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One of the leading algorithms and architectures in deep learning is Convolution Neural Network (CNN). It represents a unique
method for image processing, object detection, and classification. CNN has shown to be an efficient approach in the machine
learning and computer vision fields. CNN is composed of several filters accompanied by nonlinear functions and pooling layers. It
enforces limitations on the weights and interconnections of the neural network to create a good structure for processing spatial
and temporal distributed data. A CNN can restrain the numbering of free parameters of the network through its weight-sharing
property. However, the training of CNNs is a challenging approach. Some optimization techniques have been recently employed
to optimize CNN’s weight and biases such as Ant Colony Optimization, Genetic, Harmony Search, and Simulated Annealing.+is
paper employs the well-known nature-inspired algorithm called Shuffled Frog-Leaping Algorithm (SFLA) for training a classical
CNN structure (LeNet-5), which has not been experienced before.+e training method is investigated by employing four different
datasets. To verify the study, the results are compared with some of the most famous evolutionary trainers: Whale Optimization
Algorithm (WO), Bacteria Swarm Foraging Optimization (BFSO), and Ant Colony Optimization (ACO). +e outcomes
demonstrate that the SFL technique considerably improves the performance of the original LeNet-5 although using this algorithm
slightly increases the training computation time.+e results also demonstrate that the suggested algorithm presents high accuracy
in classification and approximation in its mechanism.

1. Introduction

Currently, Deep Learning (DL) is the base for many cutting-
edge artificial intelligence (AI) applications [1–3]. DL can
learn features at a high-level state with more complexity and
abstraction than shallower neural networks. It presents
hierarchical features providing various methods, taking for
instance, probabilistic models, and supervised and unsu-
pervised methods [4, 5]. +e most notorious feature of DL is
its ability in reducing computer hardware and software
manipulation, making advancements in computational

capabilities, machine learning, and signal processing. Fur-
thermore, it is proved to be a highly applicable solution in
objects recognition [6–8], speech recognition [9–12], SAR
image processing [13–16], and a highly viable method in
medical image processing for the detection of potential drug
molecules activities [17, 18], liver and lung tumor seg-
mentation [19, 20].

DL principle can be employed for the design of a variety
of neural networks, among which Deep Neural Network
(DNN), Recurrent Neural Network (RNN), and Convolu-
tion Neural Network (CNN) are the most popular. +ere are
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also generative and hybrid models of DL. For the former,
some examples are Deep Belief Network (DBN) and
Boltzmann Machine (DBM), and for the latter referring to a
combination of discriminative and generative models, a
well-known example is pretrained deep CNN using DBN.
Between the various models of DL, the focus of this study is
on CNN [4, 21].

DL has a great ability for resolving learning problems.
However, this method is challenging to be trained for
producing the optimal results. A CNN model learns many
patterns through many weights and biases inside the con-
volutional layers. +ese weights and biases obtain their best
possible values through a learning process with a large
number of data. Actually, in a CNN model, the number of
the training samples plays a crucial role in the obtaining best
possible solution [22–24]. To achieve this goal, many op-
timization methods have been proposed for manipulating
the value of these weights and biases. +e most well-known
algorithms are Adaptive Gradient methods. Basically, these
methods modify the learning rate by a backpropagation
strategy. +ese approaches reduce the learning rate if the
gradient of parameters is large or vice versa. Stochastic
gradient descent (SGD) is the most preferred technique
among adaptive gradient methods [25]. Nevertheless, they
proved to have poor performance especially when the
network is large like CNN since the learning rate needs to be
manually tuned in SGD. +is significantly increases the
training time for large-scale datasets [26, 27]. To overcome
this obstacle and improve the efficiency of adaptive, new
variants of adaptive gradient methods are proposed such as
Nostalgic Adam [28], which place bigger weights on the past
gradient compared to the recent gradient, or YOGI [29],
which increases in effective learning rate to achieve better
convergence. However, they have not gained popularity for
image processing applications with CNN, which gives rise to
the use of Metaheuristic algorithms as alternatives.

