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Abstract

Motivation: Unique marker sequences are highly sought after in molecular diagnostics. Nevertheless, there are only
few programs available to search for marker sequences, compared to the many programs for similarity search. We
therefore wrote the program Fur for Finding Unique genomic Regions.

Results: Fur takes as input a sample of target sequences and a sample of closely related neighbors. It returns the
regions present in all targets and absent from all neighbors. The recently published program genmap can also be
used for this purpose and we compared it to fur. When analyzing a sample of 33 genomes representing the major
phylogroups of E.coli, fur was 40 times faster than genmap but used three times more memory. On the other hand,
genmap yielded three times more markers, but they were less accurate when tested in silico on a sample of 237
E.coli genomes. We also designed phylogroup-specific PCR primers based on the markers proposed by genmap
and fur, and tested them by analyzing their virtual amplicons in GenBank. Finally, we used fur to design primers
specific to a Lactobacillus species, and found excellent sensitivity and specificity in vitro.

Availability and implementation: Fur sources and documentation are available from https://github.com/evolbioinf/
fur. The compiled software is posted as a docker container at https://hub.docker.com/r/haubold/fox.

Contact: haubold@evolbio.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Similarity searches as implemented in programs like BLAST and
FASTA are among the oldest and most successful computer applica-
tions in molecular biology. Given a set of query sequences, we can
quickly and reliably find similar regions in sequences collected in a
suitable database. In contrast, molecular diagnostics is concerned
with dissimilarity rather than similarity. Given a set of query or
target sequences, what are the regions common to them but absent
from the genomes of all other organisms? These can then be used to
design diagnostic PCR primers.

The answer is usually found by looking for regions shared by all
targets and discarding those with similarity to anything else in, say,
GenBank. So there are two steps, an intersection step, to identify
regions common to all targets, and a subtraction step, to remove
non-specific target material.

Both steps can be challenging. Intersection requires a multiple
sequence alignment of all targets, which in the case of bacterial
genomes is difficult to compute and parse. Similarly, the subsequent
subtraction typically results in too many BLAST hits for convenient
handling.

Pockrandt et al. (2020) recently published an alternative method
for picking markers. Their program, genmap, was originally

designed to compute the mappability along a genome. The mapp-
ability of a genome position is the inverse of the number of times
a fixed-length word, or k-mer, starting at it is found elsewhere.
Pockrandt et al. realized that this could also be used to pick genetic
markers given a set of target sequences and their close relatives:
Regions with k-mers found in all targets but not in the relatives are
good marker candidates. The authors demonstrate this by analyzing
the full genomes of six Escherichia coli strains, two from
phylogroup A and four from phylogroup B1 (Fig. 1). Regions with
k-mers present in strains HS and W3110 but absent from the four
other strains would be diagnostic for phylogroup A.

Genmap is designed for quick mappability calculations and
requires some programming when repurposed for marker
detection. As a more convenient alternative, we wrote a program
intended from the start for picking markers. The central idea is
that whatever distinguishes a genome from its closest relatives also
distinguishes it from every other genome out there. Hence, the
subtraction comes first and is done by comparing one of the target
sequences to the closest relatives it is to be distinguished from.
We call these relatives neighbors. Say, we are interested in design-
ing primers specific to phylogroup A in Figure 1, then the members
of phylogroup A are the targets, T , the members of phylogroup B1
the neighbors, N .
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In the initial subtraction step, the longest target sequence is
compared to the neighbors. This is t1 in the cartoon of our algorithm
in Figure 2. Subtraction of the four neighbors, n1; . . . ; n4 leaves the
two gray unique regions, one of which still contains a small amount
of black non-unique material as the sensitivity of this step is not
perfect. Intersecting these two regions with the targets leaves a single
marker candidate. In a second and final subtraction step, this
marker is again compared to the neighbors and the remaining non-
diagnostic material removed.

We call our implementation of this algorithm fur for Find
Unique Regions. Fur drives three programs, macle, phylonium
and BLAST (Fig. 2). Macle was originally written to calculate a
measure of sequence complexity based on matches of arbitrary
length (Pirogov et al., 2019). Regions of maximal complexity have
the same match lengths as random sequences. In other words, max-
imal complexity indicates absence of close homologs, or presence of
uniqueness.

