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Abstract

The human mirror neuron system (MNS) can be considered the neural basis of social cognition. Identifying the global network struc-
ture of this system can provide significant progress in the field. In this study, we use dynamic causal modeling (DCM) to determine the
effective connectivity between central regions of the MNS for the first time during different social cognition tasks. Sixty-seven healthy
participants completed fMRI scanning while performing social cognition tasks, including imitation, empathy and theory ofmind. Supe-
rior temporal sulcus (STS), inferior parietal lobule (IPL) and Brodmann area 44 (BA44) formed the regions of interest for DCM. Varying
connectivity patterns, 540 models were built and fitted for each participant. By applying group-level analysis, Bayesian model selection
and Bayesian model averaging, the optimal family and model for all experimental tasks were found. For all social-cognitive processes,
effective connectivity from STS to IPL and from STS to BA44 was found. For imitation, additional mutual connections occurred between
STS and BA44, as well as BA44 and IPL. The results suggest inverse models in which the motor regions BA44 and IPL receive sen-
sory information from the STS. In contrast, for imitation, a sensory loop with an exchange of motor-to-sensory and sensory-to-motor
information seems to exist.
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Introduction
Mirror neurons (MNs) are considered essential building blocks to
present the neuronal basis of social cognition (Frith and Frith,
2007; Gallese, 2007). It is assumed that humans obtain an imme-
diate understanding of others’ emotions, desires and intentions
by representing the others’ motor states in their own motor sys-
tem (Gallese, 2007; Oberman et al., 2007; Kilner and Lemon,
2013). A large body of functional imaging (fMRI) and electroen-
cephalography (EEG) studies have provided indirect evidence for
the involvement of MNs in social-cognitive processes (see Bekkali
et al., 2020 for a meta-analysis), including imitation (Iacoboni,
2005; Molenberghs et al., 2009), action learning (Cook et al., 2014),
emotion recognition (Keuken et al., 2011), theory of mind (ToM)
(Gallese and Goldman, 1998; Mier et al., 2010b) and empathy
(Iacoboni, 2009; Moore et al., 2012). However, research is needed
to explain how regions of the MN system (MNS) interact to under-
stand others’ emotions and intentions. Studies using dynamic
causal modeling (DCM) or related methods for inference about
effective connectivity can help to get a deeper understanding of
sensory–motor processing in the MNS (see Schurz et al., 2020a

for a review) and inform computational models that model the
physiological processes in the MNS.

MNs were discovered by Di Pellegrino et al. (1992) in the

macaque monkey. The authors found a subset of motor neurons

that firewhen the animal executes an action andwhen the animal

observes a comparable action (Di Pellegrino et al., 1992; Rizzolatti

and Craighero, 2004). Due to ethical reasons, direct examination

of MN activity by single-cell recordings is excluded in healthy

human participants. Thus, indirect, non-invasive measurements

such as fMRI and EEG are applied to investigate the functioning of

theMNS. These studies in humans identified several brain regions

with mirror properties (Molenberghs et al., 2012). Primate data

support the existence of MNs in two of these regions, and they

build the basis for models explaining MN function: Broca’s area
(BA44) located in inferior frontal gyrus (IFG) with adjacent ventral
premotor cortex that corresponds to area F5 of the primate brain
(Rizzolatti et al., 1996) and inferior parietal lobule (IPL) (Rizzolatti
and Craighero, 2004; Rizzolatti, 2005). In addition, the posterior
superior temporal sulcus (STS) has been suggested as the region
that conveys the visual input to the MNS (Van Overwalle, 2009).
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These regions of the human MNS have been mainly identified
in studies with visual images of actions and execution of motor
actions (Iacoboni and Dapretto, 2006; Molenberghs et al., 2012).
However, a special interest in MNs exists due to their proposed
role in social cognition (Gallese, 2007; Mier et al., 2010b). Recently,
we demonstrated common activation for imitation, empathy and
affective ToM across and within individuals in STS, IPL and BA44
during social cognition tasks (Schmidt et al., 2021). Since dysfunc-
tion of the MNS has been assumed to result in core symptoms
of mental disorders, a growing number of studies also focusses
on the role of the MNS for mental disorders, such as in autism
(Rizzolatti and Fabbri-Destro, 2010; Hamilton, 2013), psychopathy
(Mier et al., 2014), schizophrenia (Mier et al., 2010b) and borderline
personality disorder (Mier et al., 2013). Thus, a deeper under-
standing of the human MNS could also enhance our knowledge
of mental disorders.