Recently, metaheuristic methods have been employed to
resolve complex problems such as scheduling [30] and
detection problems [31]. +e performance of metaheuristic
algorithms in solving efficiently these problems makes them
a good alternative to train neural networks with large pa-
rameters as they are simple to use, are independent form
gradient, and avoid local optima [32, 33]. Metaheuristic
algorithms could prove to be highly efficient in optimizing
CNN parameters with large image datasets specifically in the
field of image analysis. In a study carried out by Zhang et al.
[34], a metaheuristic optimizer is employed to pretrain the
CNN for the classification of skin cancer images. To achieve
this goal, theWhale Optimization Algorithm (WOA), one of
the subgroups of metaheuristic methods, was applied to
reduce the error rate during the learning process. +eir
WOA method considers half value precision as the cost
function during skin cancer validation steps that contains
the simplified measured error between the output of the
system and the reference. +e results of this study dem-
onstrated the accuracy prominence of this algorithm
compared to the other popular classification methods used
in this study. In another study performed by da Silva et al.
[35], the hyperparameters of a convolutional neural network

were trained with Particle Swarm Optimization (PSO),
another subgroup of metaheuristic algorithm, for the clas-
sification of lung cancers (classify nodule candidates, benign
or malignant tumors, into nonnodules and nodules). +ey
used two preprocessing steps including (1) employing each
CT slice as a separate sample and (2) resizing of all the
samples into 28 × 28. +e PSO method optimizes the size of
trainable filters, number of batches in the training, type of
pooling, number of neurons in the hidden layer, and number
of kernels in the convolutional layers. Although, in this
study, a large dataset of CT images was used, PSO dem-
onstrated the accuracy of 97.62%, sensitivity of 92.20%, and
specificity of 98.64%. Hoseini et al. [36] proposed an
AdaptAhead optimization technique to learn a Deep CNN
with robust architecture in relation to the high volume data.
+ey utilized several MR images of BRATS 2015 and BRATS
2016 data sets to validate the proposed method. +eir model
fails to utilize the technique of Nesterov and the adaptive
learning rate in computing the gradient leading to failure to
reach the optimal convergence point.

Metaheuristic algorithms can be categorized into the
following subgroups [37–39]:

(i) Swarm based methods act based on animal social
behavior like PSO [40, 41], WOA [42]

(ii) Evolutionary methods act based on a natural evo-
lutionary process like Genetic algorithm (GA) [43]

(iii) Biological based optimizers like Satin Bowerbird
Optimizer (SBO) [44]

(iv) Human-based algorithms inspired from human
behavior such as Life Choice Based Optimizer [45]

(v) System-based algorithms inspired by natural eco-
systems such as Artificial Ecosystem-based Opti-
mizer (AEO) [46]

(vi) Physics-based methods that mimic the physical
phenomenon in nature like Equilibrium optimizer
[47] and Simulated Annealing [48]

In this paper, to overcome the problem of overfitting and
convergence, we optimize the values of weight and biases of
a LeNet-5 by an optimization algorithm. From the various
types of metaheuristic algorithms, we used the Shuffled frog-
leaping algorithm (SFLA) to optimize the performance of
the LeNet-5 CNN [49]. +is is conducted by changing the
values of weight and biases inside the model to reach a high
accuracy of the model. +is optimizer belongs to the Swarm-
based algorithms of metaheuristic algorithms inspired by the
natural behavior of frogs in searching for food. +e reason
for using this optimizer is that, at the time of working on this
research work, based on our knowledge, there is no research
to employ SFLA in training CNN and to make a good
comparison with other optimizers to show the ability of this
optimizer for image classification. Moreover, in order to
verify our results, we applied the other well-known opti-
mizers WOA, Ant Colony Optimizer (ACO), and Bacteria
Swarm Foraging Optimization (BFSO) for comparison.

+is paper is organized as follows: Section 1 is an in-
troduction, Section 2 presents a literature review of
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convolution neural networks, Section 3 explains the SFL
Algorithm mechanism, Section 4 describes the design of
proposed methods, Section 5 presents the result and dis-
cussion of the experiment, and lastly, Section 6 is the
conclusion.

2. Convolutional Neural Network

Neural networks or artificial neural networks are computing
systems that have been inspired by the human brain. In other
words, these networks mimic the biological functions that
are transmitted the signal to other neurons such as synapses
in a biological brain [11, 50–52]. A neural network contains
mathematical functions, which compute the weighted sum
of multiple inputs, output, and activation functions. Spe-
cifically, these functions are layers of interconnected nodes,
which are known as artificial neurons. +e convolutional
neural network is one of the various classes of neural net-
works, which is often applied to analyze and process the
vision dataset. Nowadays, a CNN model has a critical role
since fast growth in deep learning and artificial intelligence.
It is necessary to mention that deep learning is a neural
network that is composed of more than three layers and, as
well as CNN, is used multiple layers, such as convolution,
pooling, and fully connected layers to learn features and
detect patterns of image [4, 53–55].