The second program driven by fur, phylonium, was originally
written to compute pairwise genetic distances between genomes
based on an approximate multiple sequence alignment (Klötzl and
Haubold, 2020). This alignment can be used to find regions that
occur in every sequence. Macle, phylonium and BLAST are fast
programs, which ensures that fur is suitable for investigating
samples of whole bacterial genomes on consumer laptops.

In the following, we explain fur in detail. Then we compare it
to genmap when applied to simulated and real data. Application to
simulated data shows that fur scales gracefully with sequence
length and sample size. As real data, we extend the E.coli example
shown in Figure 1. Richter et al. (2018) sequenced the complete
genomes of 237 E.coli strains sampled from 30 Tanzanian children
between 2 and 35 months old. They compared the diversity of this
sample to a set of 33 reference E.coli and Shigella strains, which, in
addition to phylogroups A and B1, comprise phylogroups B2, D, E
and F. They found that strains turned over quickly and were highly
diverse even within individual hosts.

We use this carefully collected data to conduct a training/testing
experiment. Fur and genmap are applied to the genomes of the 33
reference strains to identify regions specific to phylogroups. The sen-
sitivity and specificity of these regions is then determined by blasting
them against the 237 newly sequenced and classified genomes. This
shows that with default settings, genmap is more sensitive and fur
more specific. We also calculate a score that combines sensitivity
and specificity, which consistently favors fur.

To go from templates to primers, we designed phylogroup-
specific primers based on the template sequences identified by
genmap and fur, and tested them by looking for in silico amplicons
in GenBank. All eight primer pairs investigated were highly specific
in silico.

Finally, we took the project into the lab. Here, our focus was on
lactobacilli, which dominate the vaginal microbiota of healthy, pre-
menopausal women (Macklaim et al., 2011). Since bacterial
vaginosis is associated with a decline in lactobacilli, there is a lot of
interest in the possibility of preventing vaginal infections through
the use of probiotics (Cribby et al., 2008). The four most common
vaginal Lactobacillus species are Liners, Lcrispatus, Lgasseri and
Ljensenii. To demonstrate fur, we constructed primers and probes
targeted to L.crispatus using genomes representing the other three
species as neighbors. When we tested these primer systems on

genomic DNA from the four species, they were highly sensitive and
specific.

2 Materials and methods

2.1 Computation
Fur takes as input a database of target and neighbor genomes and
returns the regions present in all targets and absent from all neigh-
bors (Fig. 1). These template candidates are found in three steps,
subtraction, intersection and again subtraction (Fig. 2). In the first
subtraction, a single target is selected and all regions removed that
occur anywhere in the neighbors. These are the vast majority of the
black regions in Figure 2, leaving the two gray regions with a bit of
black. Next, these putatively unique regions are intersected with all
targets. In our example, there is only one other target, t2, which
contains no dark gray region, so it is dropped from the candidate
set. In addition, the light gray region is truncated. Finally, in the
second subtraction, the remaining black part is removed, splitting
the light gray segment into the final two marker candidates.

The first subtraction is accomplished by calling an external,
single-threaded program, macle, developed by Pirogov et al.
(2019). Macle computes the match complexity, Cm, ranging from 0
for regions repeated exactly at least once, to 1 for regions that are
effectively random. This complexity can be computed ‘globally’ for
an entire sequence, or ‘locally’ for an arbitrary window. When
calculated locally, Cm amounts to a measure of the genetic distance
between the window and its closest homologue anywhere in the
sequences analyzed. A distance of 1 indicates the absence of
homologues. Under the hood of fur, macle concatenates the
forward and reverse strands of all neighbor genomes and of one
representative target genome, by default the longest. Then a window
of 80 bp is slid along this representative and all overlapping
windows with Cm � 1 are merged into non-overlapping regions.

The marker candidates thus obtained need to be checked for
presence in all targets, not just the representative. This is done by
piling the targets onto the concatenated markers and removing the
gapped positions with phylonium running on eight threads (Klötzl
and Haubold, 2020). What remains after gap removal are the
desired regions present in all targets. These are gap-free, but may
contain mismatches.