To go beyond the activity of the MNS, computational models
have been constructed to conceptualize the function of MNs (for a
review, see Giese and Rizzolatti, 2015). These models are based on
data regarding the anatomical and effective connectivity between
the brain regions of the MNS. Anatomically, there are prominent
bidirectional connections between STS and IPL on the one hand
and IPL and IFG, including BA44, on the other hand, as well as pro-
jections of visual areas onto STS (Nelissen et al., 2011). In humans,
direct connections from STS to IFG have also been found (Catani
et al., 2005; Rilling et al., 2008). Based on this connectivity profile
and the mirror properties of IPL and IFG, common assumptions
of the models of the MNS are that (i) visual information enters
the MNS via the STS, (ii) motor information is transferred from
IFG directly or via the parietal cortex to STS, and in several cases,
(iii) sensory information is projected from STS, directly or via pari-
etal cortex, to the IFG, closing the sensory–motor loop. Depending
on the modeling framework, the core regions of the MNS, STS,
IPL and IFG are interpreted as recurrent neural networks (e.g.
Yamashita and Tani, 2008), neural fields (e.g. Erlhagen et al., 2006),
layers of deep neural networks (e.g. Fleischer et al., 2013) or, more
abstractly, as elements of action controller architectures (imple-
menting a forward model from IPL to STS (motor-to-sensory) and
an inverse model from STS to IPL (sensory-to-motor), Wolpert
et al., 2003) or Bayesian predictors (where IFG and IPL act as empir-
ical priors for STS, Kilner et al., 2007a; Friston et al., 2011). Most
models assume a hierarchical organization of the MNS, at least
implicitly, with the STS on the bottom, representing visual infor-
mation, the IPL representing kinematic details of the movement,
and the IFG, standing on top of the hierarchy, representing more
abstract motor goals (Erlhagen et al., 2006; Kilner et al., 2007a;
Yamashita and Tani, 2008; Friston et al., 2011; Fleischer et al., 2013,
but see Grafton and Hamilton, 2007 for a different hierarchy with
the IPL on top).

For a given task, the effective connectivity, i.e. the concrete
flow of information, including the temporal profile of informa-
tion flow during that task is of the highest importance. A method
that estimates the time course of effective connections between
active brain regions is DCM. DCM is a widely used method to
find the effective connectivity between activated brain regions by
estimating the hidden state parameters of the observed experi-
mental data (Friston et al., 2003). The few existing DCM studies
on the MNS have largely confirmed the connectivity profile out-
lined above (Lebreton et al., 2012; Sasaki et al., 2012; Thioux and
Keysers, 2015; Urgen and Saygin, 2020), including the direct path-
way from STS to IFG (Sasaki et al., 2012). However, it should be
noted that all of the above studies have been conducted for hand
movements. Facial expressions, which are the primary source
of social information, are a special case in motor processing

because (unless using amirror) we do not get visual feedback from
our facial movements. Indeed, facial expressions result in differ-
ent activation of the MNS compared to social hand movements
(Montgomery and Haxby, 2008), and connectivity studies in mon-
keys have shown that facial communicative expressions are being
processed in regions of the MNS that lack a robust parietal com-
ponent and are more connected to limbic and ventral prefrontal
areas (Ferrari et al., 2017). To date, only parts of the MNS have
been studied with DCM while watching emotional facial expres-
sions (Sato et al., 2015, 2016) or social scenes (Arioli et al., 2018).
A complete DCM network analysis of the MNS during processes
of social cognition is missing. Hence, to date, it is an open ques-
tion whether modeling approaches of the MNS based on hand
movements can be transferred to social tasks.

In a recent publication, we showed effective connectivity from
STS to IPL and IFG, as well as from IFG to IPL in a facial imitation
task (the data resulted from a subgroup of the current sample,
Sadeghi et al., 2020). The current fMRI study goes one step further
by examining three social-cognitive tasks within the same par-
ticipants, allowing us to address whether there is a common or
‘standard’ route of processing across different aspects of social
cognition or whether the interaction between these regions is
dependent on the exact social-cognitive process. The three social
cognitive tasks were empathy, imitation and ToM. All tasks were
based on pictures of facial expressions. Out of the three tasks,
only imitation included actual movements. Activation patterns
of these tasks are published in Schmidt et al. (2021). By apply-
ing region of interest (ROI) analyses, activation in BA44, IPL, STS,
amygdala and fusiform gyrus was found bilaterally for all con-
trasts of interest for the present analyses, i.e. imitation> control,
affective empathy> control and ToM>control. Behavioral data
analysis showed the highest empathy ratings for cognitive empa-
thy, followed by affective empathy and lowest ratings for personal
distress. In addition, response times were longer for ToM than for
emotion recognition, neutral face processing and control. Perfor-
mance, as indicated by the percentage of correct answers, showed
the same pattern with ToM being the most difficult condition.
To examine effective connectivity between the brain regions of
the MNS, an optimized version of DCM (Sadeghi et al., 2020) was
applied. We designed 540 models divided into four families and
used Bayesian model comparison and Bayesian model averaging
(BMA) for group analysis to find the optimal family and model fit-
ting to our experimental data. We assumed finding direct effective
connectivity from STS to IPL and/or BA44 (inverse model), inde-
pendent of the specific social-cognitive process. Further, we were
interested in the mutual connections (forward model) and con-
nections between IPL and BA44. The main question was whether
common effective connectivity characterizes the different social-
cognitive processes or whether distinct communication is found.

