the treatment schedules on mitochondria, lysosomes, and endoplasmatic
reticulum (ER) (Figure 6). In both cell lines, mitochondrial activity increased after dinaciclib
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monotherapy and combination therapy (Figure 6). Monotherapy with palbociclib, THZ1,
or Cisplatin induced lysosome formation, but only in UT-SCC-14 cells. An effect of the
treatments on the ER could not be demonstrated. After 5-FU treatment, the mitochon-
drial activity of UT-SCC-15 cells slightly increased that was reversed by THZ1. Cisplatin
monotherapy had opposite effects that were neutralized by the combination partners
(Figure 6B).
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Figure 6. Influence on mitochondria, lysosomes, ER, and vacuole formation (A,C) UT-SCC-14 and (B,D) UT-SCC-15 cells.
(A,C) To investigate the effect of the test substances on the mitochondrial activity, the lysosome formation, and the ER, cells
were treated for 72 h with test substances and stained with MitoTracker (red), LysoTracker (green), and ER-Tracker (blue).
Drug doses were as follows: dinaciclib [0.02 µM]; palbociclib [1 µM]; THZ1 [UT-SCC14: 0.02 µM; UT-SCC-15: 0.005 µM];
5-FU [90 µg/mL]; Cisplatin [0.1 µg/mL]. Representative merged images are shown. For the control, a separated fluorescent
image is shown. Analysis was performed with a ZEISS Elyra 7 Confocal Laser Microscope. (C,D) Cells were stained for
CD107a and Rab7a as a hint for vacuole formation and measured via flow cytometry. The percentage numbers of double
positive cells are shown. Drug doses were as follows: dinaciclib [0.02 µM]; palbociclib [1 µM]; THZ1 [UT-SCC14: 0.02 µM;
UT-SCC-15: 0.005 µM]; 5-FU [90 µg/mL]; Cisplatin [0.1 µg/mL]. 1way ANOVA (n = 3 independent experiments) * p < 0.05
vs. control.

Cells were stained for specific late endo-lysosomal markers CD107a (LAMP1) and
Rab7a to confirm above findings (Figure 6C,D). The GTPase Rab7a is primarily associ-
ated with late endosomes and LAMP1 is typically considered lysosomal [21]. Cell line
specific responses were observed, with UT-SCC-14 cells showing higher numbers of these
late endo-lysosomal markers after treatment. In detail, dinaciclib, palbociclib, and 5-FU
monotherapy resulted in the highest increase of positive cells (p < 0.05 5-FU vs. control)
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(Figure 6C). The combinations could not boost effects. In UT-SCC-15 cells, highest numbers
of CD107a+/Rab7a+ cells were detected after dual CDK inhibition (palbociclib + dinaciclib)
(Figure 6D), implying that lysosomal formation plays a minor role here.

2.6.1. CDKi’s Reduce Invasiveness and Migratory Potential

An assay was performed to explore the migration potential of cells to a cell free space
under treatment. The cell line UT-SCC-14 filled the scratch within 24 h; the same was
true for THZ1 and 5-FU monotherapy and combination therapy (Figure S2A). The toxic
activity of dinaciclib induced cell death within 72 h and an accordingly incomplete scratch
closure. Adding THZ1 to dinaciclib delayed migration, so the scratch was filled after 48 h.
Using an invasion assay, the ability of cells to escape from the toxic environment was then
investigated. For this experiment, selective treatments were included based on the obtained
results shown before. The invasive cells from treatment medium were put in relation to
invasive cells from control medium. CDKi treatment with dinaciclib significantly reduced
invasiveness (Figure S2B). Effects were even stronger when two CDKi’s were combined
(dinaciclib + THZ1), but not by adding 5-FU. Still, these data confirm the potential of
CDKi’s to interfere with cellular invasion.