The second subtraction step is carried out using blastn with
eight threads. This is more sensitive but also slower than macle
used in the first subtraction. It removes any regions homologous to
neighbors that might have been overlooked by macle.

The database queried with fur is constructed using
makeFurDb, which is also part of the fur package. It takes as input
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Fig. 1. Phylogeny of six E.coli strains from phylogroups A and B1. When searching

for genetic makers specific for A, T denotes the targets and N the neighbors
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one directory each of targets and neighbors. It then selects the
longest target and merges it with the neighbors into a single macle
index, an enhanced suffix array (Ohlebusch, 2013, ch. 4). This index
is saved in a new directory, the fur ‘database’. In addition,
makeFurDb labels the targets and neighbors before transforming
them into a BLAST database, which is also saved in the same
directory as the macle index. Once computed, this database can be
queried repeatedly using fur with various parameter settings, for
example sliding window lengths other than the default 80.

2.2 Implementation
Fur and makeFurDb are written in the ‘literate programming’
idiom, where their C-code and documentation are both extracted
from a single master file (Knuth, 1992). The package also comprises
three auxiliary tools to design and check primers. First, fur2prim
converts fur output to primer3 input (Untergasser et al., 2012).
Then, prim2fasta extracts the primer sequences from the
primer3 results. Finally, checkPrim takes a pair of primers and a
BLAST database, and reports in silico amplicons. All programs are
designed to run under the UNIX command line.

2.3 Resource consumption
Simulated data were used to measure the time and memory con-
sumption of genmap and fur. Input consisted of nt targets and nn

neighbors, each in its own file. The sequences were simulated as
related haplotypes using the coalescent simulator ms (Hudson,
2002) with an expectation of 0.2 mismatches per site, and converted
to DNA sequences with ms2dna available from the github reposi-
tory evolbioinf. The simulation setup was nt ¼ nn ¼ 2 with lengths
varying from 1 Mb to 32 Mb. Both genmap and fur first compute a
permanent index, which is then scanned. The fur index is computed
by the separate program makeFurDb, while genmap runs in two
modes, index and map. In map mode, the word length was 30 with
up to 2 mismatches and output was in comma-separated values
(CSV) format.

Resource consumption was measured on a laptop equipped with
an Intel i7 CPU clocked at 1.8 GHz and 16 GB RAM with Ubuntu
18.04 installed. Run times are ‘user times’.

2.4 Data
Three samples of E.coli/Shigella genomes and one sample of
Lactobacillus genomes were used in this study: (i) The genomes of
the six E.coli strains shown in Figure 1 (Supplementary Table S1),
five of which are also part of (ii) the 33 E.coli/Shigella reference
strains shown in Figure 6 (Supplementary Table S2), and (iii) the
240 E.coli strains sequenced and classified into phylogroups by
Richter et al. (2018). As reported by these authors, three strains in
their collection were not E.coli, leaving 237 (Supplementary Table
S3). Finally, (iv) the seven Lactobacillus genomes underlying the
phylogeny in Figure 7 are listed in Supplementary Table S4.

2.5 Phylogeny reconstruction
The phylogenies in Figures 1, 6 and 7 were computed from the pair-
wise number of substitutions per site between their genomes. These
were estimated from the full genome sequences using phylonium
(Klötzl and Haubold, 2020). The distances were clustered with the
neighbor-joining algorithm implemented in clustDist, midpoint
rooted with midRoot, and the final tree drawn with new2view.
These four programs are also available from the github repository
evolbioinf.

2.6 Extract markers from genmap output
Given a genmap index, mapping was done with word length 30 and
up to 2 errors. The output files in CSV format were scanned with
custom scripts for regions where a given word appeared in all targets
and in no neighbor.