Materials and methods
Data sets
Participants
We invited 80 participants to two appointments. Of these, we
excluded one due to excessive head movement (more than
two scans with rotation>3◦ and translation>3◦), one due to
anatomical aberrations (incidental finding in the ventricle area
which needed further medical evaluation), three due to tech-
nical/inclusion criteria issues (n=1: the fMRI measurement
stopped for unknown reasons; n=1: BDI score of 27 despite
careful telephone screening; n=1: biased answers in question-
naires and bizarre behavior during the experimental sessions) and
eight because they did not show significant activation at P<0.5
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in at least one of the three ROIs in all three tasks. These eight
participants were excluded to allow a direct comparison between
the tasks. Beyond these measures, we did not control for out-
liers. Our final sample for the DCM analysis contains 67 subjects
(39 women, 28 men, mean age=23.39, SD=3.60) with university
entrance qualifications who reported no history of mental or neu-
rological disorder. The first appointment included a simultaneous
EEG-fMRI assessment, the second transcranial magnetic stimu-
lation prior to fMRI. All data analyzed in this manuscript were
taken from the fMRI data of the first appointment. It should be
noted that 42 of these 67 participants were part of the analy-
ses conducted in Sadeghi et al. (2020) for establishing the novel
DCM method (only based on the imitation task of which activa-
tion was modeled with a boxcar, instead of a stick function, as for
the present analyses).

Tasks and experimental procedures
We used three experimental paradigms covering different pro-
cesses of social cognition: an imitation task, an empathy task
and a ToM task. For all three tasks, we used pictures from
the Karolinska Directed Emotional Faces stimulus set of five
females and five males and control stimuli without social infor-
mation. Tasks were implemented with Presentation Software
(Version 18.1; www.neurobs.com) and presented via video gog-
gles. Responses were given with a diamond-shaped button device
(Current Designs, Inc., Philadelphia, PA, USA). Task order with (1)
imitation, (2) empathy and (3) ToM was fixed for all participants.

Study procedure
The study was approved by the ethics committee of the
Medical Faculty Mannheim, University of Heidelberg. Participants

received oral and written information about the study procedure
and aims, signedwritten informed consent and practiced all tasks
on a laptop. The three social-cognitive paradigms that were pre-
sented during fMRI are shortly described in the following. For
more details and the results of the activation analyses, please
refer to Schmidt et al. (2021).

Imitation. The imitation task contained four conditions
(Figure 1A). In the observation and imitation conditions, angry
and fearful faces were presented, and participants had to observe
or imitate the presented faces, respectively. In the Execution con-
dition, participants read an emotional word (anger or fear) and
had to perform the according to facial expression. In the control
condition, participants had to read out loud a presented letter
(German letters ‘Ä’ or ‘A’ to resemble the facial expressions of
anger and fear, respectively). Conditions were presented block-
wise, with each experimental block containing four stimuli of
5 s (Figure 1B). Control blocks contained two stimuli of 3 s and
were presented interleaved with the experimental blocks. A fix-
ation cross with jittered duration was presented between trials
(for 1–3 s) and between blocks (for 4–6 s). All blocks were repeated,
so there were 20 trials for each experimental condition and 30
trials for the control condition. The task duration was 13min.

Empathy. The empathy task contained four conditions, again
presented blockwise. In the experimental conditions, namely,
affective empathy, cognitive empathy and distress, angry and
fearful faces were presented. In the Control condition, circles of
different sizes were shown, and at the beginning of each block,
one out of four instruction cues was displayed. The instruction
cues were ‘How bad do I feel?’ (distress), ‘How bad does the
presented person feel?’ (cognitive empathy), ‘How much do I

Fig. 1. Imitation Task. (A) Overview over the four conditions imitation, observation, execution and control, with exemplary stimuli. In all conditions
except control, half of the stimuli showed angry, the other half fearful facial expressions or word cues. The control condition served as a motor control
without emotional information. (B) Task flow with presentation times. At the beginning of each block, a cue word served as an instruction. In the
experimental blocks, four stimuli with a duration of 5 s were presented, in the control blocks, two stimuli with 3 s duration.

www.neurobs.com
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Fig. 2. Empathy task. (A) Overview over the four conditions personal distress, cognitive empathy, affective empathy and control with exemplary
stimuli. In all empathy conditions, half of the stimuli showed angry, the other half fearful facial expressions or word cues. The control condition
showing a circle of different sizes served as a visual control that also required rating on a visual analog scale. (B) Task flow with presentation times.
At the beginning of each block, the cue question was presented. In the experimental blocks, four stimuli with a duration of 3 s were presented, in the
control blocks, two stimuli with 3 s duration.

empathize with the presented person?’ (affective empathy), or
‘How big is the circle?’ (control condition) (Figure 2A). The partic-
ipants’ task was to think about the cued question while watching
the stimuli. After each stimulus to answer the question on a con-
tinuous visual analog scale from ‘not at all’ to ‘verymuch’ (control
condition: ‘small’ to ‘large’; Figure 2B).