2.6.2. In Vivo Results

Finally, a xenograft mouse model was used to test if in vitro results can be transferred
in vivo. For this proof-of-concept study, dinaciclib and Cisplatin were chosen as therapeu-
tics and given alone or in combination (Figure 7A). We decided to use this combination,
since dinaciclib had strong antitumoral effects in all previous analyses and Cisplatin is the
accepted standard of care for HNSCC patients.

UT-SCC-14 xenografts showed a poor treatment response. Monotherapy had no
influence on tumor growth and the combination was only able to decelerate growth
(Figure 7B). In contrast, UT-SCC-15 xenograft growth was significantly reduced under
therapy (Figure 7B). Dinaciclib and its combination with Cisplatin decreased the tumor vol-
ume to a minimum, the latter even stopped tumor growth until the experimental endpoint
(two months follow-up). As a consequence of the better treatment response, mice chal-
lenged with UT-SCC-15 lived longer compared to those harboring UT-SCC-14 xenografts
(Figure 7C). The outcome was best in the combination with a median survival of 63 days
(vs. control 42 days, p < 0.05). As for dinaciclib monotherapy, mice had to be euthanized
mostly because of tumor ulcerations. Hence, the poorer survival in both cases is not justi-
fied by the tumor volume as an endpoint but due to ethical aspects. Histology of residual
tumors confirmed the different treatment responses. UT-SCC-14 xenografts presented with
initial necrosis that increased after dinaciclib treatment (Figure 7D). After Cisplatin therapy,
beginning necrosis with initial inflammatory reaction was visible, but also vital tumor tis-
sue. In the combination, keratinized squamous cell carcinoma containing degenerated cells
was found. In addition, neutrophilic infiltration was observed. The UT-SCC-15 xenograft
sections of control mice showed characteristics of a keratinizing squamous cell carcinoma
with developing necrosis. After dinaciclib treatment, degenerated and early apoptotic cells
became prominent with surrounding necrosis. Cisplatin monotherapy primarily induced
necrosis. The dark spot in the center of the image is degenerated keratinized squamous ep-
ithelium. Necrosis was dominating in the combination with some swollen cells, indicative
of early cell damage in the initial stage.
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substances. (B) Tumor growth curve. Tumor volume was calculated as tumor volume at day × (Vt) divided through
the tumor volume at the therapy start (V0). (C) Kaplan-Meier survival curve and Log-rank (Mantel-Cox) test. UT-
SCC-14: control (n = 8 mice); Cisplatin/dinaciclib/combination (n = 7 mice/group); UT-SCC-15: control (n = 10 mice);
Cisplatin/dinaciclib (n = 7 mice/group); combination (n = 5 mice); * p < 0.05 vs. dinaciclib. (D) Representative images of the
HE stained tumors of each treatment group. Magnification 20×, Scale bar.

3. Discussion

CDKi’s are being applied in clinical trials to treat solid and hematological malignancies
(e.g., NCT04169074, NCT04391595, NCT03981614, and NCT01627054). For locally advanced
or metastatic breast cancer, the CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib
are FDA approved in combination with endocrine therapy [22,23]. Though approval for
HNSCC is still pending, first preclinical and clinical reports are promising [16,24,25].