2.7 Primer design
Primers and probes were designed using primer3 (Untergasser
et al., 2012) with input generated by fur2prim set to the default
parameter values. For each phylogroup, we picked the primer pair
with the smallest penalty. It was checked by blasting against a local
copy of the non-redundant nucleotide database, nt, downloaded on
April 16, 2020. Each accession that generated a virtual amplicon
was extracted from the BLAST database. Then the pairwise
distances between an accession and the reference sequences were
computed with phylonium to determine its phylogroup. This
allowed us to measure primer specificity as the number of accessions
correctly classified divided by the total number of accessions tested.

2.8 Sensitivity and specificity of markers
Sensitivity, specificity and a combined score of a set of marker
sequences were computed with the program senSpec—also
included with the fur package—following definitions originally
developed to assess gene prediction programs (Haubold and Wiehe,
2006, p. 121ff). Figure 3 illustrates the basic setup. Let T � comprise
the marker nucleotides that could ideally be found among the tar-
gets, and N� the marker nucleotides that could in the worst case be
found among the neighbors. For example, if there are two targets,
three neighbors, and one 100 bp template, then the size of T � is 200
and the size of N� is 300. Further, let bt be the marker nucleotides
actually found by BLAST among the targets, and bn those among
the neighbors. Now we define the true positives, tp ¼ jbtj and the
false negatives, fn ¼ jT � � btj to compute the sensitivity,

Sn ¼
tp

tp þ fn
: (1)

Similarly, let fp ¼ jbnj be the false positives, then the specificity is

Sp ¼
tp

tp þ fp
: (2)

As good markers are characterized by simultaneously high Sn

and Sp, the overall classification quality was measured using the
combined score

C ¼ tptn � fpfnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtp þ fpÞðtn þ fnÞðtn þ fpÞðtp þ fnÞ

p ; (3)

where the true negatives tn ¼ jN � � bnj.

2.9 In vitro analysis
The experimental Lactobacillus work was based on the published
genomic data from seven strains, three L.crispatus targets and neigh-
bors from L.gasseri, L.jensenii and L.iners (Supplementary Table
S4). We ran fur on these with BLAST in megablast mode. Given
the templates returned, we designed primer pairs and probes, and
tested them on a DNA-coupled microarray system similar to that
described by Dally et al. (2013). As positive control, �104 copies of
genomic DNA from L.crispatus served as PCR template. As negative
control, �106 copies of genomic DNA were used as PCR template.
The genomic DNA was purchased from the ‘Deutsche Sammlung

T ∗ N ∗

bt bn

Fig. 3. Setup for computing the sensitivity and specificity of a set of unique template

sequences uncovered by genmap or fur. T �: marker nucleotides in the targets; N�:
marker nucleotides in the neighbors; bt : BLAST hits among targets; bn: BLAST hits

among neighbors
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von Mikroorganismen und Zellkulturen’ (German Collection of
Microorganisms and Cellcultures), DSMZ, using the accessions
listed in Supplementary Table S5. Note that the training genomes
(Supplementary Table S4) are distinct from the testing genomes
(Supplementary Table S5).

3 Results

3.1 Resource consumption
Of the two key computer resources, time and memory, memory
imposes the more stringent limit, as a program that does not fit into
memory cannot run, regardless of how long we are prepared to wait
for its result. So memory consumption is investigated before run
time. We do this four times to test fur, makeFurDb and genmap in
indexing and mapping modes.

MakeFurDb is the most memory-intensive of the four programs.
Its memory requirement is driven by macle, which occupies
70 bytes/bp for indexing. As it indexes three sequences—one target
and two neighbors—the memory consumption for sequences 32 Mb
long—the longest simulated—is expected to be 3 � 32 � 70 ¼ 6:7 GB,
which is close to the 6.4 GB measured for Figure 4. The next most
memory-hungry program is the mapping function of genmap, which
consumes 35 bytes/bp, or half of what makeFurDb requires.
Indexing by genmap is substantially cheaper and appears to be non-
linear in the size of the input data occupying 1.6 GB for the total of
32 � 4 ¼ 128 Mb input. Similarly, the memory footprint of fur
grows very slowly with input size and is by far the smallest of them
all with 340 Mb for scanning the macle index of 3 � 32 ¼ 96 Mb.