+e convolutional layer is a critical component of CNN
that uses the information of adjacent pixels as a linear op-
eration to extract features. Each location of the tensor is
calculated through an element-wise product between input
tensor, which is an array of numbers and kernel or filter, while
its output is summed up in order to obtain a single value in the
corresponding location of output tensor, which is known as a
feature map. Several various kernels should be applied to
represent a different characteristic of the input tensor in order
to achieve variant feature extractors such as a horizontal edge
detector or a vertical edge detector [4, 56]. +e convolution
operation reduces the size of the feature maps in comparison
to the input tensor. Typically, the padding technique should
be used to increase the dimension of the image and lose less
information by adding zeros around the image. +e stride is
considered as a distance between two kernels in convolution
operation, that is, commonly one, while sometimes usage of
the valuesmore than one is to obtain downsampling of feature
map for a specified purpose [57, 58].

A pooling layer provides alternative and more robust
downsampling, as well as avoiding overfitting and a lot of
computation by representing abstracted feature maps. +is
layer is operated on each feature map independently to make
a new set of the same number of pooled feature maps and
reduce the number of subsequent learnable parameters.
Specifically, filter size, stride, and padding are also applied as
hyperparameters in pooling operations. +ere are two
common functions in pooling operation, average pooling,
which is computed average value for each patch of the
feature map, and max pooling, which is calculated the
maximum value. In all cases, polling supports that the value
of pooled features is remained almost invariant by trans-
lating the small amount of input [4, 59, 60].

+e linear output of convolution operation is passed
through nonlinear activation function, which is considered
as a fundamental component in order to learn the complex
patterns and the ability to add nonlinearity into the network.
+ere are various types of activation functions such as
sigmoid or hyperbolic tangent function, which are taken into
account as smooth nonlinear functions and rectified linear
unit (ReLU) function, which is recently the most widely used
activation function. +is is due to the fact that sigmoid and
tanh activation functions are commonly saturated and really
sensitive to modify around their mid-point of their input
[55, 61].

Typically, the output of the final convolution and pooling
layer is transformed to a one-dimension array of numbers,
which is known as flattening. +e output of flattening is
considered as the input of one or more fully connected layers,
in which every neuron in one layer is connected to every
neuron in the other layer. In other words, the nonlinear
combination of high-level features, which is the output of the
convolution layer, is learned by a fully connected layer in
order to map the final output of the network such as the
probability of each class in the classification task [4, 62]. It is
important to mention that each fully connected layer
is followed by an activation function such as ReLU except
the last nonlinear function that is usually different from the
others. +e last activation function, which is applied in
the classification task, is Softmax to obtain a probability of the
input being in the specified class [58, 63, 64].

+e cost function is another essential component in
Neural Networks. Actually, cost and loss functions are syn-
onymous; the only difference is that the single training batch
uses the loss function, while the cost function is referred to
apply the loss function over the entire training set. +e loss
function is evaluated by the compatibility between the pre-
dicted value and the ground truth label, in which the higher
output of loss means the incapable performance of the model.
Another hyperparameter that is required for assigning is
selecting an appropriate loss function with respect to the
performed task. Since the problem is an optimization
problem, Gradient descent is usually applied as an optimi-
zation algorithm to minimize the loss function [4, 65, 66].

+e type of CNN employed in this study is LeNet-5,
which is one of the earliest CNNmodels [49] (Figure 1). It is
a classical CNN developed originally for recognizing char-
acters. +e architecture of LeNet-5 is composed of seven
layers, in which, except the input layer, the rest can be
trained (weights). As shown in the Figure 1, the LeNet-5
network possesses three convolutional layers C1, C3, and C5
among its processing layers. +ese convolutional layers are
composed of two pooling layers S2 and S4, and the output
layer is F6. +e arrangement of convolutional layers and
subsampling layers is in the form of plans and form feature
maps. Each neuron in convolutional layers is linked locally
to the local receptive field in the previous layer. Neurons that
have the same feature maps obtain data from different local
receptive fields. +is process continues until the entire input
plane is skimmed, and similar weights are employed to-
gether. Feature maps are spatially downsampled in the
subsampling layer, and their size is reduced by a factor of 2.
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+ere is a similar kernel size of 5× 5 for the three convo-
lution layers C1, C3, and C5. However, the numbers of
feature maps and parameters for each layer are different
from each other (Table 1). +e last convolution layer C5 is
fully connected to the S4, and it has the feature maps size of
1× 1. F6 is the last layer that performs the classification task.
+is layer is composed of 84 units and fully connected to the
last convolutional layer C5.