Our study adds another piece of evidence and identifies the CDK4/6 inhibitor palbo-
ciclib as well as the global acting CDKi’s dinaciclib and THZ1 as promising candidates for
HNSCC treatment. We additionally describe the strong dependency on (a) the combination
partner and (b) the temporal order of applying each substance to reach therapeutic effects.
Notably, simultaneous dual CDKi treatment, but not the combination with standard drugs,
worked synergistically in our settings. The sequential application yielded heterogeneous
results, depending on the CDKi used for combination. In theory, chemotherapeutic drugs
should benefit from prior CDKi treatment by completing their effects [26,27]. However,
this was only seen here when the CDK4/6 inhibitor palbociclib was used as first treatment,
confirming findings from a recent study in which intrinsic resistance was reported when
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Cisplatin was given before palbociclib because of drug-induced c-Myc and Cyclin E upreg-
ulation [19]. Though not analyzed in detail here, comparable molecular alterations can
be anticipated. Besides direct antitumoral effects, another argument for applying specific
CDKi’s in the first-line is the protection of normal hematopoietic stem and progenitor cells
via transient G1 cell cycle arrest induction and the maintenance of antitumor immunity to
boost the patient’s tolerability towards chemotherapy [28]. This “positive” side effect was
recently observed in phase II trials on patients with small-cell lung cancer receiving the
CDK4/6 inhibitor trilaciclib [28,29]. Hence, a favorable outcome can indeed be speculated
if CDK4/6 inhibitors are applied in the first-line. For the more global acting CDKi’s, such
beneficial responses are very unlikely. Instead, leukopenia and neutropenia were reported
as direct consequences of the complex mode of action, including interference with RNA
polymerase II binding [30–32]. These systemic toxicities constitute a major limitation and
clinicians will have to cope with this challenge. With regard to the sequential application
applied here, first-line chemotherapy was superior to second-line chemotherapy. This regi-
men was comparable to or even better than two cycles of dinaciclib or THZ1 monotherapy.
Mechanistically, effects were due to early apoptosis with a shift to necrosis afterward. Quite
in line with this, Hossain et al. also observed apoptosis induction by short-term dinaciclib
treatment [33]. Notably, THZ1, had a minor impact on apoptosis, though this was described
in literature in an nM range and thus was comparable to doses used here [34]. This might
be best explained by some kind of delayed apoptosis induction but not intrinsic apoptosis
resistance of our HNSCC cells. In support of this, the specific CDK4/6 inhibitor palbociclib
triggered apoptosis in both cell lines, confirming recent observations [35]. Senescence,
another CDKi-induced cellular stress response, was also seen here; however, it was not as
profound as described in the literature [36]. Hence, senescence may either play a minor role
in HNSCC or it was an early event and thus undetectable after two rounds of treatment.
The strong cytotoxicity of dinaciclib and certain CDKi/drug combinations argue in favor
of the latter.

Quite in line with this, impedance reduced massively under dinaciclib monotherapy
and combination therapy that was accompanied by remarkable changes in cell shape
and cytoskeletal organization. This, in turn, may impair cell-cell contacts via adhesion
molecules, electrical coupling, and passage through gap junctions [37]. A comparable,
but delayed impedance breakdown was achieved when THZ1 was combined with 5-FU,
likely because of the 5-FU’s mechanism of action [38]. Such a delayed effect under 5-FU
treatment was also seen in the wound healing assay. Conversely, THZ1 monotherapy
slightly increased impedance, accompanied by re-organization of cortical actin into stress
fibers. These stress fibers increase the cellular stiffness and reduce the motility [20,39,40].
We therefore propose the identified shift in actin organization as main response towards
drugs applied in this study that has to be addressed in more detail prospectively. By
performing a direct comparison of the two cell culture models used here, it is obvious
that the cell line UT-SCC-15, established from a nodal recurrence of a primary tongue
carcinoma [41], shows more cortical actin than intracellular stress fibers. In the UT-SCC-14
cells, it is exactly the other way around. The cortical actin filaments are important to
create tension, leading to gradients that generate changes in the shape which are important
during cell migration, cell division, and tissue morphogenesis [42]. Also, we hypothesize
that the remodeling of the actin filament makes the cells more vulnerable to immune
cells. A prerequisite—among others—for this is the induction of immunogenic cell death
(ICD) in tumor cells to activate phagocytes [33,43,44]. Actually, we observed increased
Calreticulin (CalR) translocation upon combined THZ1/5-FU treatment. While this effect
was not visible under monotherapy, we suggest this treatment regimen as a promising
strategy for immunotherapeutic approaches. Notably, dinaciclib was similarly able to
induce CalR translocation and upregulation of the immunologically relevant marker MHC
class I to an extent comparable to THZ1/5-FU combination therapy. This makes dinaciclib
particularly interesting in the context of immunotherapy, as hypothesized before [33,45].
Hossain et al. treated murine CT26 colon cancer cells for 24 h with different dinaciclib
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concentrations (0.05 µM–25 µM) and identified a linear increase in CalR translocation. The
readout in this study was the mean fluorescence intensity, which was around 1200 after
treatment with 0.05 µM dinaciclib [33]. In our work, a concentration of 0.02 µM dinaciclib
yielded an MFI around 2000 for UT-SCC-14 and an MFI of around 1500 for UT-SCC-15
cells. Though the MFI is not directly comparable among different studies, it still confirms
previous findings. Additionally to this, the observed upregulation of MHC class I enhances
antigen presentation and ultimately stimulates CD8+-T-cells to finally promote antitumor
immunity [46].