The time consumption of genmap’s mapping function is much
larger than that of the other programs and looks non-linear, while
indexing takes a mere 1.9 s/Mb (Fig. 5). MakeFurDb is even faster
with 0.8 s/Mb and fur the fastest with 0.2 s/Mb.

3.2 Phylogroup markers for E.coli/shigella
Figure 6 shows the phylogeny of the 33 reference E.coli/Shigella
strains used by Richter et al. (2018). The genomes are on average
5.1 Mb long totaling 167 Mb. The six phylogroups A, B1, B2, D, E
and F are monophyletic. Starting from the top with phylogroup B1,
its closest neighbor is phylogroup A, followed by E and then D.
Phylogroups F and B2 lie on a separate branch.

We used genmap and fur to identify phylogroup-specific
markers, followed by designing phylogroup-specific PCR primers.
Since the test set contained no strains belonging to phylogroup F, we
restricted our analysis to the five phylogroups A, B1, B2, D and E.

Genmap took roughly 23,000 s, or 6 h 23 min, and 4.1 GB RAM
to index and map the reference genomes. The marker yield per

phylogroup ranged from 0.7 kb for phylogroup A to 71.4 kb for
phylogroup D with an average of 33.6 kb (Table 1). The sensitivity
of these regions, tested against the 237 E.coli genomes newly
sequenced by Richter et al. (2018) was generally high, ranging from
0.56 for phylogroup D to a perfect 1 for phylogroup B1 with an
average of 0.84 (Table 1). Specificity was less promising, ranging
from a very low 0.04 for phylogroup E to 0.6 for phylogroup A with
an average of 0.33. The combined score for the genmap markers, C,
averages 0.34 and ranges from 0.13 in phylogroup E to 0.65 for
phylogroup B1. So the 0.9 kb marker sequences for this phylogroup
have the best overall power of classification.

The fur analysis took roughly 540 s, making it 40 times faster
than genmap. On the other hand, it occupied 10.6 GB RAM, three
times more than genmap. Its yield per phylogroup is ordered as for
genmap, except that on average it is three times smaller ranging
from no markers for phylogroup A to 22.2 kb for phylogroup D
(Table 2). Sensitivity ranges from 0.41 for phylogroup D to 1 for
phylogroup B1 and is again sorted in the same order as for genmap,
albeit on average smaller, 0.74 compared to 0.84. Specificity ranges

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

M
em

or
y

(G
B

)

Sequence Length (Mb)

makeFurDb
genmap map

genmap index
fur

Fig. 4. Memory consumption of genmap and makeFurDb/fur as a function of the

length of two target and neighbor sequences each

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35

T
im

e
(s

)

Sequence Length (Mb)

genmap map
genmap index

makeFurDb
fur

Fig. 5. Run time of genmap and makeFurDb/fur as a function of the length of two

target and neighbor sequences each

0.001

E. coli E2348 69
E. coli 536

B2 E. coli CFT073
E. coli S88
E. coli UTI89

E. coli IAI39
F E. coli SMS 3 5

E. coli 042
D E. coli UMN026

S. dysenteriae Sd197
E E. coli CB9615

E. coli EDL933
E. coli Sakai

E. coli BL21
E. coli BW2952
E. coli H10407

A E. coli HS
E. coli 53638

E. coli ATCC 8739
S. flexneri 2A

B1
S. boydii 3083
S. sonnei 046
E. coli E110019

E. coli 11368
E. coli O111 11128
E. coli B171

E. coli E22
E. coli 55989
E. coli TY 2482

E. coli IAI1
E. coli SE11
E. coli B7A
E. coli E24377A

Fig. 6. Phylogeny of 33 reference strains of E.coli/Shigella; the six phylogroups A,

B1, B2, D, E and F are marked

2084 B.Haubold et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab059#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab059#supplementary-data


from 0.46 for E to 0.97 for B2 and is on average higher than with
genmap, 0.74 compared to 0.33. Similarly, the overall score is
greater on average, 0.74 compared to 0.34, and ranges from 0.49
for D to 0.99 for B1.