Analogous to the imitation task, we chose a design with
experimental blocks of four stimuli of 3 seconds alternating
with a control block of two stimuli of 3 s. A fixation cross
with jittered duration was presented between trials (1–3 s) and
between blocks (4–6 s). Again, there were 20 trials for each exper-
imental block and 30 total control trials. The task duration
was 17min.

Theory of mind (ToM). The ToM task had three experimen-
tal conditions such as affective ToM, emotion recognition and
neutral face processing and a control condition (Figure 3A). Con-
ditions were presented in pseudo-randomized order in an event-
related design (Figure 3B). For each condition, 20 trials were
shown. One trial consisted of a statement (e.g. ‘This person
is about to run away’ for affective ToM, ‘This person is angry’
for emotion recognition, ‘This person is female’ for neutral face
processing, and ‘This is a circle’ for Control), followed by an
angry or fearful emotional facial expression (for affective ToM
and emotion recognition), a neutral facial expression (for neu-
tral face processing) or a circle or triangle (for control). Par-
ticipants had to select ‘yes’ or ‘no’ as the appropriate answer.
Each statement and face was presented for 2 s, and the inter-
stimulus interval lasted between 1 and 3 s. The task duration was
8min.

Data acquisition
fMRI data were acquired with a 3T Siemens Magnetom Trio
with a 12-channel head coil at the Central Institute of Men-
tal Health in Mannheim, Germany. At first, an MPRage was
measured (TR=1570ms, TE=2.75ms, flip angle=15◦, field of
view=256mm, matrix=256×256, voxel size 1×1×1 mm3). For the
recording of task activation, echo-planar imaging was set to 32
descending 3×3×3 mm3 slices with 1mm gap, TR of 2000ms, TE
of 30ms, flip angle of 80◦, field of view 192mm and matrix of
64×64. The volume was aligned to AC-PC and tilted by –20◦.
The imitation task was measured with 397 volumes, the empa-
thy task with 518 volumes and the ToM task with 248 volumes.
Movement correction was performed for scans exceeding 3mm
translation or 3◦ rotation, by replacing the scan with the mean of
the below-threshold scans before and after.

Time series extraction
Data were preprocessed and analyzed with Statistical Paramet-
ric Mapping 8 (SPM8, http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/). Pre-processing consisted of slice time correction, realign-
ment to the mean image, normalization with segmentation and
co-registration to the individual MPRage, and resampling with 3
mm3 voxel size, as well as smoothing with 8mm Gaussian ker-
nel. First-level-analyses were achieved by general linear models
with the onsets of the conditions (for the imitation task: imita-
tion, observation, execution and control; for the empathy task:
affective empathy, cognitive empathy, distress and control; for
the theory of mind task: affective theory of mind, emotion recog-
nition, neutral face processing and control) and the six move-
ment parameters from the realignment procedure as covariates.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Fig. 3. ToM task. (A) Overview over the four conditions ToM, emotion recognition, neutral face processing and control, with exemplary stimuli. Faces
in the ToM and emotion recognition condition showed angry and fearful expressions, in the neutral face processing condition neutral expressions, and
geometric figures served as stimuli in the control condition. (B) Task flow with presentation times. The stimuli are presented in pseudo-randomized
order in an event-related design.

The tasks were analyzed as an event-related design, by con-
voluting the HRF with a stick function. First eigenvariates of
the time series of imitation> control, affective empathy> control
and ToM>control were extracted with P<0.5 without a cluster
size threshold while adjusting for the activation during imita-
tion, affective empathy and ToM, respectively. All trials of the
conditions were included, independent of whether participants
responded correctly or incorrectly. The threshold of P<0.5 was
selected liberally to ensure the inclusion of a majority of partici-
pants. The first eigenvariates were extracted from the individual
peak voxels with a sphere of 8mm from the main regions asso-
ciated with the human MNS: BA 44, IPL and STS, all on the right
hemisphere, to avoid confounding effects of language processing.
The masks for BA 44 (Brodmann atlas) and IPL (AAL atlas) were
taken from the WFU_pickatlas. The BA44 mask was smoothed

with a dilation factor of 1 to allow a continuous mask. The pos-
terior STS mask was based on activation in a study on social
cognitionwith a similar design for the ToM task, used in this study
and has been used as a ROI in previous publications (Mier et al.,
2010a; 2010b).