Radiotherapy is the mainstay of therapy for HNSCC patients and can be combined
with immunotherapy. While radiotherapy itself has the potential to reprogram the tumor
microenvironment, several drugs including CDKi’s have been identified as radiosensi-
tizers [24,47,48]. However, the CDKi´s used here had a minor impact on double-strand
breaks and radiosensitivity. Radiosensitization, if any, was seen after combining palbo-
ciclib or THZ1 with 5-FU. Wang et al. reported palbociclib-induced DNA damage in an
p53-independent manner and repressed DNA damage repair ability via RAD51 down-
regulation [35]. THZ1 inhibits CDK7, CDK12, and CDK13 [49] and was described as
radiosensitizer in a study on medulloblastomas [50]. Genes involved in homologous recom-
bination such as Brca2, Rad51, and Rad50 were downregulated, accompanied by increased
γH2AX-foci post irradiation [50]. Another study likewise confirmed increased amounts
of γ-H2AX foci upon THZ1 treatment [51]. Hence, THZ1 has the potential to sensitize to
radiation and impair recovery from radiation-induced DNA damage. The fact that another
target of THZ1, CDK12, selectively controls the expression of genes involved in the DNA
damage response, supports this theory [52]. The question remains why such effects were
undetectable in our study. Apart from the radiation dose (2Gy), the time is a critical factor
for detecting or missing a clear radiation response. Hence, it is conceivable that we have
simply missed certain effects.

Another common response towards CDKi treatment is cell cycle alteration. Palbociclib
induced a G1 phase arrest that complies with its mode of action and has been described in
the literature [53–55]. Combined THZ1 and 5-FU therapy yielded comparable results in
both cell lines that can be explained as follows: 5-FU limits the availability of thymidylate
and inhibits the DNA synthesis [56,57]. THZ1 impairs CDK2 activity via inhibition of
CDK7 [58,59]. CDK2 is required for the transition from G1 to S phase, blocking this
CDK thus holds the cell cycle [49]. This has profound biological effects. In a very recent
study on patient-derived glioblastoma models, we described the CDKi-induced loss of
mitochondrial function in pioneering work, characterized by a multivacuolar phenotype
and signs of early-methuosis [60]. Methuosis, a non-apoptotic cell death phenotype, is
defined by the accumulation of large fluid-filled cytoplasmic vacuoles that originate from
macropinosomes [61]. With regard to the HNSCC cells used here, dinaciclib monotherapy
and combination therapy strengthened the mitochondrial activity. However, methuosis did
not seem to play a major role, as late endosomes and vacuoles markers CD107a and Rab7a
exclusively increased under CDKi or 5-FU monotherapy. Hence, CDKi’s have indeed
different effects on individual tumor cells.