Next, we designed primers for each phylogroup and tested their
specificity with respect to GenBank. The best primer pair for the
A-markers identified by genmap had a pair-penalty of 0.14 and
generated virtual amplicons in a total of 26 GenBank accessions, of
which 24 actually belonged to phylogroup A, making these primers
reasonably specific (Table 3). Similarly, the primers for phylogroup
B1 (488/495), B2 (84/88), D (20/20) and E (168/169) were highly
specific, at least in silico.

Fur uncovered too little marker material for primer design in
phylogroups A and B1 (Table 4). The primers for B2 had a perfect
score of 186 out of 186, while the primers for D scored 15/16, and
those for E 167/170.

3.3 In vitro analysis of lactobacillus
Figure 7 shows the phylogeny of the seven lactobacilli computed
from their full genome sequences. There were three L.crispatus
target genomes, and four neighbor genomes from the three species
L.jensenii, L.gasseri (twice) and L.iners. The fur run returned 2908
template fragments totaling 1.1 Mb. From this, we designed
primers and probes, of which we tested the four systems listed
in Supplementary Table S6. When amplifying DNA from
L.crispatus—the positive control—the microarray fluorescence was
roughly between 62 000 and 64 000 (Table 5). In contrast, when
amplifying DNA from L.gasseri, L.iners or L.jensenii—the negative
controls—fluorescence ranged from zero to 48, that is over
1200-fold less than in the positive control. In other words, there was
virtually no signal from the off-target lactobacilli.

4 Discussion

Similarity searches are one of the great success stories of molecular
biology and bioinformatics. A short query sequence is submitted to
a free program and all similar regions among all published sequences
are returned quickly. The frequency with which we carry out such
searches can make one forget how remarkable systems like BLAST
are. And by taking BLAST for granted, we might expect that its
converse—searching for query regions that do not appear in a
database—should be similarly straight forward. Such regions are in
high demand in molecular diagnostics.

Unfortunately, dissimilarity searches are often much more diffi-
cult than similarity searches. For a start, in the age of genomics,
we’d like to pinpoint markers across whole genomes, so the query is
often a whole genome. Moreover, the target is typically character-
ized by multiple genomes, not just a single one. So the search might
start from all regions conserved among that sample of closely related
genomes, a set that is usually not only difficult to determine, but
also very large, making subsequent subtraction of non-specific ma-
terial hard.

Table 1. Sensitivity, Sn, specificity, Sp and the combined score, C,

of genmap marker regions

Phylogroup Yield (kb) Sn Sp C

A 0.7 0.99 0.60 0.29

B1 0.9 1.00 0.57 0.65

B2 64.6 0.93 0.25 0.39

D 71.4 0.56 0.21 0.26

E 30.3 0.72 0.04 0.13

Average 33.6 0.84 0.33 0.34

Table 2. Sensitivity, Sn, specificity, Sp and the combined score, C,

of fur marker regions

Phylogroup Yield (kb) Sn Sp C

A 0.0 — — —

B1 0.1 1.00 0.94 0.99

B2 18.9 0.91 0.97 0.93

D 22.2 0.41 0.65 0.49

E 12.1 0.65 0.46 0.54

Average 13.3 0.74 0.74 0.74

Table 3. Phylogroup-specific primers designed from genmap

templates

PG D Sequence PP Pos./total

A f TCAGCATGGTAGATGCCGTC 0.14 24/26

r ATTGCAGGATCAGCACAGCT

i GACGCCCAGCCGCCAGTAAG

B1 f CCCGGCCTGTTTATCCATCA 0.22 488/495

r ACTGCCCGGTATTCGCTATG

i GCCAGAGTCAAGGGTGTCGGC

B2 f AATGGCTTTGGTCAACACGC 0.06 84/86

r CAAAAACCGCGGTGTTTTGC

i GCGGTAAATGCTGCCATCGA

D f TTGACGCGTCGTAAACCAGA 0.06 20/20

r GAGCCTGATACTCCGTCACG

i ATGCTGCGCAGACGGTGTCC

E f GCGTAACGATAAACGGTGGC 0.06 168/169

r CGATGGTCGTCTCCCTTAGC

i GCCGTTGAACAGCCCCAGCA

Note: PG, phylogroup; D, direction—forward (f), reverse (r) and internal

(i); PP, pair-penalty.