Essentially, convolution layers are connected to several
feature maps, kernels, and correlated to the prior layers.
Each extracted feature matrix (feature map) is generated as a
consequence of a sum of convolution from extracted feature
matrices of the earlier layer, their corresponding mask
(kernel), and a linear filter. Moreover, a bias value is summed
to the extracted feature matrix and subsequently; it is applied
to a nonlinear function. +e tanh function is employed for
this purpose. +e kth feature map Mk

ij with the weights Wk

and bk is achieved by applying the tanh function as follows:

M
k
ij � tanh W

k
× x􏼐 􏼑

ij
+ bk􏼒 􏼓. (1)

+rough a subsampling layer, the size of each extracted
feature matrix is reduced in relation to one of the extracted
feature matrices of the former layer. +is pooling strategy
decreases the resolution of the extracted feature matrix. +e
pooling layers summarize the features present in an area of
the feature map created by convolution layers. Also, a
pooling layer diminishes the number of parameters for
learning and the amount of computation performed in the
network.

+e classification task is carried out through the clas-
sification layer. +is layer is placed after all the convolution
and subsampling layers. In the classification layer, the output
of each neuron is given to a single class label, and in the case
of Oxford17, Oxford 102, Caltech/UCSD birds, and Caltech
101 airplanes dataset, this layer is composed often neurons
corresponding to their labels.

3. Shuffled Frog-Leaping Optimizer

Shuffled Frog-Leaping Algorithm (SFLA) is a memetic
metaheuristic approach that is employed to find a global
solution through an informed heuristic search by employing

a heuristic function [67]. +is algorithm is a population-
based technique that is occasioned by natural memetic. +e
term memetic is coming from “meme” considered as the
unit of cultural evolution. +eoretically, the SFLA is similar
to the particle swarm optimization (PSO). However, the
values of weights and biases can be exchanged among local
searches through a shuffling technique, thereby obtaining
global optimum. +e genuine aims of genes and memes are
different from each other since they apply different mech-
anisms for data distribution from one populationmember to
another [68, 69]. Gene’s transmission is only possible from
parents to offspring and only occurs between generations.
However, memes can be transmitted between any two in-
dividuals, and instead of waiting for a full generation of
genes to be replicated, it can cooperate with other memes
immediately once an improved idea is found. Moreover, the
replication of the genes is limited to the slight number of
offspring that can belong to a single parent. On the other
hand, a meme can be taken over by an unlimited number of
individuals [70].

SFL algorithm is a population-based approach composed
of frogs of the same attributes. Each frog can be considered
as a solution. +e total population of frogs is divided into
numerous subgroups known as memeplexes. Diverse sub-
groups can be appreciated as dissimilar frog memes. Each
memeplex is responsible for a limited exploration. At each
memeplex, other frogs might affect the behavior of each frog,
and the evolution will take place through the process of
memetic evolution [70, 71]. After a number of memetic
evolution periods, the memeplexes are forced to join to-
gether leading to the generation of novel memeplexes
through a shuffling method. Shuffling will completely make
unbiased the cultural evolution in the direction of any
specific interest. +e stopping criteria are satisfied once the
local search and the shuffling procedure alternate [68]. +e
flowchart of SFLA is shown in Figure 2. +e different steps
are described as follows [67, 72, 73]:

(1) +e algorithm contains a population “p” of the
potential number of solutions, controlled by a set of
virtual frogs (n).