In a final in vivo proof-of-concept experiment, dinaciclib and Cisplatin were chosen
based on the following criteria: Dinaciclib has complex effects on HNSCC tumor cells,
including growth inhibition, prevention of migration/invasion, and cytotoxicity. Besides,
dinaciclib is a potent ICD inducer and a promising candidate for combined immunother-
apies. Cisplatin is a well-known cytostatic drug approved as 1st line HNSCC treatment
and widely applied in the clinic [11,62,63]. Additionally, preclinical reports on combined
dinaciclib-Cisplatin application are promising, as recently shown for a subcutaneous ovar-
ian cancer xenograft model in nude mice [64]. Here, the combination approach was likewise
superior to either single treatment and most effective in suppressing UT-SCC-15 growth.
While this cell line was established from a nodal recurrence, it is tempting to speculate
that advanced tumors may even benefit more from this regimen than lower-stage tumors.
However, this has to be tested on a larger series of (matched) tumor samples. However, the
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accelerated growth of UT-SCC-15 xenografts under Cisplatin monotherapy is worth men-
tioning. Intrinsic resistance is unlikely, since these cells showed good sensitivity in vitro.
Also, acquired resistance can be excluded because tumors grew constantly under treatment.
Comparable effects were not reported in the literature. We can therefore only assume that
outcomes may be improved by changing the treatment schedule (i.e., dose, application
route, and the number of injections). Still, the complex interaction of tumor, normal stromal,
and immune cells influences outcomes—a major contributing factor that can only partially
be considered in vitro [65].

To sum up these findings, we provide another piece of evidence for the therapeutic
activity of CDKi’s, their complex mode of action, and the rationale to combine targeted
agents with “conventional” drugs or even immune-restoring approaches to succeed in the
long run.

4. Materials and Methods
4.1. Tumor Cell Lines and Culture Conditions

Two patient-derived cell lines: UT-SCC-14 and UT-SCC-15, were used. The UT-SCC-14
was established from a primary tumor of the tongue and the UT-SCC-15 derived from
a nodal recurrence of the same origin. Both cell lines are HPV negative. Cells were
maintained in full medium: DMEM/HamsF12 supplemented with 10% fetal calf serum
(FCS), glutamine (2 mmol/L) and antibiotics (medium and antibiotics were purchased
from Pan Biotech, Aidenbach, Germany, FCS from Sigma-Aldrich, Darmstadt, Germany
and glutamine from Biochrom, Berlin, Germany) and kept in low passages.

4.2. Cytostatic Drugs and Targeted Substances

The approved cytostatic drugs 5-FU (50 mg/mL) and Cisplatin (1 mg/mL), the ap-
proved therapeutic antibody cetuximab (5 mg/mL) and the targeted substances dinaciclib,
palbociclib, and THZ1 (all 10 mM) were used. 5-FU, Cisplatin and cetuximab were pur-
chased from the pharmacy of the University Hospital Rostock, dinaciclib and palbociclib
from Selleckchem, Munich, Germany, and THZ1 from Hycultec, Beutelsbach, Germany.

4.3. Dose Response Curves and Combination Therapy

For dose response curves, cells were seeded in 96 well plates in three technical repli-
cates per cell line and incubated for 24 h at 37 ◦C and 5% CO2. Afterwards, cells were
treated for 2 × 72 h in monotherapy with the different test substances in concentrations
ranging between 0.05 µg/mL and 1 mg/mL for approved drugs and 1 nM and 1 µM for
CDKi’s. Thereafter, various combinations were tested in simultaneous and sequential
settings. Doses used for combinations were as follows: 5-FU [0.32 µg/mL or 90 µg/mL],
Cisplatin [0.05 µg/mL, 0.5 µg/mL, or 0.1 µg/mL], cetuximab [0.5 µg/mL], dinaciclib
[0.005 µM or 0.02 µM], palbociclib [1 µM], and THZ1 [0.02 µM or 0.005 µM] depending
on the treatment duration of each substance (1 × 72 h or 2 × 72 h). Readout was done
by crystal violet staining. In sequential combination therapy, two different approaches
were applied. Firstly, the cells were treated with the standard therapy for 72 h and the
CDKi’s afterwards, and secondly, the administration was done in reverse order. To rule
out the possibility that the single 72-h administration of the approved therapeutics is
responsible for the potentially stronger effect, they were tested in monotherapy for 72 h.
Potential synergistic or additive effects between the substances in a 2 × 72 h simultaneous
combination approach were analyzed with the Bliss Independence model.