DCM
We used DCM to estimate effective connectivity between the
ROIs in the three tasks. DCM uses a Bayesian framework to
estimate the posterior values of intrinsic connections between
brain regions and exogenous or driving inputs on different
nodes (task stimuli). In the bilinear state equation, all connec-
tions can be modulated by contextual inputs (i.e. task-related
changes in effective connectivity), and all brain regions have
self-connections (Friston et al., 2003).
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We performed the DCM10 (r6313) in SPM8, which we have
modified before, by replacing the standard linear equations with
Wilson–Cowan-based models (Sadeghi et al., 2020). This model
shows the changes in neural activity according to

żt =−zt + S(x)

S(x) =
1

1+ exp(−αx)
−

1

2

x= (A+
m∑
j=1

ujB
j)zt +Cu

where zt denotes the time derivative of neuronal activity and
function S(x) shows a sigmoid function in which the parameter α
determines its slope. Matrix A describes the endogenous connec-
tivity between the neural nodes and B j shows which connection
is modulated by the direct contextual input uj and C embodies
the direct influences of external input u on brain regions. We can
specify these parameters θc =

{
A,B j,C

}
and build different mod-

els to compare them to find the best model fitted to the observed
data. Note that all parameters in θc represent effective connectiv-
ity that may vary, e.g. across different tasks, while using the same
set of anatomical connections. In particular, a non-significant
entry in one of the matrices does not imply a missing synaptic
connection between two regions, but merely that this connection
is not used in this particular task. Here, we estimate indepen-
dent sets of parameters θc for each task (imitation, empathy, and
ToM) and compare them afterward. The contextual inputs uj are
restricted to the external input u (uj = u) for simplicity. Thus, the
B matrix mostly regulates the activity dynamics at the beginning
and the end of the external stimulus u.

In our previous study (Sadeghi et al., 2020), we showed that the
modifiedDCMallows a significantly better fit to the empirical data
than the standard bilinear model. We tested it on three different
datasets and showed its superiority in fitting these datasets. This
kind of neuronal equation can infer the sigmoid transfer func-
tion as an averaged f–I curve of activation in brain regions that
have a sigmoidal format and has the potential of adopting gener-
ative models for fMRI time-series to be informed by physiological
principles. In this way, the parameters obtained by DCM show
different and more robust results and can be directly interpreted
physiologically.

Model specification
In DCM, one can construct different models according to these
factors: (1) which regions receive external inputs (Matrix C),
(2) how the activated regions are connected (Matrix A) and (3)
which of these connections are modulated by the contextual
inputs (Matrix B). However, to avoid extensive numbers of mod-
els, a hypothesis-driven approach is warranted to decrease the
model space. In this way, we constructed models according to
the hypothesis that visual input always integrates into the STS
region, and from STS, this input would propagate to the IPL and
BA44. This assumption is based on previous research on the MNS
(Iacoboni et al., 2001; Barraclough et al., 2005; Kilner et al., 2007b).
The effective connectivity between the two regions can be both
unidirectional or bidirectional. We have three nodes, and these
nodes canmaximally have six connections in case of mutual con-
nectivity. In addition, we have considered the modulatory input

on the interregional connections. Thereby, each combination of
the intrinsic connection between different regions can have 2n

modulatory inputs, n (in our case, n can be 2, 3, 4, 5 and 6) being
the number of endogenous connections between the regions of
interest. In this way, we built 540 models partitioned into four
families as explained in the following.

As shown in Figure 4, a feed-forward connection from STS to
BA44 and IPL is always available for family 1. However, they can
also have mutual connections. Within this family, IPL and BA44
can have a connection or not; the connection between them can
be unidirectional or bidirectional. Solid lines in Figure 4 show
the connections that always are present (input from STS to BA44
and IPL), and dashed lines show the connections which can be
present or not (e.g. the backward connection from IPL to STS).
For family 2, the activation propagates from STS to IPL and then
from IPL to BA44, and for family 3, from STS to BA44 and then
to the IPL region. In family 4, the common feature is that STS
either gives input into IPL, or BA44 and this information is for-
warded back to STS via the regions that are not getting input from
STS. Furthermore, each of these families has modulations on the
interregional connections. We have considered one experimental
condition (imitation, empathy and ToM) as modulatory input for
each task separately. So, in this approach, we have first defined
the baseline A matrix and partitioned the models into four fami-
lies and then inserted the modulatory input on each connection.
For example, sub-family 1within family 1 includes 36modelswith
different A and B matrices variations.

Model selection
To find the most probable model from the model space above,
which fitted best to the observed data, we used group analysis
Bayesian model selection (BMS) (Stephan et al., 2009) among all
single models with inference over families of models (Penny et al.,
2010). To account for the heterogeneity of the model structure
across subjects, we used random effect (RFX) BMS, which uses
the hierarchical Bayesian modeling to estimate the parameters of
a Dirichlet distribution considering the probabilities of all mod-
els. With this technique, subjects can have different best models,
and the effects of outliers are very limited in the BMS results.
The results of RFX BMS are reported in terms of exceedance and
expected probabilities, which are the probability that a particu-
lar model is more likely than any other model tested, and the
probability of obtaining the model for a random subject from the
population respectively. The bestmodel is the onewith the largest
exceedance or expected probability.