Table 4. Phylogroup-specific primers designed from fur templates

PG D Sequence PP Pos./total

A — — — —

B1 — — — —

B2 f CGAGTCAGGCGCGTAATACT 0.06 186/186

r GCGGATTTGCGCTGATTGAT

i TCGCGATCGCCAGAAAGCCA

D f CACTGATTGCTCGTCATGCG 0.06 15/16

r TCGTTGCCCGTTATCAACCA

i GGCCGTTGCGCCCGATTTTG

E f TTGGGTCTGTCATCACCTGC 0.07 167/170

r AGCGACGGCGATTACATCAT

i TGCGCTGCACATGCTGACGA

Note: PG, phylogroup; D, direction—forward (f), reverse (r) and internal

(i); PP, pair-penalty.

0.02

L. iners AB-1
N L. gasseri DSM 14869

L. gasseri 4M13

L. jensenii SNUV360N
L. crispatus ST1

L. crispatus AB70

L. crispatus CO3MRSI1
T

Fig. 7. Phylogeny of the seven lactobacilli genomes used for the experimental part of

this study. T , targets; N , neighbors
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These problems are often circumvented by starting from
candidate genes. For example, Beghain et al. (2018) designed a set
of primers for classifying E.coli into phylogroups based on chuA,
among other regions. This gene encodes an outer membrane hemin
receptor, which is required for heme transport in certain pathogenic
E.coli strains (Clermont et al., 2000). While there will always be a
place for such a candidate gene approach, a practical, hypothesis-
free search for markers across whole genomes is highly desirable.

The authors of genmap noticed that their program—intended
for fast mappability computation—could also be used for this
purpose (Pockrandt et al., 2020). We had the same aim, using a
different approach. Our implementation, fur, is based on two
ideas. The first is that subtraction of non-unique material should
come before the search for conserved regions. This is because there
is usually an excess of regions conserved not only in the targets but
also in the organisms from which they need to be distinguished
(Fig. 2). The first subtraction should be as thorough as possible to
facilitate the subsequent steps. This brings us to the second idea,
which is that for the subtraction to be maximally effective, it ought
to be carried out with respect to the closest relatives that are still dis-
tinct. This set of neighbors need not be large. As long as it is closely
related to the targets, any target material unique with respect to the
neighbors stands a good chance of being unique across the board.
This heuristic of course needs to be checked, which is why we went
on to quantifying the usefulness of the markers detected with gen-
map and fur.

As an example analysis, we attempted to design primers specific
to E.coli phylogroups. Their reliable identification is a long-standing
problem in medical diagnostics, as a number of E.coli strains are
pathogenic in humans, especially in small children. Correspondingly,
we took our lead from a study of E.coli diversity in 30 Tanzanian
children, where Richter et al. (2018) had sequenced and classified the
genomes of 237 strains. These authors also provided and classified
a set of 33 reference strains. We designed markers from the reference
set by using members of a phylogroup as targets and all other genomes
as their neighbors.

The amount of marker material uncovered with such a design
is highly dependent on the genetic distance between targets and
neighbors. In the limit of no distance, no markers can be found, as
every region in the targets is also present in the neighbors. And, in
fact, fur found no markers for A and only 0.1 kb for B1, too little
for primer design (Table 2). In contrast, genmap found markers for
all five phylogroups, a total of 167.9 Mb (Table 1), roughly three
times the 53.3 Mb found by fur.

Good markers are highly sensitive, and in accordance with its
greater yield, the average Sn for genmap, 0.84, is larger than that of
fur, 0.74. The difference in specificity was greater with 0.33 for
genmap and 0.74 for fur, leading to an average overall classifica-
tion quality of 0.33 for genmap compared to 0.74 for fur.