4.4. γ-H2AX Staining

Tumor cells were treated for 24 h in Chamber Slides with selected concentrations and
combinations of the test substances and then irradiated with 2 Gy (Cs-137 γ-irradiation;
IBL 637, CIS Bio-International, Codolet, France). γ-H2AX staining was performed 6 h
after irradiation. Cells were washed with phosphate-buffered saline (PBS), fixed in 4%
paraformaldehyde w/o methanol (Thermo Scientific, Darmstadt, Germany) for 30 min,
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washed again, followed by cell permeabilization in 0.5% Triton X−100 (Sigma-Aldrich,
Darmstadt, Germany) for 15 min. After blocking the unspecific binding sites with 1%
bovine serum albumin (Serva, Heidelberg, Germany), cells were incubated with the mon-
oclonal γ-H2AX antibody (1:100; BioLegend, San Diego, CA, USA) over night at 4 ◦C.
Cells were washed and nuclei stained with 4′,6-diamidino-2-phenylindole (DAPI) (AAT
Bioquest, Sunnyvale, CA, USA). Analysis was performed with a ZEISS Elyra 7 Confocal
Laser Microscope (Zeiss, Jena, Germany).

4.5. Apoptosis-Necrosis Assay, Phenotyping, and Immunogenic Cell Death

Apoptosis-necrosis was determined after 24 and 72 h treatment, phenotyping was
done after 48 h, and determination of immunogenic cell death (ICD) was recorded af-
ter 72 h treatment. Cells were analyzed on a Flow Cytometer (BD FACSVerse™, BD
Pharmingen, San Jose, CA, USA). Data analysis was done using the BD FACSuite software
(BD Pharmingen).

For Apoptosis-necrosis, cells were stained for 20 min at room temperature with 0.2 µM
Yo-Pro 1 iodide (Thermo Scientific, Ex/Em 491/509 nm; blue laser 488 nm) and 20 µg/mL
Propidiumiodide (PI) (Sigma-Aldrich, Darmstadt, Germany; Ex/Em: 535⁄ 617 nm; blue
laser 488 nm). PI was added shortly before flow cytometry. For phenotyping, cells were
stained for 30 min at 4 ◦C with FITC anti-HLA-ABC antibody (MHC I) (1:50; Immuno-
Tools, Friesoythe, Germany) and APC anti-CD279 (PD-1) (1:50; both from BioLegend, blue
(488 nm) and red (633 nm) laser). ICD was detected by staining translocated CalR on
the cell surface. Cells were incubated for 30 min at 4 ◦C with the polyclonal rabbit CalR
primary antibody (1:50; Abgent, San Diego, CA, USA). Cells were washed and labeled with
FITC-conjugated secondary antibody (donkey anti rabbit, 1:50; BioLegend), and incubated
again for 30 min at 4 ◦C. In order to exclude non-specific binding of the FITC-labeled
secondary antibody, control cells were additionally stained with the secondary antibody
without using the primary antibody. For CalR quantification, the number of cells that were
positive for the secondary antibody was subtracted from the CalR+ secondary antibody
stained cells.

4.6. Cell Cycle Assay

Cell cycle was determined after 48 h of treatment. Cells were harvested, counted, and
resuspended with 1 mL ice cold 70% ethanol. Cells were incubated overnight at −20 ◦C,
washed again, and incubated with 0.5 mL 0.25% TritonX-100 for 15 min on ice. Cells were
washed and resuspended in RNAse A (100 µg/mL), supplemented with PI (20 µg/mL).
After 30 min incubation on ice, cells were analyzed on a Flow Cytometer (FACSCalibur, BD,
San Jose, CA, USA). Data analysis was done using BD FlowJo software (BD Pharmingen,
San Diego, CA, USA).