Since in RFX BMS, the exceedance and expected probability
sum up to one, a large model space reduces the probabilities for
eachmodel, which hampers finding a singlewinningmodel. Thus,
models are implemented in groups as a model or as a family of
models, in which all models share some features (Stephan et al.,
2010) (e. g. a fixed particular set of connections). This technique
can compensate for the issue of large numbers ofmodels and nar-
row the search for the optimal model. Note that the number of
families should also be small. It is also possible to have differ-
ent numbers of models per family, as the prior for each model is
weighted by the number of models in its family (i.e. the prior is
that all families (rather than all models) are equally likely) (Penny
et al., 2010).

Still, finding sufficient evidence for one model or family of
models being optimal is not always possible. BMA helps resolve
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Fig. 4. Model space. Schemata of parameters that made up the models included in four families. Solid lines show the connections that always are
present, and dashed lines the connections that can be present or not. The modulatory input can be exerted on these interregional connections. Family
1 consists of four sub-families, and family 4 includes two sub-families. For each family, we assumed visual input external input always integrates into
the STS region.

this inference uncertainty by averaging over all models within
the family or even the whole model space. It is the average of
the connectivity parameters over models, weighted by the mod-
els’ posterior probabilities. Thus, the most probable models will
contribute the most to the model averaging (Penny et al., 2010).
Applied to our data, we divided models into families based on the
A matrix, i.e. their intrinsic connectivity structure. This division
was conducted in a stepwise manner. First, we identified how the
input from the STS region would activate other regions. Then we
entered models from the winning family (family 1 in Figure 4), as
achieved by RFX BMS, into the second set of BMS analyses to find
how the BA44 and IPL regions connect. Finally, we used BMA to
make the inference on parameters.

Results
DCM results
Using the Bayesian model comparison, we first used the family
level inference to find which set of models in Figure 4 (divided
into four families) is selected over other families. Results indi-
cated that family 1, in which input from the STS region propa-
gates to BA44 and IPL with feed-forward connections, is the most
probable structure for all three experiments. The exceedance
probability for all experiments is larger than 0.9 (Figure 5) for
family 1.

Next, we performed the Bayesian model comparison for the
winning family to determine which one of the four sub-families
in family 1 has the highest probability for each of the experi-
mental tasks (Table 1). Models in family 1 differ in connectivity
between BA44 and IPL regions, with no connection, directional
and bidirectional connections. For imitation, sub-family 4 with
an exceedance probability of 0.95 (Table 1), in which IPL and BA44
have mutual connections, is substantially more probable than
any of the alternatives. Results demonstrated for the empathy

and ToM tasks, sub-family 3 to be most likely, where IPL has a
feed-forward connection to BA44.

However, as shown in Table 1, for empathy and ToM, the
exceedance probabilities of the winning sub-families do not pro-
vide definitive evidence (0.49 max). Therefore, as a third step, we
use BMA to account for model uncertainty by averaging over all
models in family 1. In this regard, we performed BMA to obtain the
estimates of effective connectivity and their modulation to incor-
porate the group-level inference on the parameters. The BMA
results are shown in Tables 2 and 3 and Figure 6 for all three
experimental tasks. These results for empathy and ToM are on
all models within family 1 and for imitation only within the win-
ning sub-family 4. In Figure 6, we only illustrate the parameters
with a probability greater than 95% (i.e. deviate significantly from
zero) for all three tasks. According to these results, visual stim-
uli integrated into the STS are fed forward to IPL and BA44 with
unmodulated connections for empathy and ToM and modulated
STS→BA44 connection for imitation. Furthermore, for the imi-
tation task, there is additional feedback from BA44 to STS and
bidirectional connections between BA44 and IPL.

Discussion
Here, for the first time, we present results of effective connec-
tivity within the human MNS for three different social-cognitive
processes. We used a stepwise family level inference to find the
best fitting effective connectivitymodel among STS, IPL and BA44,
with the prior assumption that the external visual input enters
the STS. We tried different models and significantly decreased
the model space for a final BMS on a smaller number of models.
Subsequent BMA revealed that effective connectivity for imita-
tion, empathy and ToM is always characterized by a feed-forward
information processing from STS to IPL and BA44, suggesting an
inverse (sensory-to-motor) internal model. In addition, we show
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Fig. 5. Family level inference performed on models within the families
in Figure 1. All experiments demonstrate that family 1 has the highest
expected and exceedance probability, in which the models within this
family have forward connections from STS to IPL and BA44.

that information flow between these regions of the MNS is more
complex for imitation than for Empathy and ToM, including both
forward and inverse information flow.