(2) +e population is split into subsets denoted as
memeplexes (m). +ememeplexes can be considered

INPUT
32×32

C1: feature maps
6@28×28

S2: f. maps
6@14×14

S4: f. maps 16@5×5

C5: layer
120

F6: layer
84

OUTPUT
10

Convolutions Subsampling Subsampling
Convolutions Full connection

Full
connection

Gaussian
connections

C1: f. maps 16@10×10

Figure 1: Illustration of LeNet-5 architecture, a convolution neural network. Each plan in the network indicates a feature map [48].
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as a set of parallel frog cultures trying to achieve
some goals.

(3) Frog i is shown by Xi � (Xi1, Xi2, . . ., Xis) in which S
indicates the number of variables.

(4) Within each memeplex, each frog culture searches
the space in different directions and exchanges ideas
independently. +e frogs with best and worst fitness
are denoted as X b and Xw.

(5) Frog with global best fitness is identified as Xg.
(6) +e frog with the worst fitness is modified based on

the following equation:

Di � rand Xb − Xw( 􏼁,

Xneww � XoldW + Di −Dmax ≤Di ≤Dmax( 􏼁,
(2)

In which the rand function generates an arbitrary
number between the range [0, 1], Di is the size of the leaping
step of the frogi andDmax is the maximum value permitted to
adjust frog position. If the value of fitness Xw is better than
the current value of Xw, it will be accepted. If the fitness
value is not modified, then the calculation is repeated by
replacing Xb with Xg. If there is no potential for en-
hancement, a novel Xw will be created arbitrarily. +is
shuffling process and the local search continue until defined
convergence criteria provide satisfactory results [68, 70, 71].

4. Design of Proposed Method

Problem representation is the foremost step in training a CNN
employing metaheuristics algorithms. To train a CNN, the
problem should be formulated in a suitable way for meta-
heuristics.+emost important variables to training this type of
network are weights and biases. In the trainer, the best biases
and weights values are found to provide the highest classifi-
cation, approximation, and prediction accuracy for the net-
work.+us, biases and weights are trainable variables. It means
by changing the values of biases and weights of all neurons the
output results of the network can be varied. So, controlling the
process of applying new weights and biases by an optimizer
approach leads to reaching higher accuracy. As the SFL pro-
cedure takes the variables in the format of a vector, the variables
of a CNN denoted for this technique are as follows:

V
→

� W
�→

, θ
→

􏼚 􏼛 � W1,1, W1,2, . . . , Wn,n, h, θ1, θ2, . . . , θh􏽮 􏽯.

(3)

In which n is the size of the input, Wij denotes the
connection weight between layers ith and jth, and θj is the
bias (threshold) of the jth hidden node.

Once the variables are defined, defining the objective
function for the SFL technique is the next goal. Mean Square
Error (MSE) is a common metric for the evaluation of
networks. Once a set of training samples are given to the
CNN, this equation measures the difference between
the obtained output values and the desirable values through
the following equation:

Table 1: Properties of the layers of the LeNet-5 [48].

Layer Size Num. of feature maps Num. of parameters Num. of connections
Input 32× 32 . . . . . . . . .

C1 28× 28 6 156 122304
S2 14×14 6 12 5880
C3 10×10 16 1516 151600
S4 5× 5 16 32 2000
C5 1× 1 120 . . . 48120
F6 1× 1 84 10164 . . .

Start

Intial Parameters: Population Size (P)
Number of Memeplexes (m)
Number of Iterations Within

Each Memeplex

Generating Random Population of P Solution
Frogs, Calculate Fitness of Each Individual

Frog

Sorting Population in Descending Order of
Their Fitness

Divide P Solution into M Memeplexes

Local Search

Shuffle Evolved Memeplexes

Termination = True

Consider The Best Solution

End

Figure 2: Flowchart of SFL algorithm.
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MSE � 􏽘
m

i�2
o

k
i − d

k
i􏼐 􏼑, (4)

wherem indicates the output numbers, the preferred output
of the ith input unit when the kth training data samples are
utilized is denoted by dk

i , and the actual output of the ith
input unit when the kth training data appear in the input is
ok

i .
To design an effective CNN, the network should be

adapted to the whole set of training samples. As a result,
CNN performance is assessed according to the average of
MSE with respect to the training samples as the following
equation:

MSE � 􏽘
s

k�1

􏽐
m
i�1 ok

i − dk
i( 􏼁

2

s
,

Minimize : F( v
→

) � MSE.