4.7. Influence on Mitochondria, Lysosomes, ER, and Vacuole Formation

The influence on mitochondria, lysosomes, and the ER was examined with immunoflu-
orescence staining. Cells were seeded in Chamber Slides and stained after 72 h treatment.
Then, cells were washed and the staining with MitoTracker Red CMXRos (20 nM, CellSig-
naling Technology, Danvers, MA, USA) and ER-Tracker Blue-White DPX (1 µM, Invitro-
gen) was done simultaneously for 35 min at 37 ◦C. Cells were washed and stained with
LysoTracker DND-26 (50 nM, CellSignaling Technology) for 2 min at room temperature.
Analysis was performed on a ZEISS Elyra 7 Confocal Laser Microscope (Zeiss).

Additionally, vacuole formation was analyzed after 72 h treatment using specific
antibodies. Cells were harvested and incubated with Alexa488 anti-CD107a antibody
(Biolegend, 1:50 in 0.1% BSA) for 30 min at 4 ◦C. Then, cells were washed and resuspended
in 0.5 mL FluorFixTM Buffer (Biolegend) for 20 min at room temperature. Afterwards,
cells were washed twice with 1× intracellular staining perm wash buffer and incubated
with Alexa594 anti-Rab7a antibody (Biolegend, 1:50 in 0.1% BSA) for 30 min at room
temperature. The reaction was stopped with PBS and washed before cells were resuspended
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in 200 µL PBS (+2 mM EDTA). Cells were analyzed by flow cytometry on a Flow Cytometer
(FACSAriaII, BD, blue (488nm) and yellow-green (561 nm) laser). Data analysis was
performed using BD FACSDiva software (BD).

4.8. Senescence

Senescence-associated β-galactosidase (SA-β-gal, Cell Signaling Technology, Cam-
bridge, UK) was analyzed after 72 h of treatment. Cells were washed and fixed. After a
second washing step, cells were stained with a Galactosidase Staining Solution. Therefore,
cells were incubated at 37 ◦C overnight in a dry incubator and checked for senescence
the following day under a microscope. To analyze the number of senescent cells, ImageJ
was used.

4.9. Impedance Measurement and Actin Staining

Impedance was measured with a commercial Electric Cell-Substrate Impedance Sens-
ing system (ECIS Zθ; Applied Biophysics, New York, NY, USA) equipped with a 96-well
array station (Applied Biophysics) to monitor time and frequency dependent complex
impedance, Z (t, f). Cells were grown on a 96-well ECIS array plate with 20 interdigitated
electrodes/well (96W20idf PET; ibidi GmbH, Gräfelfing, Germany). Prior to cell seeding,
electrodes were stabilized with serum-free media overnight in the incubator with high
humidity at 37 ◦C and 5% CO2. Impedance measurements were performed directly in
the treatment medium in the incubator, allowing real-time monitoring of all impedance
alterations at 11 frequencies (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, and 64 kHz) in a 180-s
interval. 24 h after cell seeding, treatment was added for 72 h. Analysis of cell-cell contacts
was performed by 4000 kHz using ECIS Software (Applied Biophysics).

To confirm the results of the impedance measurement, the actin filament was stained
with phalloidin (1:300; Invitrogen, Darmstadt, Germany). Therefore, cells were treated
for 72 h in Chamber Slides, fixed, permeabilized, stained, and analyzed as described
for γ-H2AX.

4.10. Wound Healing and Invasion Assay

A wound healing assay was done in 12-well plates. After formation of a confluent
cell layer, a defined scratch was set. Medium was removed, cells were washed with cell
culture media, and the corresponding treatment based on the most promising simultaneous
combinations was added. Scratch closure was documented by light microscopy routinely
during the following 72 h.