Information flow from STS to IPL and BA44 is in general agree-
ment with the assumption that STS is passing visual information
to the MNS. In computational models, it is assumed that this path
reflects visual information to be converted into a motor represen-
tation (Kilner, 2011; Giese and Rizzolatti, 2015), termed an inverse
model in the context of controller architectures (Wolpert et al.,
2003). However, contrary to most MNS models (Kilner, 2011), a
forward model from motor-to-sensory areas is missing, as well
as a clear hierarchy of areas within the MNS (Erlhagen et al.,
2006; Grafton and Hamilton, 2007; Kilner et al., 2007a; Yamashita
and Tani, 2008; Friston et al., 2011; Fleischer et al., 2013). We
can only speculate on the reasons. One possibility is that social-
cognitive processes associated with pictures of facial expressions
without actual movements necessitate a direct information flow
to both MNS regions because the processing of social information
neither relies on action goal recognition (and with this, further
feed-forward information flow of the action goal representation

Table 1. RFX BMS results on models within family 1 for all
experiments

Imitation
Sub-family
1

Sub-family
2

Sub-family
3

Sub-family
4

Expected
probability

0.04 0.14 0.11 0.71

Exceedance
probability

0 0.04 0.01 0.95

Empathy
Expected
probability

0.20 0.22 0.38 0.20

Exceedance
probability

0.16 0.18 0.49 0.17

Theory of Mind
Expected
probability

0.25 0.25 0.28 0.22

Exceedance
probability

0.26 0.24 0.31 0.19

Table 2. BMA results for endogenous connectivity (Matrix A) (in
Hz). Next to each parameter is the posterior probability, which is
different from the test statistic (zero). We consider PP>0.95 as the
threshold at which parameters are significant

Imitation from to STS IPL BA44

STS −0.4625, 1.00 0.0348, 0.71 0.3322, 0.99
IPL 1.1059, 1.00 −0.4738, 1.00 0.9853, 1.00
BA44 1.4284, 1.00 0.7655, 1.00 −0.4768, 1.00

Empathy
STS −0.4843, 1.00 0.1978, 0.88 0.0551, 0.66
IPL 0.4127, 0.99 −0.4948, 1.00 0.0005, 0.50
BA44 0.4318, 0.99 0.1042, 0.77 −0.4918, 1.00

Theory of Mind
STS −0.4885, 1.00 0.1330, 0.80 0.0810, 0.72
IPL 0.4048, 0.99 −0.4964, 1.00 0.0528, 0.66
BA44 0.5219,0.99 0.0701, 0.70 −0.4958, 1.00

Table 3. BMA results for modulatory connectivity (Matrix B) (in
Hz). Next to each parameter is the posterior probability, which is
different from the test statistic (zero). We consider PP>0.95 as the
threshold at which parameters are significant

Imitation from to STS IPL BA44

STS – 0.0046, 0.57 0.0747, 0.80
IPL 0.1102, 0.88 – 0.0371, 0.65
BA44 0.1886, 0.97 0.0806, 0.78 –

Empathy
STS – 0.0064, 0.53 0.0019, 0.52
IPL 0.0745, 0.80 – 0.0008, 0.51
BA44 0.0347, 0.65 0.0003, 0.50 –

Theory of Mind
STS – 0.0030, 0.52 0.0025, 0.52
IPL 0.0466, 0.70 – 0.0007, 0.51
BA44 0.0489, 0.72 0.0003, 0.50 –

from IFG to the parietal cortex for detailed kinematics) nor, on
the opposite, information about exact motor states that is trans-
ferred to IFG for matching with possible motor aims. The latter is
in contrast to the assumption that intention is inferred by recogni-
tion of the current emotional state plus the simulation of possible
further actions (Mier et al., 2010b). Overall, our results support the
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Fig. 6. BMA results for all three tasks for the winning family 1. Here, we illustrate only the parameters which are significantly > 0. The values for
external inputs (Matrix C), which are not reported in Tables 2 and 3, are shown here (all parameters are in Hz).

notion of a different processing route for emotional facial expres-
sion as connectivity data in monkeys suggest (Ferrari et al., 2017),
revealing a direct flow of information from STS to IFG, bypassing
the IPL. Interestingly, combining results from different effective
connectivity studies in humans, links between STS and IFG can
also be established via the amygdala (Ćurčić-Blake et al., 2012;
Bruneau et al., 2015; Seok and Cheong, 2019) and the prefrontal
cortex (Schuwerk et al., 2014; Arioli et al., 2018; Esménio et al.,
2019), both in agreement with the results from monkey studies
(Ferrari et al., 2017). Another explanation for the effective connec-
tivity from STS to IPL and BA44 is higher attention demands for
emotional facial expressions than hand movements. For exam-
ple, Schuwerk et al. (2017) showed the role of the TPJ for ToM
and attention. Their activation cluster labeled with anterior TPJ
reaches into the IPL, while their posterior TPJ cluster overlapswith
the posterior STS region (Schuwerk et al., 2017). Furthermore, both
regions share effective connectivity with the anterior cingulate
cortex (ACC) in this study, which has a prominent role in attention
(Davis et al., 2000).