(5)

As, at each iteration, the weights and biases move to-
wards having the best CNN, the probability of an improved
CNN increases gradually. However, due to stochastic nature
of SFL algorithm, there is no guarantee that the optimal
CNN is obtained. On the other hand, with sufficient number
of iteration, the SFL algorithm finally reaches to a solution
that works more efficient than random preliminary solu-
tions. +e following section assesses the advantages of the
SFL algorithm in training a CNN practically.

5. Experimental Results and Discussion

In this part, the suggested SFL-based CNN is investigated by
employing four standard classification datasets from
[74–77], OxFord Flowers 17 (Figure 3(a)), OxFord Flowers
102 (Figure 3(b)), Caltech/UCSD Birds (Figure 3(c)), and
Caltech 101 Airplanes (Figure 3(d)).+e specifications of the
datasets are presented in Table 2.

+e classification datasets were intentionally selected
with the diverse test/training data and difficulty levels to
efficiently evaluate the performance of our SFL-based CNN.
We employed a Hewlett-Packard (hp) computer with the
processor of Intel (R) Core (TM) i7-6500U CPU@ 2.50GHz
2.60GHz, installed memory (RAM) of 8.00GB, System type
of 64-bit Operating System, and Windows 10 Home. For
data processing, we used MATLAB and Statistics Toolbox
Release 2019a. +e SFL assumptions and other techniques
are shown in Table 3. +e accuracy of classification for each
dataset using different optimization algorithms is demon-
strated in Figure 4. It is considered that the optimization
method begins by creating random biases and weights in the
range of [−10, 10] for all four datasets.

To generate the results, the datasets are solved 50 times
by applying each technique. As illustrated in Figure 4, after
the last iteration, the error of classification for all the datasets
employing different optimizers decreases to approximately
less than 10%, in which the SFL algorithm appears to be the
most efficient optimizer. +e average (AVE) and standard
deviation (STD) shown in Tables 4–7 are actually the best
MSEs obtained in the last iteration. Clearly, the lowest av-
erage and standard deviation of MSE in the final iteration
illustrate the best result. +e statistical outcomes are shown
in the form of AVE± STD. It should be noted that the best
rates of classification attained by each method during 50
iterations are reported as another metric of comparison.
Statically analysis of the results shows that training CNN
with SFL algorithm provides the best accuracy of classifi-
cation in all the mentioned datasets, as well as superior local
optima avoidance, which is the reason for the improved
MSE. Moreover, the results of this study demonstrate that,
unlike other swarm-based algorithms, SFL algorithm has a
better performance since it does not have a mechanism for
substantial sudden movements to search the space. It is also
demonstrated that ACO and WO optimizers reach a min-
imum time for training the model in comparison of BFSO
and SFL methods. Also, the SFL method takes more time

(a) (b) (c) (d)

Figure 3: Datasets sample pictures. (a) OxFord flowers 17. (b) OxFord flowers 102. (c) Caltech/UCSD birds. (d) Caltech 101 airplanes.
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Table 2: Dataset specifications.

Dataset Number of categories Number of images per category Training sample numbers Test sample numbers
OxFord flowers 17 17 80 50 30
OxFord flowers 102 102 40 to 258 20 to 200 20 to 58
Caltech/UCSD birds 200 6033 4000 2033
Caltech 101 airplanes 101 40 to 800 20 to 600 20 to 200

Table 3: +e initial parameters of algorithms.

Algorithm Parameter Value

SFL
Maximum permitted change in a frog’s location 10

Number of memeplex 20
Number of frogs 30

ACO

Pheromone update constant (Q) 15
Global pheromone decay rate (pg) 0.7

Visibility sensitivity (β) 7
Population size 70
Number of ants 15

Maximum number of iterations 35
Local pheromone decay rate (pt) 0.6

Initial pheromone (τ) 1e-06
Pheromone sensitivity (α) 1
Pheromone constant (q) 1

BFSO

Probability of elimination 0.1
Spreading percentage %σ 0.4

Population size 60
Number of bacteria 20

Maximum number of iterations 35

WHO

Strategies Decreasing the value of a
Whales attacking Encircling

Max a 5
Probability of choosing spiral model P ∈ [0, 1]

Probability of choosing shrinking encircling p ∈ [0, 1]
Population size 70

Number of whales 15
Maximum number of iterations 35
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CNN optimization for Caltech/UCSD Birds
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SFLA

(a)

100
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70
60
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CNN optimization for Caltech 101 Airplanes

WO
BFSO

ACO
SFLA

(b)

Figure 4: Continued.
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Figure 4: Error of classification using different datasets and optimization algorithms for LeNet-5. (a) OxFord flowers 17. (b) OxFord flowers
102. (c) Caltech/UCSD birds. (d) Caltech 101 airplanes.