For the invasion assay, inserts (8.0 µm translucent; Greiner bio-one, Frickenhausen,
Germany) were coated with 70 µL Matrigel (1:25 in serum free media; Corning, NY, USA)
and cells seeded in serum free, treatment containing media. The inserts were placed in a
24-well plate containing 750 µL media with 10% FCS and incubated for 72 h. Invasiveness
was analyzed by WST-1 assay. The inserts were placed into a new 24-well plate containing
WST-1 in serum free media. WST-1 containing medium without cells served as a blank.
After 2.5 h of incubation, absorption was measured at a wavelength of 450 nm.

4.11. In Vivo Study
4.11.1. Ethical Statement

The German local authority approved all animal experiments: Landesamt für Land-
wirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern (7221.3-1-
066/18), under the German animal protection law and the EU Guideline 2010/63/EU. Mice
were bred in the animal facility of the University Medical Center in Rostock under specific
pathogen-free conditions. All animals received enrichment in the form of mouse-igloos
(ANT Tierhaltungsbedarf, Buxtehude, Germany), nesting material (shredded tissue paper,
Verbandmittel GmbH, Frankenberg, Deutschland), paper roles (75 × 38 mm, H 0528–151,
ssniff-Spezialdiäten GmbH), and wooden sticks (40× 16× 10 mm, Abedd, Vienna, Austria).
During the experiment, mice were kept in type III cages (Zoonlab GmbH, Castrop-Rauxel,
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Germany) at 12-h dark:light cycle, the temperature of 21 ± 2 ◦C, and relative humidity of
60 ± 20% with food (pellets, 10 mm, ssniff-Spezialdiäten GmbH, Soest, Germany) and tap
water ad libitum.

4.11.2. Experimental Protocol

Xenografts were generated by injecting 5 × 106 cells of UT-SCC-14 or UT_SCC-15 (in
50 µL PBS) subcutaneously in the right flank of 6–8 weeks old female NMRI Foxn1nu mice.
Two weeks later, mice bearing tumors of ~50 mm3 were allocated to treatment groups
(Figure 7). Tumor diameters were measured with caliper every three to four days. Tumor
volumes were calculated as (length × width2)/2. Mice were euthanized before tumors
reached 1500 mm3. Tumors were embedded in Cryomatrix (Thermo Scientific, Darmstadt,
Germany) and used for HE staining.

4.12. Statistics

All values are expressed as mean± SD (in vitro analysis) or mean± SEM (in vivo ther-
apy approach). Differences between controls and treated cells were determined by using
one-way ANOVA (Bonferroni’s Multiple Comparison Test) after proving the assumption
of normality (Shapiro-Wilk test). If normality failed, the Kruskal Wallis test was applied.
This information is given in the figure captions. Kaplan-Meier survival analysis was done
by applying the log rank (Mantel Cox) test. Statistical evaluation was performed using
GraphPad PRISM software, version 8.0.2 (GraphPad Software, San Diego, CA, USA). The
criterion for significance was set to p < 0.05.

5. Conclusions

Cyclin-dependent kinase inhibitors (CDKi) have broad therapeutic potential. Here,
we show that CDKi’s can be combined with standard cytostatic drugs and that dual CDK
inhibition is at least as successful as CDKi/drug combinations. These findings contribute
to our understanding of how the treatment of HNSCC can be improved prospectively. The
complex effects exerted by specific CDKi-combinations include apoptotic and necrotic cell
death as well as methuosis, an uncommon form of cell death, associated with vacuolization
of macropinosome and endosome compartments. Dinaciclib and THZ1 were most effective
and even better in combination with 5-FU. Another novel finding is the impact on actin
fibers and motility properties of tumor cells by specific CDKi’s. Prospective studies should
focus on the effects on immune cells—especially because of the CDKi’s potential to increase
tumor immunogenicity.
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