Taken together, these results suggest that IPL and BA44
may independently encode different aspects of emotional facial
expressions during social cognition: the interplay between STS
and IPL might be due to attentional processes during social cog-
nition, while the STS-BA44 connectivity could reflect information
flow of motor information to the MNS, potentially enriched or
gated by emotional or cognitive aspects of the task. Consistent
with such a possible division of labor between the different com-
ponents of the MNS, we have recently shown that emotional
valence can be discriminated in the humanMNS, but BA44 does so
in amore differentiatedway compared to IPL (Schmidt et al., 2020).
Future studies are needed to disentangle these possible processes,
e.g. by using an attentional condition and a social-cognitive condi-
tion, as in Schuwerk et al. (2017). In addition, further studies with
independent samples are needed that examine effective connec-
tivity in the MNS with different stimuli, including face and hand
movements as well as pictures or videos. These studies would
help to elucidate whether the connectivity pattern we found is
mostly due to the unmoving pictures or to face instead of hand
stimuli that were used in most studies on the MNS. Furthermore,
including additional regions into the DCM analysis, most notably
the amygdala, the ACC, as well as further regions of the pre-
frontal cortex, may elucidate whether the information in the STS
is passed to IPL and BA44 directly or via any of these brain regions,
thus further constraining models of MNS function.

While all social-cognitive processes showed effective connec-
tivity from STS to IPL and BA44, the imitation task differed
from the ToM and the empathy task, showing more connec-
tions between regions and modulation by the condition. In the

imitation task, there is additionally a mutual connection between
IPL and BA44. We assume these additional mutual connections to
be explained by the demands of the imitation task. The imita-
tion task was the only social-cognitive process that needed facial
movements and matching these movements with the observed
facial expression from the participants. The effective connectiv-
ity patterns during imitation suggest a sensory–motor loop with
forward and inverse information flow, allowing the matching of
motor and visual sensory states. The additional effective connec-
tivity between BA44 and IPL suggests active information exchange
between the motor goal (e.g. a fearful facial expression) and kine-
matics (e.g. corrugator muscle contraction). Also, the STS region
embedded in such a closed-loop might serve as a comparator
of own and observed movements, as suggested in agency mod-
els (Isoda, 2016). For empathy and ToM such interconnections
between IPL and BA44 are not task-relevant because these pro-
cesses seem to afford to process the motor expression, but no
fine-tuning and matching of the own facial expression with the
observed emotional state, as it is necessary for imitation. Thus,
for imitation, our DCM results agree with internal inverse and
forward models of sensory input and motor commands (Wolpert
et al., 2003; Kilner, 2011).

Limitations and outlook
The exceedance probability for sub-family 3 for empathy and ToM
was not at a level that allows clear support. Thus, we used BMA.
In comparison to the imitation of facial expressions, empathy
and ToM are more complex social-cognitive processes that might
result inmore variance across participants, lowering the probabil-
ity of finding a winning model. Future studies should investigate
how personality traits or self-reported empathy influences the
effective connectivity between these regions. Further, interplay
with additional regions, such as the amygdala, might be even
more important for empathy and ToM than for imitation. We can
also extend the DCM models with the additional regions of the
limbic system or the medial frontal cortex that plays an essen-
tial role inmore cognitively effortful social-cognitive tasks (Schurz
et al., 2020a, 2020b). As we used the time series of activation from
the right hemisphere to avoid confounding effects with language
processing, it is open to further analyses and studies on whether
the effective connectivity patterns in the left hemisphere or even
across hemispheres are comparable. Also, replicating these con-
nectivity patterns based on EEG data would be of high interest.
Albeit connectivity and activity patterns suggest an active imi-
tation of the participants (Schmidt et al., 2021), since we did not
apply a camera, ormeasure the activity of facial muscles, we have
no proof that participants indeed imitated the facial expressions.
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Notwithstanding these limitations, our results build the foun-
dation for further advanced models of the MNS. First of all,
albeit our findings warrant replication, they can inform further
social cognition models, including those of direct matching and
embodied simulation (Gallese, 2007; Donnarumma et al., 2017),
to involve information flow from STS to IPL and BA44. Further,
the results of the modified DCM analysis (Sadeghi et al., 2020)
allow the estimation of physiological models of the MNS. One
way to approach the human MNS without directly measuring the
activity of individual neurons consists of the theoretical model-
ing of the involved cell assemblies (Hass et al., 2016, 2019). The
mathematical description of the activity of neuronal networks
and the simulation of the dynamics makes it possible to calcu-
late the indicators of the non-invasivemeasurementmethods and
compare them with the measured values. This approach would
pave the way for statements about the physiology of the cell
assemblies, which would become possible since the parameters
of the model are directly related to biophysical properties such as
cellular activation functions or synaptic conductivities.

Keeping in mind that fMRI does not allow the assessment of
individual neurons and with these conclusions about MNs, the
effective connectivity patterns suggest directed information flow
between the regions of the MNS during social cognition, which
might be the basis for embodied simulation (Gallese, 2007). This
information flow can represent an inverse model transferring
sensory information to motor neurons in mirroring regions. In
addition, for imitation, a sensory–motor loop exists for matching
between external and internal sensory andmotor states, allowing
us to match our facial movements with the observed emotion of
our interaction partners (Lee et al., 2006; Bastiaansen et al., 2009;
Prochazkova and Kret, 2017).
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