Table 4: Experimental results for the oxford flowers 17 dataset.

Technique MSE (AVE± STD) Classification rate (%) Training time
LeNet 5 0.190425± 0.031687 88 14 minutes
ACO-LeNet 5 0.121689± 0.011574 90 16 minutes
BFSO-LeNet 5 0.085050± 0.034945 91 25 minutes
WO-LeNet 5 0.032228± 0.039778 94 18 minutes
SFLA-LeNet 5 0.009210± .039100 97 23 minutes

Table 5: Experimental results for the oxFord flowers 102 dataset.

Technique MSE (AVE± STD) Classification rate (%) Training time
LeNet 5 0.040320± 0.002470 90 51 minutes
ACO-LeNet 5 0.024881± 0.002472 95 58 minutes
BFSO-LeNet 5 0.008026± 0.007900 93 67 minutes
WO-LeNet 5 0.0229± 0.0032 91 64 minutes
SFLA-LeNet 5 0.003026± 0.001500 97 65 minutes

Table 6: Experimental results for the Caltech/UCSD birds dataset.

Technique MSE (AVE± STD) Classification rate (%) Training time
LeNet 5 0.0321± 0.0045 92 97 minutes
ACO-LeNet 5 0.0019± 8.4257e−04 97 101 minutes
BFSO-LeNet 5 0.0078± 8.2189e−02 93 109 minutes
WO-LeNet 5 0.0045± 8.7654e−03 96 103 minutes
SFLA-LeNet 5 0.0021± 9.4298e−05 98 105 minutes

Table 7: Experimental results for the Caltech 101 airplanes dataset.

Technique MSE (AVE± STD) Classification rate (%) Training time
LeNet 5 0.050420± 0.003170 92 49 minutes
ACO-LeNet 5 0.031841± 0.004123 94 52 minutes
BFSO-LeNet 5 0.072218± 0.079235 93 57 minutes
WO-LeNet 5 0.00319± 0.0042 96 53 minutes
SFLA-LeNet 5 0.00286± 0.009700 97 55 minutes
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than ACO and WO approaches, but it obtains higher
classification rates and minimum MSE scores.

6. Conclusion

+is study presented Shuffled Frog-Leaping Algorithm
(SFLA) as one model of metaheuristic algorithms to opti-
mize one type of Convolutional Neural Network. At first, the
training problem of a CNN was formulated for the SFL
technique. +is method was then applied to define the
optimum values for biases and weights. +eoretically, the
SFLA is similar to the particle swarm optimization (PSO).
However, the values of weights and biases can be exchanged
among local searches through a shuffling technique, thereby
obtaining global optimum. +e proposed SFLA was
employed to train four standard classification datasets
(OxFord Flowers 17, OxFord Flowers 102, Caltech/UCSD
Birds, and Caltech 101 Airplanes). To verify the performance
of SFLA, the results were compared to three other stochastic
optimization trainers: WO, BFSO, and ACO. +e resulting
outcomes demonstrated that the suggested technique can
effectively train the CNN. It improves the probability of
finding optimal values for biases and weights for CNNs. Our
optimization strategy can obtain noticeable accuracy for
classifying objects in four standard classification datasets.

For future study, finding the proper parameters for SFL
algorithm needs to be investigated. Moreover, by exploring
the optimal values for number of batches in the training,
type of pooling, number of neurons in the hidden layer, and
number of kernels in the convolutional layers, we can obtain
more noticeable results. Further optimal tuning of this
method is worth further research using different datasets
such as CKP and facial expression datasets, as well as
ImageNet and ORI.

Data Availability

+ese datasets are public datasets and are available at the
following links: https://www.robots.ox.ac.uk/􏽥vgg/data/
flowers/17/ http://www.vision.caltech.edu/Image_Datasets/
Caltech101/ http://www.vision.caltech.edu/visipedia/CUB-
200.html https://www.robots.ox.ac.uk/􏽥vgg/data/flowers/
102/.
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