The E templates proposed by genmap had the very low
specificity of 0.04. Upon further investigation, we found a large
false positive rate, fp, inflating the numerator of Equation (2) for
calculating Sp. False positives are BLAST hits among the neighbors
(Fig. 3). These depend on the details of the BLAST search. For the
computation of Sp we used the same BLAST parameters as in the
second subtraction step of the fur algorithm (Fig. 2). In particular,
by default fur uses the more sensitive blastn mode rather than

the megablast mode of standard BLAST. Switching to
megablast, which is possible in fur, would drastically alter the
specificity of the proposed templates from 0.04 to 0.65 (not shown).
Unfortunately, we don’t know which BLAST parameters correspond
to PCR-relevant homology, but it might be that with fur we are
currently erring on the side of caution.

Having uncovered marker candidates, the work we can do with
genmap or fur is done. However, the aim of marker discovery is
usually to design diagnostic PCR primers, hence we extended our
analysis to also include this step. The eight primer pairs analyzed
in silico amplified exclusively or almost exclusively accessions
belonging to the correct phylogroup, even the primers designed from
the E markers uncovered by genmap, which overall had an unusual-
ly low specificity (Tables 3 and 4). We did not classify all E.coli
accessions in GenBank into phylogroups, so we cannot directly
quantify the sensitivity of the eight primer pairs investigated.
However, it is possible to compare their sensitivity for the three
phylogroups B2, D and E with data for both tools. The genmap B2
primers lit up 84 B2 accessions, the fur primers approximately
twice as many, 186. The D primers of genmap identified 20 D
accessions compared to a quarter fewer, 15, with fur primers.
Finally, the E primers based on the two tools identified virtually the
same number of E accessions, 168 and 167. Given that fur did not
find any usable markers for A and B1, while genmap did, we recom-
mend using fur in a first analysis for its greater speed, specificity
and ease with which the templates can be extracted. Should that fail,
try genmap for its greater sensitivity.

The logical extension of in silico work is to take it into the
laboratory. Our in vitro analysis was centered on a group of four
lactobacilli characteristic of a healthy vaginal microbiome (Fig. 7).
We targeted L.crispatus and tested the primer systems on three
closely related species, L.gasseri, L.iners and L.jensenii, each of
them also a common component of vaginal microbiomes. We found
a strong signal for the target and virtually none for off-targets
(Table 5). Such an outcome is a necessary condition for the primers
being useful. Sufficient might be to carry out the negative control on
the full diversity of DNA found in the vaginal microbiome, minus
L.crispatus. We haven’t carried out such a test yet, but plan to ana-
lyze vaginal swabs in the future.

In any case, the in silico work on E.coli/Shigella and the in vitro
work on Lactobacillus illustrates that our heuristic—uniqueness
with respect to close relatives is equivalent to uniqueness across the
board—is useful. This also implies that the results of genmap and
fur will depend on the sample of genomes that make up the target
and the neighbor sets. Both might need to be revised as new genomes
become available.
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Klötzl,F. and Haubold,B. (2020) Phylonium: fast estimation of evolutionary dis-

tances from large samples of similar genomes. Bioinformatics, 36, 2040–2046.

Knuth,D.E. 1992. Literate Programming. The Center for the Study of

Language and Information Publications, Stanford.

Macklaim,J.M. et al. (2011) At the crossroads of vaginal health and disease,

the genome sequence of Lactobacillus inters AB-1. Proc. Natl. Acad. Sci.

USA, 108, 4688–4695.

Ohlebusch,E. 2013. Bioinformatics Algorithms: Sequence Analysis, Genome

Rearrangements, and Phylogenetic Reconstruction. Enno Ohlebusch, Ulm.

Pirogov,A. et al. (2019) High-complexity regions in mammalian genomes are

enriched for developmental genes. Bioinformatics, 35, 1813–1819.

Pockrandt,C. et al. (2020) Genmap: ultra-fast computation of genome mapp-

ability. Bioinformatics, 36, 3687–3692.

Richter,T.K.S. et al. (2018) Temporal variability of Escherichia coli diversity

in the gastrointestinal tracts of Tanzanian children with and without expos-

ure to antibiotics. mSphere, 3, e00558–18.

Untergasser,A. et al. (2012) Primer3—new capabilities and interfaces. Nucl.

Acids Res., 40, e115.

Sequence comparison 2087


	tblfn1
	tblfn2
	tblfn3

